71 results on '"Bezdan, D."'
Search Results
2. Characterization of the public transit air microbiome and resistome reveals geographical specificity
- Author
-
Leung, M. H. Y., Tong, X., Bøifot, K. O., Bezdan, D., Butler, D. J., Danko, D. C., Gohli, J., Green, D. C., Hernandez, M. T., Kelly, F. J., Levy, S., Mason-Buck, G., Nieto-Caballero, M., Syndercombe-Court, D., Udekwu, K., Young, B. G., Mason, C. E., Dybwad, M., and Lee, P. K. H.
- Published
- 2021
- Full Text
- View/download PDF
3. Space omics research in Europe : Contributions, geographical distribution and ESA member state funding schemes
- Author
-
Deane, C. S., Borg, J., Cahill, T., Carnero-Diaz, E., Etheridge, T., Hardiman, G., Leys, N., Madrigal, P., Manzano, A., Mastroleo, F., Medina, F. J., Fernandez-Rojo, M. A., Siew, K., Szewczyk, N. J., Villacampa, A., Walsh, S. B., Weging, S., Bezdan, D., Giacomello, Stefania, da Silveira, W. A., Herranz, R., Team, Space Omics Topical, Deane, C. S., Borg, J., Cahill, T., Carnero-Diaz, E., Etheridge, T., Hardiman, G., Leys, N., Madrigal, P., Manzano, A., Mastroleo, F., Medina, F. J., Fernandez-Rojo, M. A., Siew, K., Szewczyk, N. J., Villacampa, A., Walsh, S. B., Weging, S., Bezdan, D., Giacomello, Stefania, da Silveira, W. A., Herranz, R., and Team, Space Omics Topical
- Abstract
The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed toward our current understanding of spaceflight biology. Recent molecular biology experiments include “omic” analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review, we i) identified and summarized omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states., QC 20221122
- Published
- 2022
- Full Text
- View/download PDF
4. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment
- Author
-
Chng K. R., Li C., Bertrand D., Ng A. H. Q., Kwah J. S., Low H. M., Tong C., Natrajan M., Zhang M. H., Xu L., Ko K. K. K., Ho E. X. P., Av-Shalom T. V., Teo J. W. P., Khor C. C., Danko D., Bezdan D., Afshinnekoo E., Ahsanuddin S., Bhattacharya C., Butler D. J., De Filippis F., Hecht J., Kahles A., Karasikov M., Kyrpides N. C., Leung M. H. Y., Meleshko D., Mustafa H., Mutai B., Neches R. Y., Ng A., Nieto-Caballero M., Nikolayeva O., Nikolayeva T., Png E., Sanchez J. L., Shaaban H., Sierra M. A., Tong X., Young B., Alicea J., Bhattacharyya M., Blekhman R., Castro-Nallar E., Canas A. M., Chatziefthimiou A. D., Crawford R. W., Deng Y., Desnues C., Dias-Neto E., Donnellan D., Dybwad M., Elhaik E., Ercolini D., Frolova A., Graf A. B., Green D. C., Hajirasouliha I., Hernandez M., Iraola G., Jang S., Jones A., Kelly F. J., Knights K., Labaj P. P., Lee P. K. H., Shawn L., Ljungdahl P., Lyons A., Mason-Buck G., McGrath K., Mongodin E. F., Moraes M. O., Nagarajan N., Noushmehr H., Oliveira M., Ossowski S., Osuolale O. O., Ozcan O., Paez-Espino D., Rascovan N., Richard H., Ratsch G., Schriml L. M., Semmler T., Sezerman O. U., Shi L., Song L. H., Suzuki H., Court D. S., Thomas D., Tighe S. W., Udekwu K. I., Ugalde J. A., Valentine B., Vassilev D. I., Vayndorf E., Velavan T. P., Zambrano M. M., Zhu J., Zhu S., Mason C. E., Chen S. L., Ng O. T., Marimuthu K., Ang B., Genome Institute of Singapore (GIS), Singapore University of Technology and Design (SUTD), Singapore General Hospital, National University Hospital [Singapore] (NUH), Weill Cornell Medicine [Cornell University], Cornell University [New York], Nanyang Technological University [Singapour], Tan Tock Seng Hospital, Department of Computational and Systems Biology [Singapore], Funding for this work was provided by A*STAR (N.N.), and we are grateful for support from NMRC (NMRC CGAug16C005: O.T.N. and K.M.). C.E.M. acknowledges support from the WorldQuant Foundation, the Bill and Melinda Gates Foundation (OPP1151054) and the Alfred P. Sloan Foundation (G-2015-13964). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. We would like to thank J. Gilbert for insightful comments and feedback on this work., MetaSUB Consortium: David Danko, Daniela Bezdan, Ebrahim Afshinnekoo, Sofia Ahsanuddin, Chandrima Bhattacharya, Daniel J. Butler, Kern Rei Chng, Francesca De Filippis, Jochen Hecht, Andre Kahles, Mikhail Karasikov, Nikos C. Kyrpides, Marcus H. Y. Leung, Dmitry Meleshko, Harun Mustafa, Beth Mutai, Russell Y. Neches, Amanda Ng, Marina Nieto-Caballero, Olga Nikolayeva, Tatyana Nikolayeva, Eileen Png, Jorge L. Sanchez, Heba Shaaban, Maria A. Sierra, Xinzhao Tong, Ben Young, Josue Alicea, Malay Bhattacharyya, Ran Blekhman, Eduardo Castro-Nallar, Ana M. Cañas, Aspassia D. Chatziefthimiou, Robert W. Crawford, Youping Deng, Christelle Desnues, Emmanuel Dias-Neto, Daisy Donnellan, Marius Dybwad, Eran Elhaik, Danilo Ercolini, Alina Frolova, Alexandra B. Graf, David C. Green, Iman Hajirasouliha, Mark Hernandez, Gregorio Iraola, Soojin Jang, Angela Jones, Frank J. Kelly, Kaymisha Knights, Paweł P. Łabaj, Patrick K. H. Lee, Levy Shawn, Per Ljungdahl, Abigail Lyons, Gabriella Mason-Buck, Ken McGrath, Emmanuel F. Mongodin, Milton Ozorio Moraes, Niranjan Nagarajan, Houtan Noushmehr, Manuela Oliveira, Stephan Ossowski, Olayinka O. Osuolale, Orhan Özcan, David Paez-Espino, Nicolas Rascovan, Hugues Richard, Gunnar Rätsch, Lynn M. Schriml, Torsten Semmler, Osman U. Sezerman, Leming Shi, Le Huu Song, Haruo Suzuki, Denise Syndercombe Court, Dominique Thomas, Scott W. Tighe, Klas I. Udekwu, Juan A. Ugalde, Brandon Valentine, Dimitar I. Vassilev, Elena Vayndorf, Thirumalaisamy P. Velavan, María M. Zambrano, Jifeng Zhu, Sibo Zhu & Christopher E. Mason, Weill Cornell Medicine [New York], Chng, K. R., Li, C., Bertrand, D., Ng, A. H. Q., Kwah, J. S., Low, H. M., Tong, C., Natrajan, M., Zhang, M. H., Xu, L., Ko, K. K. K., Ho, E. X. P., Av-Shalom, T. V., Teo, J. W. P., Khor, C. C., Danko, D., Bezdan, D., Afshinnekoo, E., Ahsanuddin, S., Bhattacharya, C., Butler, D. J., De Filippis, F., Hecht, J., Kahles, A., Karasikov, M., Kyrpides, N. C., Leung, M. H. Y., Meleshko, D., Mustafa, H., Mutai, B., Neches, R. Y., Ng, A., Nieto-Caballero, M., Nikolayeva, O., Nikolayeva, T., Png, E., Sanchez, J. L., Shaaban, H., Sierra, M. A., Tong, X., Young, B., Alicea, J., Bhattacharyya, M., Blekhman, R., Castro-Nallar, E., Canas, A. M., Chatziefthimiou, A. D., Crawford, R. W., Deng, Y., Desnues, C., Dias-Neto, E., Donnellan, D., Dybwad, M., Elhaik, E., Ercolini, D., Frolova, A., Graf, A. B., Green, D. C., Hajirasouliha, I., Hernandez, M., Iraola, G., Jang, S., Jones, A., Kelly, F. J., Knights, K., Labaj, P. P., Lee, P. K. H., Shawn, L., Ljungdahl, P., Lyons, A., Mason-Buck, G., Mcgrath, K., Mongodin, E. F., Moraes, M. O., Nagarajan, N., Noushmehr, H., Oliveira, M., Ossowski, S., Osuolale, O. O., Ozcan, O., Paez-Espino, D., Rascovan, N., Richard, H., Ratsch, G., Schriml, L. M., Semmler, T., Sezerman, O. U., Shi, L., Song, L. H., Suzuki, H., Court, D. S., Thomas, D., Tighe, S. W., Udekwu, K. I., Ugalde, J. A., Valentine, B., Vassilev, D. I., Vayndorf, E., Velavan, T. P., Zambrano, M. M., Zhu, J., Zhu, S., Mason, C. E., Chen, S. L., Ng, O. T., Marimuthu, K., Ang, B., and Acibadem University Dspace
- Subjects
0301 basic medicine ,Disease prevention ,030106 microbiology ,Geographic Mapping ,Drug resistance ,Beds ,Biology ,Opportunistic Infections ,Genome ,General Biochemistry, Genetics and Molecular Biology ,Article ,Tertiary Care Centers ,03 medical and health sciences ,Plasmid ,Antibiotic resistance ,Spatio-Temporal Analysis ,Drug Resistance, Multiple, Bacterial ,Drug Resistance, Bacterial ,Patients' Rooms ,Humans ,Microbiome ,Equipment and Supplies, Hospital ,Genetics ,Cross Infection ,Infection Control ,Singapore ,Microbiota ,General Medicine ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,3. Good health ,Resistome ,Disinfection ,030104 developmental biology ,Metagenomics ,Biofilms ,Equipment Contamination ,Mobilome ,Microbial genetics - Abstract
Although disinfection is key to infection control, the colonization patterns and resistomes of hospital-environment microbes remain underexplored. We report the first extensive genomic characterization of microbiomes, pathogens and antibiotic resistance cassettes in a tertiary-care hospital, from repeated sampling (up to 1.5 years apart) of 179 sites associated with 45 beds. Deep shotgun metagenomics unveiled distinct ecological niches of microbes and antibiotic resistance genes characterized by biofilm-forming and human-microbiome-influenced environments with corresponding patterns of spatiotemporal divergence. Quasi-metagenomics with nanopore sequencing provided thousands of high-contiguity genomes, phage and plasmid sequences (>60% novel), enabling characterization of resistome and mobilome diversity and dynamic architectures in hospital environments. Phylogenetics identified multidrug-resistant strains as being widely distributed and stably colonizing across sites. Comparisons with clinical isolates indicated that such microbes can persist in hospitals for extended periods (>8 years), to opportunistically infect patients. These findings highlight the importance of characterizing antibiotic resistance reservoirs in hospitals and establish the feasibility of systematic surveys to target resources for preventing infections., Spatiotemporal characterization of microbial diversity and antibiotic resistance in a tertiary-care hospital reveals broad distribution and persistence of antibiotic-resistant organisms that could cause opportunistic infections in a healthcare setting.
