1. The effect of the carbodiimide cross-linker on the structural and biocompatibility properties of collagen-chondroitin sulfate electrospun mat
- Author
-
Akhshabi S, Biazar E, Singh V, Keshel SH, and Geetha N
- Subjects
Collagen ,Chondroitin sulfate (CS) ,Extracellular matrix (ECM) ,Cross linker ,Electrospinning ,Nanofiber ,Medicine (General) ,R5-920 - Abstract
Sheyda Akhshabi,1 Esmaeil Biazar,2 Vivek Singh,3 Saeed Heidari Keshel,4 Nagaraja Geetha1 1Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India; 2Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran; 3Prof Brien Holden Eye Research Center, Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, L. V. Prasad Eye Institute, Hyderabad, Telangana, India; 4Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran Background: Collagen and chondroitin sulfate (CS) are an essential component of the natural extracellular matrix (ECM) of most tissues. They provide the mechanical stability to cone the compressive forces in ECM. In tissue engineering, electrospun nanofibrous scaffolds prepared by electrospinning technique have emerged as a suitable candidate to imitate natural ECM functions. Cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxy succinimide can overcome the weak mechanical integrity of the engineered scaffolds in addition to the increased degradation stability under physiological conditions. Materials and methods: This study has synthesized nanofibrous collagen–CS scaffolds by using the electrospinning method. Results: The results have shown that incorporation of CS in higher concentration, along with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxy succinimide, enhanced mechanical stability. Scaffolds showed more resistance to collagenase digestion. Fabricated scaffolds showed biocompatibility in corneal epithelial cell attachment. Conclusion: These results demonstrate that cross-linked electrospun CO–CS mats exhibited a uniform nanofibrous and porous structure, especially for lower concentration of the cross-linker and may be utilized as an alternative effective substrate in tissue engineering. Keywords: collagen, chondroitin sulfate, CS, extracellular matrix, ECM, cross linker, electrospinning, nanofiber
- Published
- 2018