9 results on '"Bezerra-Neto, João Pacifico"'
Search Results
2. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing
- Author
-
Lima, Jailton Lobo da Costa, Alves, Lilian Rodrigues, Jacomé, Paula Regina Luna de Araújo, Bezerra Neto, João Pacífico, Maciel, Maria Amélia Vieira, and Morais, Marcia Maria Camargo de
- Published
- 2018
- Full Text
- View/download PDF
3. Transcription Factors Involved in Plant Drought Tolerance Regulation
- Author
-
Barbosa Amorim, Lidiane L., Bezerra-Neto, João Pacífico, da Fonseca do Santos, Rômulo, Ferreira Neto, José Ribamar Costa, Kido, Ederson Akio, Matos, Mitalle, Benko-Iseppon, Ana Maria, Hossain, Mohammad Anwar, editor, Wani, Shabir Hussain, editor, Bhattacharjee, Soumen, editor, Burritt, David J, editor, and Tran, Lam-Son Phan, editor
- Published
- 2016
- Full Text
- View/download PDF
4. The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration
- Author
-
Matos, Mitalle Karen da Silva, primary, Benko-Iseppon, Ana Maria, additional, Bezerra-Neto, João Pacifico, additional, Ferreira-Neto, José Ribamar Costa, additional, Wang, Yu, additional, Liu, Hai, additional, Pandolfi, Valesca, additional, Amorim, Lidiane Lindinalva Barbosa, additional, Willadino, Lilia, additional, do Vale Amorim, Thialisson Caaci, additional, Kido, Ederson Akio, additional, Vianello, Rosana Pereira, additional, Timko, Michael P., additional, and Brasileiro-Vidal, Ana Christina, additional
- Published
- 2022
- Full Text
- View/download PDF
5. Supplementary_Table_1_AND_2_Final_13-07-20_xyz43729463bfb8d – Supplemental material for Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era
- Author
-
Santos-Silva, Carlos André Dos, Zupin, Luisa, Marx Oliveira-Lima, Vilela, Lívia Maria Batista, Bezerra-Neto, João Pacifico, Ferreira-Neto, José Ribamar, Ferreira, José Diogo Cavalcanti, Oliveira-Silva, Roberta Lane De, Carolline De Jesús Pires, Aburjaile, Flavia Figueira, Oliveira, Marianne Firmino De, Ederson Akio Kido, Crovella, Sergio, and Benko-Iseppon, Ana Maria
- Subjects
FOS: Biological sciences ,69999 Biological Sciences not elsewhere classified - Abstract
Supplemental material, Supplementary_Table_1_AND_2_Final_13-07-20_xyz43729463bfb8d for Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era by Carlos André dos Santos Silva, Luisa Zupin, Marx Oliveira-Lima, Lívia Maria Batista Vilela, João Pacifico Bezerra-Neto, José Ribamar Ferreira-Neto, José Diogo Cavalcanti Ferreira, Roberta Lane de Oliveira-Silva, Carolline de Jesús Pires, Flavia Figueira Aburjaile, Marianne Firmino de Oliveira, Ederson Akio Kido, Sergio Crovella and Ana Maria Benko-Iseppon in Bioinformatics and Biology Insights
- Published
- 2020
- Full Text
- View/download PDF
6. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era
- Author
-
Santos-Silva, Carlos André dos, primary, Zupin, Luisa, additional, Oliveira-Lima, Marx, additional, Vilela, Lívia Maria Batista, additional, Bezerra-Neto, João Pacifico, additional, Ferreira-Neto, José Ribamar, additional, Ferreira, José Diogo Cavalcanti, additional, Oliveira-Silva, Roberta Lane de, additional, Pires, Carolline de Jesús, additional, Aburjaile, Flavia Figueira, additional, Oliveira, Marianne Firmino de, additional, Kido, Ederson Akio, additional, Crovella, Sergio, additional, and Benko-Iseppon, Ana Maria, additional
- Published
- 2020
- Full Text
- View/download PDF
7. Repostas transcricionais e estresse-induzidas em genótipos constrastantes de Glycine max (soja) e Vigna unguiculata (feijão-caupi)
- Author
-
BEZERRA NETO, João Pacifico and ISEPPON, Ana Maria Benko
- Subjects
Regulação da expressão gênica ,Soja ,Feijão-caupi ,Bioinformática ,Leguminosa - Abstract
FACEPE As plantas evoluíram para sobreviver em ambientes onde muitas vezes são impostas condições adversas, tais como estresses abióticos (temperatura, luz, seca, salinidade, frio), ou bióticos (vírus, bactérias, fungos e nematoides). Para sua sobrevivência, desenvolveram inúmeros mecanismos que permitem a detecção de mudanças ambientais, bem como a indução de respostas específicas às condições estressantes impostas, minimizando as perdas. Existem genes-chave nos mecanismos de adaptação, especialmente os relacionados à desintoxicação, à homeostase e à reprogramação dos padrões de expressão gênica, envolvendo mudanças em nível fisiológico. A identificação de genes-candidatos promissores para o melhoramento