- Published
- 2020
- Full Text
- View/download PDF
5. Swarm Learning for decentralized and confidential clinical machine learning
- Author
-
Warnat-Herresthal, S. Schultze, H. Shastry, K.L. Manamohan, S. Mukherjee, S. Garg, V. Sarveswara, R. Händler, K. Pickkers, P. Aziz, N.A. Ktena, S. Tran, F. Bitzer, M. Ossowski, S. Casadei, N. Herr, C. Petersheim, D. Behrends, U. Kern, F. Fehlmann, T. Schommers, P. Lehmann, C. Augustin, M. Rybniker, J. Altmüller, J. Mishra, N. Bernardes, J.P. Krämer, B. Bonaguro, L. Schulte-Schrepping, J. De Domenico, E. Siever, C. Kraut, M. Desai, M. Monnet, B. Saridaki, M. Siegel, C.M. Drews, A. Nuesch-Germano, M. Theis, H. Heyckendorf, J. Schreiber, S. Kim-Hellmuth, S. Balfanz, P. Eggermann, T. Boor, P. Hausmann, R. Kuhn, H. Isfort, S. Stingl, J.C. Schmalzing, G. Kuhl, C.K. Röhrig, R. Marx, G. Uhlig, S. Dahl, E. Müller-Wieland, D. Dreher, M. Marx, N. Nattermann, J. Skowasch, D. Kurth, I. Keller, A. Bals, R. Nürnberg, P. Rieß, O. Rosenstiel, P. Netea, M.G. Theis, F. Mukherjee, S. Backes, M. Aschenbrenner, A.C. Ulas, T. Angelov, A. Bartholomäus, A. Becker, A. Bezdan, D. Blumert, C. Bonifacio, E. Bork, P. Boyke, B. Blum, H. Clavel, T. Colome-Tatche, M. Cornberg, M. De La Rosa Velázquez, I.A. Diefenbach, A. Dilthey, A. Fischer, N. Förstner, K. Franzenburg, S. Frick, J.-S. Gabernet, G. Gagneur, J. Ganzenmueller, T. Gauder, M. Geißert, J. Goesmann, A. Göpel, S. Grundhoff, A. Grundmann, H. Hain, T. Hanses, F. Hehr, U. Heimbach, A. Hoeper, M. Horn, F. Hübschmann, D. Hummel, M. Iftner, T. Iftner, A. Illig, T. Janssen, S. Kalinowski, J. Kallies, R. Kehr, B. Keppler, O.T. Klein, C. Knop, M. Kohlbacher, O. Köhrer, K. Korbel, J. Kremsner, P.G. Kühnert, D. Landthaler, M. Li, Y. Ludwig, K.U. Makarewicz, O. Marz, M. McHardy, A.C. Mertes, C. Münchhoff, M. Nahnsen, S. Nöthen, M. Ntoumi, F. Overmann, J. Peter, S. Pfeffer, K. Pink, I. Poetsch, A.R. Protzer, U. Pühler, A. Rajewsky, N. Ralser, M. Reiche, K. Ripke, S. da Rocha, U.N. Saliba, A.-E. Sander, L.E. Sawitzki, B. Scheithauer, S. Schiffer, P. Schmid-Burgk, J. Schneider, W. Schulte, E.-C. Sczyrba, A. Sharaf, M.L. Singh, Y. Sonnabend, M. Stegle, O. Stoye, J. Vehreschild, J. Velavan, T.P. Vogel, J. Volland, S. von Kleist, M. Walker, A. Walter, J. Wieczorek, D. Winkler, S. Ziebuhr, J. Breteler, M.M.B. Giamarellos-Bourboulis, E.J. Kox, M. Becker, M. Cheran, S. Woodacre, M.S. Goh, E.L. Schultze, J.L. COVID-19 Aachen Study (COVAS) Deutsche COVID-19 Omics Initiative (DeCOI)
- Abstract
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine. © 2021, The Author(s).
- Published
- 2021
6. eDiVA-Classification and prioritization of pathogenic variants for clinical diagnostics
- Author
-
Bosio M, Drechsel O, Rahman R, Muyas F, Raquel Rabionet Janssen, Bezdan D, Domenech Salgado L, Hor H, Schott JJ, Munell F, Colobran R, Macaya A, Estivill X, and Ossowski S
- Subjects
disease variant prioritization ,machine learning ,NGS diagnostics ,rare genetic disease ,whole-exome sequencing - Abstract
Mendelian diseases have shown to be an and efficient model for connecting genotypes to phenotypes and for elucidating the function of genes. Whole-exome sequencing (WES) accelerated the study of rare Mendelian diseases in families, allowing for directly pinpointing rare causal mutations in genic regions without the need for linkage analysis. However, the low diagnostic rates of 20-30% reported for multiple WES disease studies point to the need for improved variant pathogenicity classification and causal variant prioritization methods. Here, we present the exome Disease Variant Analysis (eDiVA; http://ediva.crg.eu), an automated computational framework for identification of causal genetic variants (coding/splicing single-nucleotide variants and small insertions and deletions) for rare diseases using WES of families or parent-child trios. eDiVA combines next-generation sequencing data analysis, comprehensive functional annotation, and causal variant prioritization optimized for familial genetic disease studies. eDiVA features a machine learning-based variant pathogenicity predictor combining various genomic and evolutionary signatures. Clinical information, such as disease phenotype or mode of inheritance, is incorporated to improve the precision of the prioritization algorithm. Benchmarking against state-of-the-art competitors demonstrates that eDiVA consistently performed as a good or better than existing approach in terms of detection rate and precision. Moreover, we applied eDiVA to several familial disease cases to demonstrate its clinical applicability.
- Published
- 2019
7. Whole-genome sequencing enabling the detection of a colistin-resistant hypermutating Citrobacter werkmanii strain harbouring a novel metallo-β-lactamase VIM-48
- Author
-
Peter, S., primary, Bezdan, D., additional, Oberhettinger, P., additional, Vogel, W., additional, Dörfel, D., additional, Dick, J., additional, Marschal, M., additional, Liese, J., additional, Weidenmaier, C., additional, Autenrieth, I., additional, Ossowski, S., additional, and Willmann, M., additional
- Published
- 2018
- Full Text
- View/download PDF
8. The metagenomics and metadesign of the subways and Urban biomes (MetaSUB) international consortium inaugural meeting report
- Author
-
Afshinnekoo, E, Ahsanuddin, S, Ghedin, E, Read, T, Fraser, C, Dudley, J, Bowler, C, Mason, CE, Chernomoretz, A, Stolovitzky, G, Łabaj, PP, Graf, AB, Darling, A, Burke, C, Noushmehr, H, Dias-Neto, E, Guo, Y, Xie, Z, Lee, PKH, Shi, L, Ruiz-Perez, CA, Zambrano, MM, Siam, R, Ouf, A, Richard, H, Lafontaine, I, Wieler, LH, Semmler, T, Prithiviraj, B, Nedunuri, N, Mehr, S, Banihashemi, K, Lista, F, Anselmo, A, Suzuki, H, Kuroda, M, Yamashita, R, Sato, Y, Kaminuma, E, Aranda, CMA, Martinez, J, Dada, C, Dybwad, M, Oliveira, M, Schuster, S, Siwo, GH, Jang, S, Seo, SC, Hwang, SH, Ossowski, S, Bezdan, D, Chaker, S, Chatziefthimiou, AD, Udekwu, K, Liungdahl, P, Sezerman, U, Meydan, C, Elhaik, E, Gonnet, G, Schriml, LM, Mongodin, E, Huttenhower, C, Gilbert, J, Eisen, J, Hirschberg, D, Hernandez, M, McGrath, K, McGrath, L, Gray, A, Osuolale, O, Segata, N, Fillo, S, Iraola, G, Zhou, Y, Chang, Y, Li, Y, Zhend, Y, Hou, W, Ramirez, A, Cepeda, M, Desnues, C, Rascovan, N, Baron, C, Nagarajan, N, Ercolini, D, Menary, W, Tighe, S, Donia, M, Levy, S, Benito, J, Jones, A, Kasarskis, A, Maritz, J, Jorgensen, E, Neches, R, Livelli, T, Barnetche, JM, Pasolli, E, Greenfield, N, and Hasan, N
- Subjects
Research Design ,Databases, Genetic ,Humans ,Public Health ,Metagenomics ,City Planning ,Ecosystem - Abstract
© 2016 The MetaSUB International Consortium. The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium is a novel, interdisciplinary initiative comprised of experts across many fields, including genomics, data analysis, engineering, public health, and architecture. The ultimate goal of the MetaSUB Consortium is to improve city utilization and planning through the detection, measurement, and design of metagenomics within urban environments. Although continual measures occur for temperature, air pressure, weather, and human activity, including longitudinal, cross-kingdom ecosystem dynamics can alter and improve the design of cities. The MetaSUB Consortium is aiding these efforts by developing and testing metagenomic methods and standards, including optimized methods for sample collection, DNA/RNA isolation, taxa characterization, and data visualization. The data produced by the consortium can aid city planners, public health officials, and architectural designers. In addition, the study will continue to lead to the discovery of new species, global maps of antimicrobial resistance (AMR) markers, and novel biosynthetic gene clusters (BGCs). Finally, we note that engineered metagenomic ecosystems can help enable more responsive, safer, and quantified cities.
- Published
- 2016
9. WES in nonprogressive congenital ataxia: Diagnostic yield and identification of novel loci
- Author
-
Macaya, A., primary, Drechsel, O., additional, Álvarez-Molinero, M., additional, Marcé-Grau, A., additional, Ferrer-Aparicio, S., additional, Gómez-Andrés, D., additional, Flotats-Bastardas, M., additional, Pons, M.R., additional, Raspall-Chaure, M., additional, Bezdan, D., additional, Bossio, M., additional, Munell, F., additional, and Ossowski, S., additional
- Published
- 2017
- Full Text
- View/download PDF
10. The transcription factor Grainy head and the steroid hormone ecdysone cooperate during differentiation of the skin of Drosophila melanogaster
- Author
-
Gangishetti, U., primary, Veerkamp, J., additional, Bezdan, D., additional, Schwarz, H., additional, Lohmann, I., additional, and Moussian, B., additional
- Published
- 2012
- Full Text
- View/download PDF
11. A global metagenomic map of urban microbiomes and antimicrobial resistance
- Author
-
Nadine Farhat, Tomoki Takeda, Astred Castro, Ken McGrath, Khaliun Sanchir, Iman Hajirasouliha, Eunice So, Laraib Zafar, Diana N. Nunes, Harun Mustafa, Amy Zhang, Priscilla Lisboa, Christian Schori, Marisano James, Jasna Chalangal, Sebastien Halary, Shahryar Rana, Yunmi Lee, Oli Schacher, Liliana Godoy, David A. Coil, Phanthira Pugdeethosal, Michelle D. Williams, German Marchandon, Angela Cantillo, Naoya Takahashi, Christopher Mozsary, Juana Gonzalez, Patrick K. H. Lee, Gerardo de Lamotte, Alessandro Robertiello, Steven Du, Fabienne Velter, Stefan G. Stark, Miguel Carbajo, Vincent Matthys, David A. Westfall, Julia Boeri, Irène Mauricette Mendy, Jonathan Cedillo, Francesco Oteri, Robert W. Crawford, Takayuki Ito, Tina Wunderlin, Maureen Muscat, David Paez-Espino, Carmen Urgiles, Aida Nesimi, Steffen Schaaf, Adan Ramirez-Rojas, Kunihiko Miyake, Christopher E. Mason, Anais Cardenas, Sharah Islam, Diego Benítez, Melissa Pool Pizzi, Kianna Ciaramella, Ciro Borrelli, Riham Islam, Dorottya Nagy-Szakal, Abd-Manaaf Bakere, Ait-hamlat Adel, Olha Lakhneko, Badamnyambuu Iderzorig, Ana Valeria Castro, Adam Phillips, Robert A. Petit, Flavia Corsi, Romain Conte, Krista Ryon, Soojin Jang, Joseph Benson, Fernanda de Souza Gomes Kehdy, Cindy Wang, Nicole Mathews, Jenn-Wei Chen, Rachel Paras, Paulina Pastuszek, Abigail Lyons, Paul Roldán, Muntaha Munia, Pierre Nicolas, Cassie L. Ettinger, Kyrylo Pyrshev, Katterinne N. Mendez, Eduardo Castro-Nallar, Valeriia Dotsenko, Michelle Tuz, Krizzy Mallari, Eileen Png, Yuya Sonohara, Tanja Miketic, Stéphane Delmas, Shu Zhang, Masaki Sato, Yuanting Zheng, Jifeng Zhu, Roland Häusler, Lucie Bittner, Savlatjon Rahmatulloev, Jonathan Foox, Bruno D'Alessandro, Alketa Plaku, Faisal Alquaddoomi, Yang Zhang, Kern Rei Chng, Juliana Lago, Allaeddine Chettouh, Tamera Henry, Houtan Noushmehr, Tranette Gregory, Sara Abdul Majid, Frank J. Kelly, Benjamin Pulatov, Laurie Casalot, Takema Kajita, Lennard Epping, Thais Fernanda Bartelli, Eftar Moniruzzaman, Renee Vivancos-Koopman, Thirumalaisamy P. Velavan, Tracy W. Liu, Yelyzaveta Tymoshenko, Alma Plaku, Nika Gurianova, Ambar Mendez, Anna Tomaselli, Sonia Dorado, Donato Giovannelli, Hira Choudhry, Synti Ng, Sheelta S. Kumar, Jennifer Q. Lu, Weijun Liang, Ellen Koag, Dennis Gankin, Maria João Amorim, Gwenola Simon, Kiyoshi Suganuma, Mikhail Karasikov, Christos A. Ouzounis, Madelyn May, Eran Elhaik, Stephan Ossowski, Kevin Bolzli, Matthew Arthur, Yuya Oto, Jananan Pathmanathan, Salah Mahmoud, Kou Takahashi, Brunna Marques, Kelly French, Felipe Sepúlveda, Shusei Yoshikawa, Paulo Thiago de Souza Santos, Andrew N. Gray, Juliana S Bernardes, Felipe Segato, Björn Brindefalk, George C. Yeh, Jhovana L. Velasco Flores, Jill Sullivan, Silva Baburyan, Denisse Flores, Russell Y. Neches, Sabrina Persaud, Rasheena Wright, Takumi Togashi, Verónica Antelo, Nao Kato, Skye Felice, Tatjana Mustac, Daisy Donnellan, Katerine Carrillo, Anna Litskevitch, Catalina García, Sota Ito, Naya Eady, Andrew Wan, Irene Meng, Sophie Guasco, Danilo Ercolini, Francesca De Filippis, Vincent Lemaire, Luice Fan, Lothar H. Wieler, Mariia Rybak, Jorge Sanchez, Jonathan S. Gootenberg, Itsuki Tomita, Maritza S Mosella, Laura Garcia, Natalka Makogon, Daisy Cheung, Hitler Francois Vasquez Arevalo, Freddy Asenjo, Gabriela P. Branco, Erika Cifuentes, Chloé Dequeker, Aspassia D. Chatziefthimiou, Alexis Terrero, Roy Meoded, Isabelle de Oliveira Moraes, Shaleni K. Singh, Orgil-Erdene Molomjamts, Karishma Miah, Laurent David, Wolfgang Haehr, Dao Phuong Giang, Romain Lannes, Prashanthi Ratnanandan, Ryota Yamanaka, Riccardo Vicedomini, Sadaf Ayaz, Oluwatosin M. Osuolale, Laura E. Vann, Gregory Chem, Andrea Gonzalez, Aszia Burrell, Ariel Chernomoretz, Sakura Ishizuka, Michelle Rivera, Avigdor Nosrati, Michelle B. Chen, Juliette Auvinet, Nils Ordioni, Tomoro Warashina, Guillaume Blanc, Tomislav Ivankovic, Christina Black, Lauren E. Hittle, David Hess-Homeier, Michael Kozhar, Hamood Suliman, Karobi Moitra, Saher Rahiel, Spyridon Gkotzis, Jenny Arevalo, Shaikh B. Iqbal, Beth Mutai, Mohammed Mohsin, Scott Tighe, Sylvie Collin, Yoshitaka Saito, Wayne Menary, Youping Deng, Lucy Lee, Esmeralda Jiminez, Ayuki Watanabe, Nikos C. Kyrpides, Natasha Mohan, Angelika Pupiec, Dedan Githae, Simone Cawthorne, Jonathan A. Eisen, Tomoki Iwashiro, Chiaki Homma, Thomas Saw Aung, Laura Molina, Marcus H. Y. Leung, Ophélie Da Silva, Yan Ling Wong, Hosna Noorzi, Mario Moreno, Alina Butova, Leming Shi, Brian W. Wong, Sarah S. Jackson, Moses Lin, Annabelle Meagher, Pujita Das, Catherine Burke, Mitsuki Ota, Maria Domenica Moccia, Nicolas Sprinsky, Catherine E. Pugh, David C. Green, Fazlina Fauzi, Erdenetsetseg Batdelger, Annie Geiger, Valeria Ventorino, Tolulope Oluwadare, Delisia Cuebas, Catalina Truong, Leonardo Posada, Michael Angelov, Tathiane M. Malta, Amanda Ng, Francesca Nadalin, Arya Hawkins-Zafarnia, Yuh Shiwa, Athena Mitsios, Milton Ozório Moraes, Manolo Laiola, Kalyn Ali, Jaden J.A. Hastings, Ikuto Saito, Maheen Shakil, Chisato Suzuki, Elena M. Vayndorf, Hubert Rehrauer, Ajay Menon, Kaitlan Russell, Aliyah Shari, Rebecca Smith, Gregorio Iraola, Max Priestman, Alan Briones, Silver A. Wolf, Camila Gonzalez-Poblete, Eleonora De Lazzari, Shirley Chiu, Michelle Ki, Irene Hoxie, Marianne Jaubert, Ayantu Jinfessa, Ryan J. King, Nghiem Xuan Hoan, Jalia Bynoe, Jacob Friedman, Aneisa Ramcharan, Pablo Fresia, Cristina Muñoz, Muhammad Afaq, Anyi Tang, Médine Benchouaia, Isabella Kuniko T. Takenaka, Anastasia Chasapi, Areeg Naeem, Hannah Benisty, Cecilia N. Cossio, Nathalie Hüsser, Mahfuza Sabina, Thais S. Sabedot, JoAnn Jacobs, Camila P. E. de Souza, Manuela Oliveira, Jean-Pierre Bouly, Mariko Usui, Wilson Miranda, Natalia Marciniak, Hiram Caballero, Samuel Weekes, Alexandra B. Graf, Emily Leong, Tatyana Nikolayeva, Dominique Thomas, Charlotte Greselle, Cecilia Salazar, Sreya Ray Chaudhuri, Kevin Becher, Sandra Roth, Ryusei Miura, Kari Oline Bøifot, Dimitri Manoir, Oliver Toth, Chandrima Bhattacharya, Manuel Perez, Isha Lamba, Takafumi Tsurumaki, Timothy D. Read, Anna-Lena M. Schinke, Ryan Sankar, Le Huu Song, Narasimha Rao Nedunuri, Emmanuel Dias-Neto, Ana Flávia Costa, Adiell Melamed, Christelle Desnues, Natalie R. Davidson, Aaron E. Darling, Hyung Jun Kim, Josephine Galipon, Jacqueline Orrego, Dimitar Vassilev, Michael Huber, Nur Hazlin Hazrin-Chong, Gaston H. Gonnet, Kaymisha Knights, Osman U. Sezerman, Dmitry Meleshko, Eunice Thambiraja, Jingcheng Yang, Aubin Fleiss, Gloria Nguyen, Katelyn Jackson, Nuria Aventin, Stephanie L. Hyland, Andrea Hässig, Catharine Aquino, Simona Lysakova, Israel O. Osuolale, Kasia Sluzek, Rania Siam, Alina Frolova, Samuel Hernandez, Yui Him Lo, Bazartseren Boldgiv, Ben Young, Maryna Korshevniuk, Majelia Ampadu, Yuk Man Tang, Amanda L. Muehlbauer, Sade Thomas, Gabriel Figueroa, Alexis Rivera, Lisbeth Pineda, Alexandra Dutan, Jennifer M. Tran, Chris K. Deng, Vedbar S. Khadka, Paola Florez de Sessions, Elizabeth Humphries, Hugues Richard, Hiba Naveed, Nora C. Toussaint, Mahshid Khavari, Maria del Mar Vivanco Ruiz, Antonin Thiébaut, Nicolás Rascovan, Marius Dybwad, Orhan Özcan, Lawrence Kwong, David Danko, Shaira Khan, Andrea Tassinari, Silvia Beurmann, Tsoi Ying Lai, Nanami Kubota, Tieliu Shi, Diana Chicas, Evan E. Afshin, Hirokazu Yano, Jonas Krebs, Mayuko Nakagawa, Hyun Jung Lee, Irene González Navarrete, Rachid Ounit, Lucia E. Alvarado-Arnez, Masaki Nasu, Allison Chan, Harilanto Andrianjakarivony, Jennifer Amachee, Mahdi Taye, Wan Chiew Ng, Kathryn O’Brien, Shino Ishikawa, Tristan Bitard-Feildel, Sora Takagi, Felix Hartkopf, Niamh B. O’Hara, Marcos A. S. Fonseca, Subhamitra Pakrashi, Amrit Kaur, Eva Hell, Patricia Vera-Wolf, Naimah Munim, Luiza Ferreira de Araújo, Mizuki Igarashi, Brianna Pompa-Hogan, Alessandra Carbone, Anne-Sophie Benoiston, Eric Helfrich, Michael A. Suarez-Villamil, Omar O. Abudayyeh, Natasha Abdullah, Jaime J. Fuentes, Juan Carlos Forero, Tetiana Yeskova, Denis Bertrand, Sambhawa Priya, Denisse Maldonado, Agier Nicolas, Ana Valeria B Castro, Starr Chatziefthimiou, André Kahles, Aaishah Francis, Fernanda Arredondo, Emilio Tarcitano, Irvind Buttar, Alex Alexiev, Jennifer Molinet, Sarah Shalaby, Itunu A. Oluwadare, Jason Sperry, Katrin Bakhl, Ana M. Cañas, Sofia Ahsanuddin, Miar Elaskandrany, Elodie Laine, Sven Bönigk, Johannes Werner, Stephen Eduard Boja Ruiz, Gargi Dayama, Paulina Buczansla, Brandon Valentine, Bharath Prithiviraj, Toni Bode, Stas Zubenko, Jake Cohen, Guilllaume Jospin, Zulena Saravi, Per O. Ljungdahl, Inderjit Kaur, Mauricio Moldes, Giuseppe KoLoMonaco, Denise Syndercombe Court, Sonia Bouchard, Sonia Losim, Sookwon Moon, Heba Shaaban, Suraj Patel, Sibo Zhu, Sarh Aly, Arif Asyraf Md Supie, LaShonda Dorsey, Juan Guerra, François Baudon, Rantimi