de espécies cultivadas com relação aos principais estresses ainda está aquém das necessidades. Assim, a identificação e caracterização de genes relacionados com a resposta vegetal a estresses foi realizada para as culturas da soja e do feijão-caupi, em seus respectivos transcriptomas, por métodos computacionais. Quando estão sob estresse, as plantas podem ativar respostas celulares, incluindo a produção de proteínas antioxidantes, com o intuito de minimizar os danos e evitar a ação tóxica de ROS (Espécies Reativas de Oxigênio) nas células vegetais. Neste contexto, foram identificados 1.273 transcritos em feijão-caupi e 451 transcritos em soja, distribuídos em 15 categorias de genes ROS que desempenham papéis importantes no estresse oxidativo. Estes genes compõem um grupo de enzimas antioxidantes que trabalham em conjunto para manter um nível de estado estacionário intracelular, promovendo o crescimento da planta, desenvolvimento, ciclo celular, a sinalização hormonal, reforçando respostas aos estressores ambientais abióticos e bióticos, semelhante ao observado em outras espécies de plantas. Além das ROS fatores de transcrição (FTs) representam um papel crucial, como os principais reguladores da tolerância vegetal ao estresse. Nesse contexto, foi realizada uma identificação das famílias de FTs, presentes no transcriptoma de duas variedades contrastantes de feijão-caupi (sensível e tolerante a seca). Foram identificados 4.822 transcritos, classificados em 64 famílias, com expressão diferencial nos diferentes tempos de exposição ao estresse e cultivares, exibindo indução da expressão em condições de estresse. As interações entre as famílias gênicas reguladoras e os genes regulados permitiram a criação de modelos computacionais para a compreensão da arquitetura e funcionamento da rede de regulação gênica vegetal frente ao estresse, permitindo a identificação eficiente de candidatos para o melhoramento vegetal e fins biotecnológicos. Plants evolved to survive in environments that often impose adverse conditions, such as abiotic (temperature, light, drought, salinity, cold) and biotic stresses (viruses, bacteria, fungi and nematodes). For survival, they developed several mechanisms that enable the detection of environmental changes, as well as induction of specific responses to the imposed stress conditions, minimizing losses. There are key genes associated to adaptation mechanisms; especially those related to detoxification, homeostasis and gene expression patterns reprogramming, involving changes at physiological level. The identification of promising candidate genes for cultivated species improvement related to main stresses is still far from the necessities. Thus, the identification and characterization of genes related to plant response to stress was carried out for soybean and cowpea in their transcriptome by computational methods. When under stress, plants can activate cellular responses, including production of antioxidant proteins, in order to minimize damage and avoid toxic action of ROS (Reactive Oxygen Species) in plant cells. In this context, 1,273 transcripts were identified in cowpea and 451 transcripts in soybean, distributed into 15 ROS gene categories that play important roles in oxidative stress. These genes form a group of antioxidant enzymes that work in concert to maintain a steady intracellular level state, promoting plant growth, development, cell cycle, and hormonal signaling, reinforcing responses to biotic and abiotic environmental stressors, like observed in other plant species. Apart from ROS, transcription factors (TFs) play a crucial role as the primary regulators of plant stress tolerance. In this context, the identification of TF families was conducted for transcriptome data for two contrasting cowpea varieties (sensitive and tolerant to drought). 4,822 transcripts were identified, being classified into 64 families, differentially expressed in different times of exposure to stress and cultivars, exhibiting induction of expression under stress conditions. The interactions between regulatory gene families and regulated genes allowed the creation of computational models for understanding the architecture and operation of the plant against stress gene regulation network, allowing efficient identification of candidates for plant breeding and biotechnological purposes.