A. Olawoyin, Alexia Bordigoni, Iqra Faiz, Mathilde Garcia, Gabriella Mason-Buck, María Gabriela Portilla, Niranjan Nagarajan, Fumie Takahara, Nancy Merino, Watson Andrew, Gina Kim, Yuma Sato, Hyenah Shim, Marie-Laure Jerier, Affifah Saadah Ahmad Kassim, Katerina Kuchin, Daniel Butler, Paweł P. Łabaj, Nadezhda Kobko-Litskevitch, Emmanuel F. Mongodin, Yuto Togashi, Paula Rodríguez, Pilar Lopez Hernandez, Xiaoqing Chen, Maria A. Sierra, Olga Nikolayeva, Manon Loubens, Colleen Conger, Hikaru Shirahata, Chenhao Li, Timothy Donahoe, Youngja Park, Lucia Elena Alvarado Arnez, Salama Chaker, Francisco Chavez, Alessandra Breschi, Jorge L. Sanchez, Kaung Myat San, Nayra Aguilar Rojas, Marcos Abraao, Kai Sasaki, Bryan Nazario, Olena Yemets, Klas I. Udekwu, Lynn M. Schriml, Anisia Peters, Aliaksei Holik, Mark Hernandez, Emile Faure, Malay Bhattacharyya, Josef W. Moser, Núria Andreu Somavilla, María Mercedes Zambrano, Kannan Rajendran, Gabriela E. Albuquerque, Tao Qing, Kazutoshi Tsuda, Ymke De Jong, Princess Osma, Mayra Arauco Livia, Javier Quilez Oliete, Carl Chrispin, Hyun Woo Joo, Ingrid Lafontaine, Nala An, Seisuke Sato, Felipe Segato Dezem, Andrew Maltez Thomas, Alexandre Desert, Xiao Wen Cai, O. Osuolale, Jun Wu, Coral Pardo-Esté, Courtney Robinson, Yuri Matsuzaki, Marina Nieto-Caballero, Cem Meydan, Ralph Schlapbach, Mark Menor, Sofia Castro, Rachel Kwong, Brittany Blyther, Olexandr Lykhenko, Jason R. Schriml, Christian Brion, Jenessa Orpilla, Juan A. Ugalde, Elsy Mankah Ngwa, Álvaro Aranguren, Lauren Mak, Matías Giménez, Ashanti Narce, Torsten Semmler, Stefan I. Tsonev, Abdollahi Nika, Katherine E. Dahlhausen, Monika Devi, Gunnar Rätsch, Oasima Muner, Carla Bello, Muhammad Al-Fath Amran, Anyelic Rosario, Melissa Ortega, Andrea Patrignani, Ante Peros, Elias McComb, Ryo Sato, Ireen Alam, Clara N. Dias, Soma Tanaka, Dayana Calderon, Ran Blekhman, Mathilde Mignotte, Alicia Boyd, Jochen Hecht, Thomas Neff, Xinzhao Tong, Josue Alicea, Kiara Olmeda, Sonia Marinovic, Carme Arnan, Kohei Ito, Samantha L. Goldman, Marianna S. Serpa, Renee Richer, Kaisei Sato, Jordana M. Silva, Akash Keluth Chavan, Sangwan Kim, Laís Pereira Ferreira, Sophie Vacant, Nowshin Sayara, Haruo Suzuki, Madeline Leahy, Juan C. Severyn, Sierra Vincent, Masaru Tomita, Maliha Mamun, Lucinda B. Davenport, Gabriella Oken, Dagmara Lewandowska, Gustavo Adolfo Malca Salas, Andrii Kuklin, Tyler Wong, Charlie Feigin, Eric Minwei Liu, Sonia L. Ghose, Daniela Bezdan, Antonietta La Storia, Juan P. Escalera-Antezana, Nuno Rufino de Sousa, Samuel M. Gerner, Weill Cornell Medicine [New York], Icahn School of Medicine at Mount Sinai [New York] (MSSM), Genome Institute of Singapore (GIS), Centre for Genomic Regulation [Barcelona] (CRG), Universitat Pompeu Fabra [Barcelona] (UPF)-Centro Nacional de Analisis Genomico [Barcelona] (CNAG), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), AUTRES, Massachusetts Institute of Technology (MIT), Indian Statistical Institute [Kolkata], University of Minnesota System, Universidad Andrés Bello [Santiago] (UNAB), California State University [Sacramento], University of Naples Federico II, University of Hawaii, Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN), Medical Genomics Group, University College of London [London] (UCL)-UCL Cancer Institute, Norwegian Defence Research Establishment (FFI), Lund University [Lund], Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, University of Vienna [Vienna], King‘s College London, University of Colorado [Boulder], Institut Pasteur de Montevideo, Réseau International des Instituts Pasteur (RIIP), Institut Pasteur Korea - Institut Pasteur de Corée, Fudan University [Shanghai], City University of Hong Kong [Hong Kong] (CUHK), Stockholm University, University of Maryland School of Medicine, University of Maryland System, Fundação Oswaldo Cruz (FIOCRUZ), University of São Paulo (USP), Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Barcelona Institute of Science and Technology (BIST), Elizade University, Acibadem Mehmet Ali Aydınlar University, Paléogénomique microbienne - Microbial paleogenomics, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Robert Koch Institute [Berlin] (RKI), East China Normal University [Shangaï] (ECNU), Cairo University, Vietnamese-German Center for Medical Research, Keio University, Université du Vermont, Universidad del Desarrollo, University of Sofia, University of Alaska [Fairbanks] (UAF), Universitätsklinikum Tübingen - University Hospital of Tübingen, Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen, Corporación Corpogen-Research Center, Biologie Computationnelle et Quantitative = Laboratory of Computational and Quantitative Biology (LCQB), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Weill Cornell Medicine [Cornell University], Cornell University [New York], University of Naples Federico II = Università degli studi di Napoli Federico II, Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Fundação Oswaldo Cruz / Oswaldo Cruz Foundation (FIOCRUZ), Universidade de São Paulo = University of São Paulo (USP), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Софийски университет = Sofia University, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Universidad Andrés Bello - UNAB (CHILE), Acibadem University Dspace, Danko, D., Bezdan, D., Afshin, E. E., Ahsanuddin, S., Bhattacharya, C., Butler, D. J., Chng, K. R., Donnellan, D., Hecht, J., Jackson, K., Kuchin, K., Karasikov, M., Lyons, A., Mak, L., Meleshko, D., Mustafa, H., Mutai, B., Neches, R. Y., Ng, A., Nikolayeva, O., Nikolayeva, T., Png, E., Ryon, K. A., Sanchez, J. L., Shaaban, H., Sierra, M. A., Thomas, D., Young, B., Abudayyeh, O. O., Alicea, J., Bhattacharyya, M., Blekhman, R., Castro-Nallar, E., Canas, A. M., Chatziefthimiou, A. D., Crawford, R. W., De Filippis, F., Deng, Y., Desnues, C., Dias-Neto, E., Dybwad, M., Elhaik, E., Ercolini, D., Frolova, A., Gankin, D., Gootenberg, J. S., Graf, A. B., Green, D. C., Hajirasouliha, I., Hastings, J. J. A., Hernandez, M., Iraola, G., Jang, S., Kahles, A., Kelly, F. J., Knights, K., Kyrpides, N. C., Labaj, P. P., Lee, P. K. H., Leung, M. H. Y., Ljungdahl, P. O., Mason-Buck, G., Mcgrath, K., Meydan, C., Mongodin, E. F., Moraes, M. O., Nagarajan, N., Nieto-Caballero, M., Noushmehr, H., Oliveira, M., Ossowski, S., Osuolale, O. O., Ozcan, O., Paez-Espino, D., Rascovan, N., Richard, H., Ratsch, G., Schriml, L. M., Semmler, T., Sezerman, O. U., Shi, L., Shi, T., Siam, R., Song, L. H., Suzuki, H., Court, D. S., Tighe, S. W., Tong, X., Udekwu, K. I., Ugalde, J. A., Valentine, B., Vassilev, D. I., Vayndorf, E. M., Velavan, T. P., Wu, J., Zambrano, M. M., Zhu, J., Zhu, S., Mason, C. E., Abdullah, N., Abraao, M., Adel, A. -H., Afaq, M., Al-Quaddoomi, F. S., Alam, I., Albuquerque, G. E., Alexiev, A., Ali, K., Alvarado-Arnez, L. E., Aly, S., Amachee, J., Amorim, M. G., Ampadu, M., Amran, M. A. -F., An, N., Andrew, W., Andrianjakarivony, H., Angelov, M., Antelo, V., Aquino, C., Aranguren, A., Araujo, L. F., Vasquez Arevalo, H. F., Arevalo, J., Arnan, C., Alvarado Arnez, L. E., Arredondo, F., Arthur, M., Asenjo, F., Aung, T. S., Auvinet, J., Aventin, N., Ayaz, S., Baburyan, S., Bakere, A. -M., Bakhl, K., Bartelli, T. F., Batdelger, E., Baudon, F., Becher, K., Bello, C., Benchouaia, M., Benisty, H., Benoiston, A. -S., Benson, J., Benitez, D., Bernardes, J., Bertrand, D., Beurmann, S., Bitard-Feildel, T., Bittner, L., Black, C., Blanc, G., Blyther, B., Bode, T., Boeri, J., Boldgiv, B., Bolzli, K., Bordigoni, A., Borrelli, C., Bouchard, S., Bouly, J. -P., Boyd, A., Branco, G. P., Breschi, A., Brindefalk, B., Brion, C., Briones, A., Buczansla, P., Burke, C. M., Burrell, A., Butova, A., Buttar, I., Bynoe, J., Bonigk, S., Boifot, K. O., Caballero, H., Cai, X. W., Calderon, D., Cantillo, A., Carbajo, M., Carbone, A., Cardenas, A., Carrillo, K., Casalot, L., Castro, S., Castro, A. V., Castro, A., Castro, A. V. B., Cawthorne, S., Cedillo, J., Chaker, S., Chalangal, J., Chan, A., Chasapi, A. I., Chatziefthimiou, S., Chaudhuri, S. R., Chavan, A. K., Chavez, F., Chem, G., Chen, X., Chen, M., Chen, J. -W., Chernomoretz, A., Chettouh, A., Cheung, D., Chicas, D., Chiu, S., Choudhry, H., Chrispin, C., Ciaramella, K., Cifuentes, E., Cohen, J., Coil, D. A., Collin, S., Conger, C., Conte, R., Corsi, F., Cossio, C. N., Costa, A. F., Cuebas, D., D'Alessandro, B., Dahlhausen, K. E., Darling, A. E., Das, P., Davenport, L. B., David, L., Davidson, N. R., Dayama, G., Delmas, S., Deng, C. K., Dequeker, C., Desert, A., Devi, M., Dezem, F. S., Dias, C. N., Donahoe, T. R., Dorado, S., Dorsey, L., Dotsenko, V., Du, S., Dutan, A., Eady, N., Eisen, J. A., Elaskandrany, M., Epping, L., Escalera-Antezana, J. P., Ettinger, C. L., Faiz, I., Fan, L., Farhat, N., Faure, E., Fauzi, F., Feigin, C., Felice, S., Ferreira, L. P., Figueroa, G., Fleiss, A., Flores, D., Velasco Flores, J. L., Fonseca, M. A. S., Foox, J., Forero, J. C., Francis, A., French, K., Fresia, P., Friedman, J., Fuentes, J. J., Galipon, J., Garcia, M., Garcia, L., Garcia, C., Geiger, A., Gerner, S. M., Ghose, S. L., Giang, D. P., Gimenez, M., Giovannelli, D., Githae, D., Gkotzis, S., Godoy, L., Goldman, S., Gonnet, G. H., Gonzalez, J., Gonzalez, A., Gonzalez-Poblete, C., Gray, A., Gregory, T., Greselle, C., Guasco, S., Guerra, J., Gurianova, N., Haehr, W., Halary, S., Hartkopf, F., Hawkins-Zafarnia, A., Hazrin-Chong, N. H., Helfrich, E., Hell, E., Henry, T., Hernandez, S., Hernandez, P. L., Hess-Homeier, D., Hittle, L. E., Hoan, N. X., Holik, A., Homma, C., Hoxie, I., Huber, M., Humphries, E., Hyland, S., Hassig, A., Hausler, R., Husser, N., Petit, R. A., Iderzorig, B., Igarashi, M., Iqbal, S. B., Ishikawa, S., Ishizuka, S., Islam, S., Islam, R., Ito, K., Ito, S., Ito, T., Ivankovic, T., Iwashiro, T., Jackson, S., Jacobs, J., James, M., Jaubert, M., Jerier, M. -L., Jiminez, E., Jinfessa, A., De Jong, Y., Joo, H. W., Jospin, G., Kajita, T., Ahmad Kassim, A. S., Kato, N., Kaur, A., Kaur, I., de Souza Gomes Kehdy, F., Khadka, V. S., Khan, S., Khavari, M., Ki, M., Kim, G., Kim, H. J., Kim, S., King, R. J., Kolomonaco, G., Koag, E., Kobko-Litskevitch, N., Korshevniuk, M., Kozhar, M., Krebs, J., Kubota, N., Kuklin, A., Kumar, S. S., Kwong, R., Kwong, L., Lafontaine, I., Lago, J., Lai, T. Y., Laine, E., Laiola, M., Lakhneko, O., Lamba, I., de Lamotte, G., Lannes, R., De Lazzari, E., Leahy, M., Lee, H., Lee, Y., Lee, L., Lemaire, V., Leong, E., Lewandowska, D., Li, C., Liang, W., Lin, M., Lisboa, P., Litskevitch, A., Liu, E. M., Liu, T., Livia, M. A., Lo, Y. H., Losim, S., Loubens, M., Lu, J., Lykhenko, O., Lysakova, S., Mahmoud, S., Majid, S. A., Makogon, N., Maldonado, D., Mallari, K., Malta, T. M., Mamun, M., Manoir, D., Marchandon, G., Marciniak, N., Marinovic, S., Marques, B., Mathews, N., Matsuzaki, Y., Matthys, V., May, M., Mccomb, E., Meagher, A., Melamed, A., Menary, W., Mendez, K. N., Mendez, A., Mendy, I. M., Meng, I., Menon, A., Menor, M., Meoded, R., Merino, N., Miah, K., Mignotte, M., Miketic, T., Miranda, W., Mitsios, A., Miura, R., Miyake, K., Moccia, M. D., Mohan, N., Mohsin, M., Moitra, K., Moldes, M., Molina, L., Molinet, J., Molomjamts, O. -E., Moniruzzaman, E., Moon, S., de Oliveira Moraes, I., Moreno, M., Mosella, M. S., Moser, J. W., Mozsary, C., Muehlbauer, A. L., Muner, O., Munia, M., Munim, N., Muscat, M., Mustac, T., Munoz, C., Nadalin, F., Naeem, A., Nagy-Szakal, D., Nakagawa, M., Narce, A., Nasu, M., Navarrete, I. G., Naveed, H., Nazario, B., Nedunuri, N. R., Neff, T., Nesimi, A., Ng, W. C., Ng, S., Nguyen, G., Ngwa, E., Nicolas, A., Nicolas, P., Nika, A., Noorzi, H., Nosrati, A., Nunes, D. N., O'Brien, K., O'Hara, N. B., Oken, G., Olawoyin, R. A., Oliete, J. Q., Olmeda, K., Oluwadare, T., Oluwadare, I. A., Ordioni, N., Orpilla, J., Orrego, J., Ortega, M., Osma, P., Osuolale, I. O., Osuolale, O. M., Ota, M., Oteri, F., Oto, Y., Ounit, R., Ouzounis, C. A., Pakrashi, S., Paras, R., Pardo-Este, C., Park, Y. -J., Pastuszek, P., Patel, S., Pathmanathan, J., Patrignani, A., Perez, M., Peros, A., Persaud, S., Peters, A., Phillips, A., Pineda, L., Pizzi, M. P., Plaku, A., Pompa-Hogan, B., Portilla, M. G., Posada, L., Priestman, M., Prithiviraj, B., Priya, S., Pugdeethosal, P., Pugh, C. E., Pulatov, B., Pupiec, A., Pyrshev, K., Qing, T., Rahiel, S., Rahmatulloev, S., Rajendran, K., Ramcharan, A., Ramirez-Rojas, A., Rana, S., Ratnanandan, P., Read, T. D., Rehrauer, H., Richer, R., Rivera, A., Rivera, M., Robertiello, A., Robinson, C., Rodriguez, P., Rojas, N. A., Roldan, P., Rosario, A., Roth, S., Ruiz, M., Boja Ruiz, S. E., Russell, K., Rybak, M., Sabedot, T. S., Sabina, M., Saito, I., Saito, Y., Malca Salas, G. A., Salazar, C., San, K. M., Sanchez, J., Sanchir, K., Sankar, R., de Souza Santos, P. T., Saravi, Z., Sasaki, K., Sato, Y., Sato, M., Sato, S., Sato, R., Sato, K., Sayara, N., Schaaf, S., Schacher, O., Schinke, A. -L. M., Schlapbach, R., Schori, C., Schriml, J. R., Segato, F., Sepulveda, F., Serpa, M. S., De Sessions, P. F., Severyn, J. C., Shakil, M., Shalaby, S., Shari, A., Shim, H., Shirahata, H., Shiwa, Y., Da Silva, O., Silva, J. M., Simon, G., Singh, S. K., Sluzek, K., Smith, R., So, E., Andreu Somavilla, N., Sonohara, Y., Rufino de Sousa, N., Souza, C., Sperry, J., Sprinsky, N., Stark, S. G., La Storia, A., Suganuma, K., Suliman, H., Sullivan, J., Supie, A. A. M., Suzuki, C., Takagi, S., Takahara, F., Takahashi, N., Takahashi, K., Takeda, T., Takenaka, I. K., Tanaka, S., Tang, A., Man Tang, Y., Tarcitano, E., Tassinari, A., Taye, M., Terrero, A., Thambiraja, E., Thiebaut, A., Thomas, S., Thomas, A. M., Togashi, Y., Togashi, T., Tomaselli, A., Tomita, M., Tomita, I., Toth, O., Toussaint, N. C., Tran, J. M., Truong, C., Tsonev, S. I., Tsuda, K., Tsurumaki, T., Tuz, M., Tymoshenko, Y., Urgiles, C., Usui, M., Vacant, S., Vann, L. E., Velter, F., Ventorino, V., Vera-Wolf, P., Vicedomini, R., Suarez-Villamil, M. A., Vincent, S., Vivancos-Koopman, R., Wan, A., Wang, C., Warashina, T., Watanabe, A., Weekes, S., Werner, J., Westfall, D., Wieler, L. H., Williams, M., Wolf, S. A., Wong, B., Wong, Y. L., Wong, T., Wright, R., Wunderlin, T., Yamanaka, R., Yang, J., Yano, H., Yeh, G. C., Yemets, O., Yeskova, T., Yoshikawa, S., Zafar, L., Zhang, Y., Zhang, S., Zhang, A., Zheng, Y., and Zubenko, S.
- Subjects
Urban Population ,Drug Resistance ,Sequence assembly ,Microbiologia ,microbiome ,global health ,computer.software_genre ,Medical and Health Sciences ,shotgun sequencing ,BGC ,0302 clinical medicine ,Databases, Genetic ,11. Sustainability ,Global health ,AMR ,11 Medical and Health Sciences ,ComputingMilieux_MISCELLANEOUS ,0303 health sciences ,built environment ,metagenome ,antimicrobial resistance ,NGS ,de novo assembly ,biology ,Shotgun sequencing ,Microbiota ,built Environment ,Bacterial ,Biodiversity ,Biological Sciences ,3. Good health ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Infection ,Biotechnology ,Geospatial analysis ,[SDV.BID]Life Sciences [q-bio]/Biodiversity ,Article ,General Biochemistry, Genetics and Molecular Biology ,Databases ,03 medical and health sciences ,Antibiotic resistance ,Genetic ,Drug Resistance, Bacterial ,International MetaSUB Consortium ,Genetics ,Humans ,Microbiome ,030304 developmental biology ,Human Genome ,06 Biological Sciences ,15. Life on land ,biology.organism_classification ,Resistènica als medicaments antiinfecciosos ,SAÚDE PÚBLICA ,Genòmica ,13. Climate action ,Evolutionary biology ,Metagenomics ,Antimicrobial Resistance ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,computer ,030217 neurology & neurosurgery ,Archaea ,Developmental Biology - Abstract
Summary We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities., Graphical abstract, Highlights • Cities possess a consistent “core” set of non-human microbes • Urban microbiomes echo important features of cities and city-life • Antimicrobial resistance genes are widespread in cities • Cities contain many novel bacterial and viral species, This systematic, worldwide catalog of urban microbiomes represents a metagenomic atlas important for understanding the ecology, virulence, and antibiotic resistance of city-specific microbial communities.
- Published
- 2021
- Full Text
- View/download PDF
12. Protective alleles and precision healthcare in crewed spaceflight.
- Author
-
Rutter LA, MacKay MJ, Cope H, Szewczyk NJ, Kim J, Overbey E, Tierney BT, Muratani M, Lamm B, Bezdan D, Paul AM, Schmidt MA, Church GM, Giacomello S, and Mason CE
- Subjects
- Humans, Aerospace Medicine, Genome, Human, Neoplasms genetics, Neoplasms therapy, Space Flight, Alleles, Precision Medicine methods
- Abstract
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
13. Astronaut omics and the impact of space on the human body at scale.
- Author
-
Rutter LA, Cope H, MacKay MJ, Herranz R, Das S, Ponomarev SA, Costes SV, Paul AM, Barker R, Taylor DM, Bezdan D, Szewczyk NJ, Muratani M, Mason CE, and Giacomello S
- Subjects
- Humans, Genomics methods, Human Body, Space Flight, Astronauts
- Abstract
Future multi-year crewed planetary missions will motivate advances in aerospace nutrition and telehealth. On Earth, the Human Cell Atlas project aims to spatially map all cell types in the human body. Here, we propose that a parallel Human Cell Space Atlas could serve as an openly available, global resource for space life science research. As humanity becomes increasingly spacefaring, high-resolution omics on orbit could permit an advent of precision spaceflight healthcare. Alongside the scientific potential, we consider the complex ethical, cultural, and legal challenges intrinsic to the human space omics discipline, and how philosophical frameworks may benefit from international perspectives., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
14. Enhancing European capabilities for application of multi-omics studies in biology and biomedicine space research.
- Author
-
Manzano A, Weging S, Bezdan D, Borg J, Cahill T, Carnero-Diaz E, Cope H, Deane CS, Etheridge T, Giacomello S, Hardiman G, Leys N, Madrigal P, Mastroleo F, Medina FJ, Mieczkowski J, Fernandez-Rojo MA, Siew K, Szewczyk NJ, Walsh SB, da Silveira WA, and Herranz R
- Abstract
Following on from the NASA twins' study, there has been a tremendous interest in the use of omics techniques in spaceflight. Individual space agencies, NASA's GeneLab, JAXA's ibSLS, and the ESA-funded Space Omics Topical Team and the International Standards for Space Omics Processing (ISSOP) groups have established several initiatives to support this growth. Here, we present recommendations from the Space Omics Topical Team to promote standard application of space omics in Europe. We focus on four main themes: i) continued participation in and coordination with international omics endeavors, ii) strengthening of the European space omics infrastructure including workforce and facilities, iii) capitalizing on the emerging opportunities in the commercial space sector, and iv) capitalizing on the emerging opportunities in human subjects research., Competing Interests: F.M. is CEO/Co-Founder at Genegoggle, D.B. is a cofounder of Poppy Health, Inc. and CSO of Yuri Gravity GmbH and declares affiliations at the NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen and Yuri Gravity, Meckenbeuren, Germany. M.F.R. declares additional affiliation at Diamantina Institute, The University of Queensland, St Lucia, Queensland 4072, Australia. S.G. is a scientific consultant of 10x Genomics., (© 2023 The Authors.)