- Published
- 2016
8. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era
- Author
-
Roberta Lane de Oliveira-Silva, José Diogo Cavalcanti Ferreira, Carlos André dos Santos-Silva, Sergio Crovella, Carolline de Jesús Pires, Flávia Figueira Aburjaile, José Ribamar Costa Ferreira-Neto, Marx Oliveira-Lima, Marianne Firmino de Oliveira, Ederson Akio Kido, Luisa Zupin, João Pacífico Bezerra-Neto, Lívia Maria Batista Vilela, Ana Maria Benko-Iseppon, Santos-Silva, Carlos André do, Zupin, Luisa, Oliveira-Lima, Marx, Vilela, Lívia Maria Batista, Bezerra-Neto, João Pacifico, Ferreira-Neto, José Ribamar, Ferreira, José Diogo Cavalcanti, Oliveira-Silva, Roberta Lane de, Pires, Carolline de Jesú, Aburjaile, Flavia Figueira, Oliveira, Marianne Firmino de, Kido, Ederson Akio, Crovella, Sergio, and Benko-Iseppon, Ana Maria
- Subjects
cyclotide ,puroindoline ,In silico ,Antimicrobial peptides ,knotin ,Computational biology ,Review ,Biology ,Biochemistry ,hevein ,Cyclotides ,impatiens-like ,macadamia β-barrelin ,lcsh:QH301-705.5 ,Molecular Biology ,Defensin ,Gene ,macadamia β-barrelins ,snakin ,Applied Mathematics ,fungi ,food and beverages ,lipid transfer protein ,snaki ,Computer Science Applications ,Cyclotide ,thaumatin ,Computational Mathematics ,lcsh:Biology (General) - Abstract
Even before the perception or interaction with pathogens, plants rely on constitutively guardian molecules, often specific to tissue or stage, with further expression after contact with the pathogen. These guardians include small molecules as antimicrobial peptides (AMPs), generally cysteine-rich, functioning to prevent pathogen establishment. Some of these AMPs are shared among eukaryotes (eg, defensins and cyclotides), others are plant specific (eg, snakins), while some are specific to certain plant families (such as heveins). When compared with other organisms, plants tend to present a higher amount of AMP isoforms due to gene duplications or polyploidy, an occurrence possibly also associated with the sessile habit of plants, which prevents them from evading biotic and environmental stresses. Therefore, plants arise as a rich resource for new AMPs. As these molecules are difficult to retrieve from databases using simple sequence alignments, a description of their characteristics and in silico (bioinformatics) approaches used to retrieve them is provided, considering resources and databases available. The possibilities and applications based on tools versus database approaches are considerable and have been so far underestimated.
- Published
- 2020
9. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era.
- Author
-
Dos Santos-Silva CA, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, Ferreira JDC, de Oliveira-Silva RL, Pires CJ, Aburjaile FF, de Oliveira MF, Kido EA, Crovella S, and Benko-Iseppon AM
- Abstract
Even before the perception or interaction with pathogens, plants rely on constitutively guardian molecules, often specific to tissue or stage, with further expression after contact with the pathogen. These guardians include small molecules as antimicrobial peptides (AMPs), generally cysteine-rich, functioning to prevent pathogen establishment. Some of these AMPs are shared among eukaryotes (eg, defensins and cyclotides), others are plant specific (eg, snakins), while some are specific to certain plant families (such as heveins). When compared with other organisms, plants tend to present a higher amount of AMP isoforms due to gene duplications or polyploidy, an occurrence possibly also associated with the sessile habit of plants, which prevents them from evading biotic and environmental stresses. Therefore, plants arise as a rich resource for new AMPs. As these molecules are difficult to retrieve from databases using simple sequence alignments, a description of their characteristics and in silico (bioinformatics) approaches used to retrieve them is provided, considering resources and databases available. The possibilities and applications based on tools versus database approaches are considerable and have been so far underestimated., Competing Interests: Declaration of conflicting interests:The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article., (© The Author(s) 2020.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.