- Published
- 2023
- Full Text
- View/download PDF
15. Ozone Disinfection for Elimination of Bacteria and Degradation of SARS-CoV2 RNA for Medical Environments.
- Author
-
Westover C, Rahmatulloev S, Danko D, Afshin EE, O'Hara NB, Ounit R, Bezdan D, and Mason CE
- Subjects
- Humans, SARS-CoV-2 genetics, RNA, Viral analysis, Disinfection methods, Escherichia coli genetics, Pandemics, Ultraviolet Rays, Bacteria, COVID-19, Ozone pharmacology, Cross Infection
- Abstract
Pathogenic bacteria and viruses in medical environments can lead to treatment complications and hospital-acquired infections. Current disinfection protocols do not address hard-to-access areas or may be beyond line-of-sight treatment, such as with ultraviolet radiation. The COVID-19 pandemic further underscores the demand for reliable and effective disinfection methods to sterilize a wide array of surfaces and to keep up with the supply of personal protective equipment (PPE). We tested the efficacy of Sani Sport ozone devices to treat hospital equipment and surfaces for killing Escherichia coli , Enterococcus faecalis , Bacillus subtilis , and Deinococcus radiodurans by assessing Colony Forming Units (CFUs) after 30 min, 1 h, and 2 h of ozone treatment. Further gene expression analysis was conducted on live E. coli K12 immediately post treatment to understand the oxidative damage stress response transcriptome profile. Ozone treatment was also used to degrade synthetic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA as assessed by qPCR CT values. We observed significant and rapid killing of medically relevant and environmental bacteria across four surfaces (blankets, catheter, remotes, and syringes) within 30 min, and up to a 99% reduction in viable bacteria at the end of 2 h treatment cycles. RNA-seq analysis of E. coli K12 revealed 447 differentially expressed genes in response to ozone treatment and an enrichment for oxidative stress response and related pathways. RNA degradation of synthetic SARS-CoV-2 RNA was seen an hour into ozone treatment as compared to non-treated controls, and a non-replicative form of the virus was shown to have significant RNA degradation at 30 min. These results show the strong promise of ozone treatment of surfaces for reducing the risk of hospital-acquired infections and as a method for degradation of SARS-CoV-2 RNA.
- Published
- 2022
- Full Text
- View/download PDF
16. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight.
- Author
-
Overbey EG, Das S, Cope H, Madrigal P, Andrusivova Z, Frapard S, Klotz R, Bezdan D, Gupta A, Scott RT, Park J, Chirko D, Galazka JM, Costes SV, Mason CE, Herranz R, Szewczyk NJ, Borg J, and Giacomello S
- Subjects
- Sequence Analysis, RNA methods, Single-Cell Analysis methods, Gene Expression Profiling methods, Transcriptome genetics, Space Flight
- Abstract
Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have experienced rapid development in recent years. The findings of spaceflight-based scRNA-seq and SRT investigations are likely to improve our understanding of life in space and our comprehension of gene expression in various cell systems and tissue dynamics. However, compared to their Earth-based counterparts, gene expression experiments conducted in spaceflight have not experienced the same pace of development. Out of the hundreds of spaceflight gene expression datasets available, only a few used scRNA-seq and SRT. In this perspective piece, we explore the growing importance of scRNA-seq and SRT in space biology and discuss the challenges and considerations relevant to robust experimental design to enable growth of these methods in the field., (© 2022 The Authors.)
- Published
- 2022
- Full Text
- View/download PDF
17. A history of the MetaSUB consortium: Tracking urban microbes around the globe.
- Author
-
Ryon KA, Tierney BT, Frolova A, Kahles A, Desnues C, Ouzounis C, Gibas C, Bezdan D, Deng Y, He D, Dias-Neto E, Elhaik E, Afshin E, Grills G, Iraola G, Suzuki H, Werner J, Udekwu K, Schriml L, Bhattacharyya M, Oliveira M, Zambrano MM, Hazrin-Chong NH, Osuolale O, Łabaj PP, Tiasse P, Rapuri S, Borras S, Pozdniakova S, Shi T, Sezerman U, Rodo X, Sezer ZH, and Mason CE
- Abstract
The MetaSUB Consortium, founded in 2015, is a global consortium with an interdisciplinary team of clinicians, scientists, bioinformaticians, engineers, and designers, with members from more than 100 countries across the globe. This network has continually collected samples from urban and rural sites including subways and transit systems, sewage systems, hospitals, and other environmental sampling. These collections have been ongoing since 2015 and have continued when possible, even throughout the COVID-19 pandemic. The consortium has optimized their workflow for the collection, isolation, and sequencing of DNA and RNA collected from these various sites and processing them for metagenomics analysis, including the identification of SARS-CoV-2 and its variants. Here, the Consortium describes its foundations, and its ongoing work to expand on this network and to focus its scope on the mapping, annotation, and prediction of emerging pathogens, mapping microbial evolution and antibiotic resistance, and the discovery of novel organisms and biosynthetic gene clusters., (© 2022 The Authors.)
- Published
- 2022
- Full Text
- View/download PDF
18. Building the Space Omics Topical Team to boost European space researchers' role in the international consortia redefining spaceflight-generated datasets.
- Author
-
Herranz R, da Silveira W, Bezdan D, Giacomello S, and Szewczyk N
- Abstract
In a broadening and more competitive space exploration landscape, playing at scale is necessary to obtain results. European researchers share their lessons learned on growing a research program where omics techniques can feed new knowledge, both fundamental and practical, for space exploration. Sending people to new space destinations will require interdisciplinary research centered around omics and personalized medicine, with added constraints of low-gravity and high-radiation environments., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
19. Routine omics collection is a golden opportunity for European human research in space and analog environments.
- Author
-
Cope H, Willis CRG, MacKay MJ, Rutter LA, Toh LS, Williams PM, Herranz R, Borg J, Bezdan D, Giacomello S, Muratani M, Mason CE, Etheridge T, and Szewczyk NJ
- Abstract
Widespread generation and analysis of omics data have revolutionized molecular medicine on Earth, yet its power to yield new mechanistic insights and improve occupational health during spaceflight is still to be fully realized in humans. Nevertheless, rapid technological advancements and ever-regular spaceflight programs mean that longitudinal, standardized, and cost-effective collection of human space omics data are firmly within reach. Here, we consider the practicality and scientific return of different sampling methods and omic types in the context of human spaceflight. We also appraise ethical and legal considerations pertinent to omics data derived from European astronauts and spaceflight participants (SFPs). Ultimately, we propose that a routine omics collection program in spaceflight and analog environments presents a golden opportunity. Unlocking this bright future of artificial intelligence (AI)-driven analyses and personalized medicine approaches will require further investigation into best practices, including policy design and standardization of omics data, metadata, and sampling methods., (© 2022 The Authors.)
- Published
- 2022
- Full Text
- View/download PDF
20. Annotating unknown species of urban microorganisms on a global scale unveils novel functional diversity and local environment association.
- Author
-
Wu J, Danko D, Afshinnekoo E, Bezdan D, Bhattacharyya M, Castro-Nallar E, Chmielarczyk A, Hazrin-Chong NH, Deng Y, Dias-Neto E, Frolova A, Mason-Buck G, Iraola G, Jang S, Łabaj P, Lee PKH, Nieto-Caballero M, Osuolale OO, Ouzounis CA, Perlin MH, Prithiviraj B, Rascovan N, Różańska A, Schriml LM, Semmler T, Suzuki H, Ugalde JA, Young B, Werner J, Zambrano MM, Zhao Y, Mason C, and Shi T
- Subjects
- Bacteria genetics, Humans, Metagenomics, Microbial Interactions, Metagenome, Microbiota genetics
- Abstract
In urban ecosystems, microbes play a key role in maintaining major ecological functions that directly support human health and city life. However, the knowledge about the species composition and functions involved in urban environments is still limited, which is largely due to the lack of reference genomes in metagenomic studies comprises more than half of unclassified reads. Here we uncovered 732 novel bacterial species from 4728 samples collected from various common surface with the matching materials in the mass transit system across 60 cities by the MetaSUB Consortium. The number of novel species is significantly and positively correlated with the city population, and more novel species can be identified in the skin-associated samples. The in-depth analysis of the new gene catalog showed that the functional terms have a significant geographical distinguishability. Moreover, we revealed that more biosynthetic gene clusters (BGCs) can be found in novel species. The co-occurrence relationship between BGCs and genera and the geographical specificity of BGCs can also provide us more information for the synthesis pathways of natural products. Expanded the known urban microbiome diversity and suggested additional mechanisms for taxonomic and functional characterization of the urban microbiome. Considering the great impact of urban microbiomes on human life, our study can also facilitate the microbial interaction analysis between human and urban environment., (Copyright © 2021. Published by Elsevier Inc.)
- Published
- 2022
- Full Text
- View/download PDF
21. MapToCleave: High-throughput profiling of microRNA biogenesis in living cells.
- Author
-
Kang W, Fromm B, Houben AJ, Høye E, Bezdan D, Arnan C, Thrane K, Asp M, Johnson R, Biryukova I, and Friedländer MR
- Subjects
- Animals, Humans, Plants genetics, RNA Precursors metabolism, RNA Processing, Post-Transcriptional genetics, High-Throughput Nucleotide Sequencing methods, MicroRNAs biosynthesis, MicroRNAs genetics
- Abstract
Previous large-scale studies have uncovered many features that determine the processing of microRNA (miRNA) precursors; however, they have been conducted in vitro. Here, we introduce MapToCleave, a method to simultaneously profile processing of thousands of distinct RNA structures in living cells. We find that miRNA precursors with a stable lower basal stem are more efficiently processed and also have higher expression in vivo in tissues from 20 animal species. We systematically compare the importance of known and novel sequence and structural features and test biogenesis of miRNA precursors from 10 animal and plant species in human cells. Lastly, we provide evidence that the GHG motif better predicts processing when defined as a structure rather than sequence motif, consistent with recent cryogenic electron microscopy (cryo-EM) studies. In summary, we apply a screening assay in living cells to reveal the importance of lower basal stem stability for miRNA processing and in vivo expression., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
22. Epigenetic Forensics for Suspect Identification and Age Prediction.
- Author
-
Foox J, Bezdan D, Vijay P, Getz K, Ratanachai K, Davis JW, Booher K, Yang X, Meydan C, and Mason CE
- Abstract
Background: Genetic testing at crime scenes is an instrumental molecular technique to identify or eliminate suspects, as well as to overturn wrongful convictions. Yet, genotyping alone cannot reveal the age of a sample, which could help advance the utility of crime scene samples for suspect identification. The distribution of cytosine methylation within a DNA sample can be leveraged to determine the epigenetic age of someone's blood. Methodology: We sought to demonstrate the ability of DNA methylation markers to accurately discern the age of blood spots from an actual crime scene, a "mock" crime scene, and also from a tube of blood stored in ethylenediaminetetraacetic acid for >20 years. This was achieved by quantifying methylation within known age-associated genetic loci across each DNA sample. We observed a strong linear coefficient (0.91) and high overall correlation ( R
2 = 0.963) between the known age of a sample and the predicted age. Conclusion: We show that novel methods for targeted methylation and low-input whole-genome bisulfite sequencing can enable a novel and improved forensic profile of a crime scene that discerns not only who was present at the crime, but also their age. Finally, we use this model to discern the age and provenance of a blood sample that was used in a criminal investigation., Competing Interests: P.V. is an employee of AbbVie, Inc. K.B. and X.Y. are employees of Zymo Research, Inc. All other authors declare no conflicts of interest., (Copyright 2021, Mary Ann Liebert, Inc., publishers.)- Published
- 2021
- Full Text
- View/download PDF
23. Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications.
- Author
-
Moore KJM, Cahill J, Aidelberg G, Aronoff R, Bektaş A, Bezdan D, Butler DJ, Chittur SV, Codyre M, Federici F, Tanner NA, Tighe SW, True R, Ware SB, Wyllie AL, Afshin EE, Bendesky A, Chang CB, Dela Rosa R 2nd, Elhaik E, Erickson D, Goldsborough AS, Grills G, Hadasch K, Hayden A, Her SY, Karl JA, Kim CH, Kriegel AJ, Kunstman T, Landau Z, Land K, Langhorst BW, Lindner AB, Mayer BE, McLaughlin LA, McLaughlin MT, Molloy J, Mozsary C, Nadler JL, D'Silva M, Ng D, O'Connor DH, Ongerth JE, Osuolale O, Pinharanda A, Plenker D, Ranjan R, Rosbash M, Rotem A, Segarra J, Schürer S, Sherrill-Mix S, Solo-Gabriele H, To S, Vogt MC, Yu AD, and Mason CE
- Subjects
- COVID-19 Nucleic Acid Testing, Humans, Molecular Diagnostic Techniques, Pandemics, RNA, Viral, COVID-19 diagnosis, Nucleic Acid Amplification Techniques, SARS-CoV-2 isolation & purification
- Abstract
As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer., (© 2021 ABRF.)
- Published
- 2021
- Full Text
- View/download PDF
24. Haplotype diversity and sequence heterogeneity of human telomeres.
- Author
-
Grigorev K, Foox J, Bezdan D, Butler D, Luxton JJ, Reed J, McKenna MJ, Taylor L, George KA, Meydan C, Bailey SM, and Mason CE
- Abstract
Telomeres are regions of repetitive nucleotide sequences capping the ends of eukaryotic chromosomes that protect against deterioration, and whose lengths can be correlated with age and adverse health risk factors. Yet, given their length and repetitive nature, telomeric regions are not easily reconstructed from short-read sequencing, thus making telomere sequencing, mapping, and variant resolution challenging problems. Recently, long-read sequencing, with read lengths measuring in hundreds of kilobase pairs, has made it possible to routinely read into telomeric regions and inspect their sequence structure. Here, we describe a framework for extracting telomeric reads from whole-genome single-molecule sequencing experiments, including de novo identification of telomere repeat motifs and repeat types, and also describe their sequence variation. We find that long, complex telomeric stretches and repeats can be accurately captured with long-read sequencing, observe extensive sequence heterogeneity of human telomeres, discover and localize noncanonical telomere sequence motifs (both previously reported, as well as novel), and validate them in short-read sequence data. These data reveal extensive intra- and inter-population diversity of repeats in telomeric haplotypes, reveal higher paternal inheritance of telomeric variants, and represent the first motif composition maps of multi-kilobase-pair human telomeric haplotypes across three distinct ancestries (Ashkenazi, Chinese, and Utah), which can aid in future studies of genetic variation, aging, and genome biology., (© 2021 Grigorev et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2021
- Full Text
- View/download PDF
25. A global metagenomic map of urban microbiomes and antimicrobial resistance.
- Author
-
Danko D, Bezdan D, Afshin EE, Ahsanuddin S, Bhattacharya C, Butler DJ, Chng KR, Donnellan D, Hecht J, Jackson K, Kuchin K, Karasikov M, Lyons A, Mak L, Meleshko D, Mustafa H, Mutai B, Neches RY, Ng A, Nikolayeva O, Nikolayeva T, Png E, Ryon KA, Sanchez JL, Shaaban H, Sierra MA, Thomas D, Young B, Abudayyeh OO, Alicea J, Bhattacharyya M, Blekhman R, Castro-Nallar E, Cañas AM, Chatziefthimiou AD, Crawford RW, De Filippis F, Deng Y, Desnues C, Dias-Neto E, Dybwad M, Elhaik E, Ercolini D, Frolova A, Gankin D, Gootenberg JS, Graf AB, Green DC, Hajirasouliha I, Hastings JJA, Hernandez M, Iraola G, Jang S, Kahles A, Kelly FJ, Knights K, Kyrpides NC, Łabaj PP, Lee PKH, Leung MHY, Ljungdahl PO, Mason-Buck G, McGrath K, Meydan C, Mongodin EF, Moraes MO, Nagarajan N, Nieto-Caballero M, Noushmehr H, Oliveira M, Ossowski S, Osuolale OO, Özcan O, Paez-Espino D, Rascovan N, Richard H, Rätsch G, Schriml LM, Semmler T, Sezerman OU, Shi L, Shi T, Siam R, Song LH, Suzuki H, Court DS, Tighe SW, Tong X, Udekwu KI, Ugalde JA, Valentine B, Vassilev DI, Vayndorf EM, Velavan TP, Wu J, Zambrano MM, Zhu J, Zhu S, and Mason CE
- Subjects
- Biodiversity, Databases, Genetic, Humans, Drug Resistance, Bacterial genetics, Metagenomics, Microbiota genetics, Urban Population
- Abstract
We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities., Competing Interests: Declaration of interests C.E.M. is co-founder of Biotia and Onegevity Health. D.B. is co-founder and CSO of Poppy Health Inc. The other authors declare they have no competing interests that impacted this study., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
26. Shotgun transcriptome, spatial omics, and isothermal profiling of SARS-CoV-2 infection reveals unique host responses, viral diversification, and drug interactions.
- Author
-
Butler D, Mozsary C, Meydan C, Foox J, Rosiene J, Shaiber A, Danko D, Afshinnekoo E, MacKay M, Sedlazeck FJ, Ivanov NA, Sierra M, Pohle D, Zietz M, Gisladottir U, Ramlall V, Sholle ET, Schenck EJ, Westover CD, Hassan C, Ryon K, Young B, Bhattacharya C, Ng DL, Granados AC, Santos YA, Servellita V, Federman S, Ruggiero P, Fungtammasan A, Chin CS, Pearson NM, Langhorst BW, Tanner NA, Kim Y, Reeves JW, Hether TD, Warren SE, Bailey M, Gawrys J, Meleshko D, Xu D, Couto-Rodriguez M, Nagy-Szakal D, Barrows J, Wells H, O'Hara NB, Rosenfeld JA, Chen Y, Steel PAD, Shemesh AJ, Xiang J, Thierry-Mieg J, Thierry-Mieg D, Iftner A, Bezdan D, Sanchez E, Campion TR Jr, Sipley J, Cong L, Craney A, Velu P, Melnick AM, Shapira S, Hajirasouliha I, Borczuk A, Iftner T, Salvatore M, Loda M, Westblade LF, Cushing M, Wu S, Levy S, Chiu C, Schwartz RE, Tatonetti N, Rennert H, Imielinski M, and Mason CE
- Subjects
- Adult, Aged, Angiotensin Receptor Antagonists pharmacology, Angiotensin-Converting Enzyme Inhibitors pharmacology, Antiviral Agents pharmacology, COVID-19 epidemiology, COVID-19 Nucleic Acid Testing, Drug Interactions, Female, Gene Expression Profiling, Genome, Viral, HLA Antigens genetics, Host Microbial Interactions drug effects, Host Microbial Interactions genetics, Humans, Male, Middle Aged, Molecular Diagnostic Techniques, New York City epidemiology, Nucleic Acid Amplification Techniques, Pandemics, RNA-Seq, SARS-CoV-2 classification, SARS-CoV-2 drug effects, COVID-19 Drug Treatment, COVID-19 genetics, COVID-19 virology, SARS-CoV-2 genetics
- Abstract
In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.
- Published
- 2021
- Full Text
- View/download PDF
27. Revamping Space-omics in Europe.
- Author
-
Madrigal P, Gabel A, Villacampa A, Manzano A, Deane CS, Bezdan D, Carnero-Diaz E, Medina FJ, Hardiman G, Grosse I, Szewczyk N, Weging S, Giacomello S, Harridge SDR, Morris-Paterson T, Cahill T, da Silveira WA, and Herranz R
- Subjects
- Europe, Humans, Space Research
- Published
- 2020
- Full Text
- View/download PDF
28. Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure Development.
- Author
-
Malkani S, Chin CR, Cekanaviciute E, Mortreux M, Okinula H, Tarbier M, Schreurs AS, Shirazi-Fard Y, Tahimic CGT, Rodriguez DN, Sexton BS, Butler D, Verma A, Bezdan D, Durmaz C, MacKay M, Melnick A, Meydan C, Li S, Garrett-Bakelman F, Fromm B, Afshinnekoo E, Langhorst BW, Dimalanta ET, Cheng-Campbell M, Blaber E, Schisler JC, Vanderburg C, Friedländer MR, McDonald JT, Costes SV, Rutkove S, Grabham P, Mason CE, and Beheshti A
- Subjects
- Animals, Female, Gene Expression, Gene Expression Profiling methods, Humans, Male, Mice, Mice, Inbred BALB C, Middle Aged, Rats, Sequence Analysis, RNA methods, Space Flight, Transcriptome genetics, Weightlessness Simulation methods, Circulating MicroRNA genetics, MicroRNAs genetics, Weightlessness adverse effects
- Abstract
We have identified and validated a spaceflight-associated microRNA (miRNA) signature that is shared by rodents and humans in response to simulated, short-duration and long-duration spaceflight. Previous studies have identified miRNAs that regulate rodent responses to spaceflight in low-Earth orbit, and we have confirmed the expression of these proposed spaceflight-associated miRNAs in rodents reacting to simulated spaceflight conditions. Moreover, astronaut samples from the NASA Twins Study confirmed these expression signatures in miRNA sequencing, single-cell RNA sequencing (scRNA-seq), and single-cell assay for transposase accessible chromatin (scATAC-seq) data. Additionally, a subset of these miRNAs (miR-125, miR-16, and let-7a) was found to regulate vascular damage caused by simulated deep space radiation. To demonstrate the physiological relevance of key spaceflight-associated miRNAs, we utilized antagomirs to inhibit their expression and successfully rescue simulated deep-space-radiation-mediated damage in human 3D vascular constructs., Competing Interests: Declaration of Interests The authors declare no competing interests., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
29. Multi-omic, Single-Cell, and Biochemical Profiles of Astronauts Guide Pharmacological Strategies for Returning to Gravity.
- Author
-
Gertz ML, Chin CR, Tomoiaga D, MacKay M, Chang C, Butler D, Afshinnekoo E, Bezdan D, Schmidt MA, Mozsary C, Melnick A, Garrett-Bakelman F, Crucian B, Lee SMC, Zwart SR, Smith SM, Meydan C, and Mason CE
- Subjects
- Gene Expression Profiling methods, Gravitation, Humans, Leukocytes, Mononuclear immunology, Proteomics methods, Single-Cell Analysis methods, Time Factors, Twins, Astronauts, Cytokines immunology, Inflammation immunology, Space Flight, Weightlessness
- Abstract
The National Aeronautics and Space Administration (NASA) Twins Study created an integrative molecular profile of an astronaut during NASA's first 1-year mission on the International Space Station (ISS) and included comparisons to an identical Earth-bound twin. The unique biochemical profiles observed when landing on Earth after such a long mission (e.g., spikes in interleukin-1 [IL-1]/6/10, c-reactive protein [CRP], C-C motif chemokine ligand 2 [CCL2], IL-1 receptor antagonist [IL-1ra], and tumor necrosis factor alpha [TNF-α]) opened new questions about the human body's response to gravity and how to plan for future astronauts, particularly around initiation or resolution of inflammation. Here, single-cell, multi-omic (100-plex epitope profile and gene expression) profiling of peripheral blood mononuclear cells (PBMCs) showed changes to blood cell composition and gene expression post-flight, specifically for monocytes and dendritic cell precursors. These were consistent with flight-induced cytokine and immune system stress, followed by skeletal muscle regeneration in response to gravity. Finally, we examined these profiles relative to 6-month missions in 28 other astronauts and detail potential pharmacological interventions for returning to gravity in future missions., Competing Interests: Declaration of Interests Although not relevant to this study, for full disclosure, C.E.M. is a cofounder and board member for Biotia and Onegevity Health as well as an advisor or grantee for Abbvie, ArcBio, Daiichi Sankyo, DNA Genotek, Tempus Labs, and Whole Biome., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
30. Temporal Telomere and DNA Damage Responses in the Space Radiation Environment.
- Author
-
Luxton JJ, McKenna MJ, Taylor LE, George KA, Zwart SR, Crucian BE, Drel VR, Garrett-Bakelman FE, Mackay MJ, Butler D, Foox J, Grigorev K, Bezdan D, Meydan C, Smith SM, Sharma K, Mason CE, and Bailey SM
- Subjects
- Adult, Astronauts, DNA genetics, DNA radiation effects, DNA Breaks, Double-Stranded, DNA Damage radiation effects, DNA Repair genetics, DNA Repair radiation effects, Dose-Response Relationship, Radiation, Extraterrestrial Environment, Female, Humans, Male, Space Flight, Telomere metabolism, Telomere radiation effects, Time Factors, Weightlessness adverse effects, DNA Damage genetics, DNA Repair physiology, Telomere genetics
- Abstract
Telomeres, repetitive terminal features of chromosomes essential for maintaining genome integrity, shorten with cell division, lifestyle factors and stresses, and environmental exposures, and so they provide a robust biomarker of health, aging, and age-related diseases. We assessed telomere length dynamics (changes over time) in three unrelated astronauts before, during, and after 1-year or 6-month missions aboard the International Space Station (ISS). Similar to our results for National Aeronautics and Space Administration's (NASA's) One-Year Mission twin astronaut (Garrett-Bakelman et al., 2019), significantly longer telomeres were observed during spaceflight for two 6-month mission astronauts. Furthermore, telomere length shortened rapidly after return to Earth for all three crewmembers and, overall, telomere length tended to be shorter after spaceflight than before spaceflight. Consistent with chronic exposure to the space radiation environment, signatures of persistent DNA damage responses were also detected, including mitochondrial and oxidative stress, inflammation, and telomeric and chromosomal aberrations, which together provide potential mechanistic insight into spaceflight-specific telomere elongation., Competing Interests: Declaration of Interests S.M.B. is a cofounder and Scientific Advisory Board member of KromaTiD. C.E.M. is a cofounder and board member for Biotia and Onegevity Health., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
31. Telomere Length Dynamics and DNA Damage Responses Associated with Long-Duration Spaceflight.
- Author
-
Luxton JJ, McKenna MJ, Lewis A, Taylor LE, George KA, Dixit SM, Moniz M, Benegas W, Mackay MJ, Mozsary C, Butler D, Bezdan D, Meydan C, Crucian BE, Zwart SR, Smith SM, Mason CE, and Bailey SM
- Subjects
- Adult, Astronauts, DNA chemistry, DNA radiation effects, DNA Damage physiology, DNA Repair radiation effects, Female, Humans, Male, Middle Aged, Oxidative Stress physiology, Space Flight, Telomerase metabolism, Telomere metabolism, Telomere physiology, Telomere Homeostasis radiation effects, Time Factors, DNA Repair physiology, Telomere Homeostasis physiology, Weightlessness adverse effects
- Abstract
Telomere length dynamics and DNA damage responses were assessed before, during, and after one-year or shorter duration missions aboard the International Space Station (ISS) in a comparatively large cohort of astronauts (n = 11). Although generally healthy individuals, astronauts tended to have significantly shorter telomeres and lower telomerase activity than age- and sex-matched ground controls before and after spaceflight. Although telomeres were longer during spaceflight irrespective of mission duration, telomere length shortened rapidly upon return to Earth, and overall astronauts had shorter telomeres after spaceflight than they did before; inter-individual differences were identified. During spaceflight, all crewmembers experienced oxidative stress, which positively correlated with telomere length dynamics. Significantly increased frequencies of chromosomal inversions were observed during and after spaceflight; changes in cell populations were also detected. We propose a telomeric adaptive response to chronic oxidative damage in extreme environments, whereby the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway is transiently activated in normal somatic cells., Competing Interests: Declaration of Interests S.M.B. is a cofounder and Scientific Advisory Board member of KromaTiD, Inc. C.E.M. is a cofounder and board member for Biotia, Inc. and Onegevity Health, Inc., (Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
32. Cell-free DNA (cfDNA) and Exosome Profiling from a Year-Long Human Spaceflight Reveals Circulating Biomarkers.
- Author
-
Bezdan D, Grigorev K, Meydan C, Pelissier Vatter FA, Cioffi M, Rao V, MacKay M, Nakahira K, Burnham P, Afshinnekoo E, Westover C, Butler D, Mozsary C, Donahoe T, Foox J, Mishra T, Lucotti S, Rana BK, Melnick AM, Zhang H, Matei I, Kelsen D, Yu K, Lyden DC, Taylor L, Bailey SM, Snyder MP, Garrett-Bakelman FE, Ossowski S, De Vlaminck I, and Mason CE
- Abstract
Liquid biopsies based on cell-free DNA (cfDNA) or exosomes provide a noninvasive approach to monitor human health and disease but have not been utilized for astronauts. Here, we profile cfDNA characteristics, including fragment size, cellular deconvolution, and nucleosome positioning, in an astronaut during a year-long mission on the International Space Station, compared to his identical twin on Earth and healthy donors. We observed a significant increase in the proportion of cell-free mitochondrial DNA (cf-mtDNA) inflight, and analysis of post-flight exosomes in plasma revealed a 30-fold increase in circulating exosomes and patient-specific protein cargo (including brain-derived peptides) after the year-long mission. This longitudinal analysis of astronaut cfDNA during spaceflight and the exosome profiles highlights their utility for astronaut health monitoring, as well as cf-mtDNA levels as a potential biomarker for physiological stress or immune system responses related to microgravity, radiation exposure, and the other unique environmental conditions of spaceflight., Competing Interests: S.M.B. is a cofounder and Scientific Advisory Board member of KromaTiD, Inc. C.E.M. is a cofounder and board member for Biotia, Inc. and Onegevity Health, Inc., as well as an advisor or grantee for Abbvie, Inc., ArcBio, Daiichi Sankyo, DNA Genotek, Karius, Inc., and Whole Biome, Inc. D.B. is a cofounder of Poppy Health, Inc. and Analogs Llc., (© 2020 The Author(s).)
- Published
- 2020
- Full Text
- View/download PDF
33. A New Era for Space Life Science: International Standards for Space Omics Processing.
- Author
-
Rutter L, Barker R, Bezdan D, Cope H, Costes SV, Degoricija L, Fisch KM, Gabitto MI, Gebre S, Giacomello S, Gilroy S, Green SJ, Mason CE, Reinsch SS, Szewczyk NJ, Taylor DM, Galazka JM, Herranz R, and Muratani M
- Abstract
Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments on model organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries from these precious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance standard guidelines between space biologists at a global level. Here we introduce our consortium and share past lessons learned and future challenges related to spaceflight omics., (© 2020 The Authors.)
- Published
- 2020
- Full Text
- View/download PDF
34. End-to-End Protocol for the Detection of SARS-CoV-2 from Built Environments.
- Author
-
Parker CW, Singh N, Tighe S, Blachowicz A, Wood JM, Seuylemezian A, Vaishampayan P, Urbaniak C, Hendrickson R, Laaguiby P, Clark K, Clement BG, O'Hara NB, Couto-Rodriguez M, Bezdan D, Mason CE, and Venkateswaran K
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019, is a respiratory virus primarily transmitted person to person through inhalation of droplets or aerosols, laden with viral particles. However, as recent studies have shown, virions can remain infectious for up to 72 h on surfaces, which can lead to transmission through contact. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end (E2E) study showed that the effective combination for monitoring SARS-CoV-2 on surfaces includes using an Isohelix swab collection tool, DNA/RNA Shield as a preservative, an automated system for RNA extraction, and reverse transcriptase quantitative PCR (RT-qPCR) as the detection assay. Using this E2E approach, this study showed that, in some cases, noninfectious viral fragments of SARS-CoV-2 persisted on surfaces for as long as 8 days even after bleach treatment. Additionally, debris associated with specific built environment surfaces appeared to inhibit and negatively impact the recovery of RNA; Amerstat demonstrated the highest inhibition (>90%) when challenged with an inactivated viral control. Overall, it was determined that this E2E protocol required a minimum of 1,000 viral particles per 25 cm
2 to successfully detect virus from test surfaces. Despite our findings of viral fragment longevity on surfaces, when this method was employed to evaluate 368 samples collected from various built environmental surfaces, all samples tested negative, indicating that the surfaces were either void of virus or below the detection limit of the assay. IMPORTANCE The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus responsible for coronavirus disease 2019 [COVID-19]) pandemic has led to a global slowdown with far-reaching financial and social impacts. The SARS-CoV-2 respiratory virus is primarily transmitted from person to person through inhalation of infected droplets or aerosols. However, some studies have shown that virions can remain infectious on surfaces for days and can lead to human infection from contact with infected surfaces. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end study showed that the effective combination for monitoring SARS-CoV-2 on surfaces required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from surfaces. This comprehensive study can provide valuable information regarding surface monitoring of various materials as well as the capacity to retain viral RNA and allow for effective disinfection., (Copyright © 2020 Parker et al.)- Published
- 2020
- Full Text
- View/download PDF
35. Tracking of Antibiotic Resistance Transfer and Rapid Plasmid Evolution in a Hospital Setting by Nanopore Sequencing.
- Author
-
Peter S, Bosio M, Gross C, Bezdan D, Gutierrez J, Oberhettinger P, Liese J, Vogel W, Dörfel D, Berger L, Marschal M, Willmann M, Gut I, Gut M, Autenrieth I, and Ossowski S
- Subjects
- Anti-Bacterial Agents pharmacology, Gene Transfer, Horizontal, Genomics, Hospitals, Humans, Pseudomonas aeruginosa drug effects, Pseudomonas aeruginosa enzymology, Pseudomonas aeruginosa genetics, beta-Lactamases genetics, Drug Resistance, Multiple, Bacterial, Evolution, Molecular, Nanopore Sequencing, Plasmids genetics, Sequence Analysis, DNA methods
- Abstract
Infections with multidrug-resistant bacteria often leave limited or no treatment options. The transfer of antimicrobial resistance genes (ARG) carrying plasmids between bacterial species by horizontal gene transfer represents an important mode of expansion of ARGs. Here, we demonstrate the application of Nanopore sequencing in a hospital setting for monitoring transfer and rapid evolution of antibiotic resistance plasmids within and across multiple species. In 2009, we experienced an outbreak with extensively multidrug-resistant Pseudomonas aeruginosa harboring the carbapenemase-encoding bla
IMP-8 gene. In 2012, the first Citrobacter freundii and Citrobacter cronae strains harboring the same gene were detected. Using Nanopore and Illumina sequencing, we conducted comparative analysis of all blaIMP-8 bacteria isolated in our hospital over a 6-year period ( n = 54). We developed the computational platform plasmIDent for Nanopore-based characterization of clinical isolates and monitoring of ARG transfer, comprising de novo assembly of genomes and plasmids, plasmid circularization, ARG annotation, comparative genome analysis of multiple isolates, and visualization of results. Using plasmIDent , we identified a 40-kb plasmid carrying blaIMP-8 in P. aeruginosa and C. freundii , verifying the plasmid transfer. Within C. freundii , the plasmid underwent further evolution and plasmid fusion, resulting in a 164-kb megaplasmid, which was transferred to C. cronae Multiple rearrangements of the multidrug resistance gene cassette were detected in P. aeruginosa , including deletions and translocations of complete ARGs. In summary, plasmid transfer, plasmid fusion, and rearrangement of the ARG cassette mediated the rapid evolution of opportunistic pathogens in our hospital. We demonstrated the feasibility of near-real-time monitoring of plasmid evolution and ARG transfer in clinical settings, enabling successful countermeasures to contain plasmid-mediated outbreaks. IMPORTANCE Infections with multidrug-resistant bacteria represent a major threat to global health. While the spread of multidrug-resistant bacterial clones is frequently studied in the hospital setting, surveillance of the transfer of mobile genetic elements between different bacterial species was difficult until recent advances in sequencing technologies. Nanopore sequencing technology was applied to track antimicrobial gene transfer in a long-term outbreak of multidrug-resistant Pseudomonas aeruginosa , Citrobacter freundii , and Citrobacter cronae in a German hospital over 6 years. We developed a novel computational pipeline, pathoLogic , which enables de novo assembly of genomes and plasmids, antimicrobial resistance gene annotation and visualization, and comparative analysis. Applying this approach, we detected plasmid transfer between different bacterial species as well as plasmid fusion and frequent rearrangements of the antimicrobial resistance gene cassette. This study demonstrated the feasibility of near-real-time tracking of plasmid-based antimicrobial resistance gene transfer in hospitals, enabling countermeasures to contain plasmid-mediated outbreaks., (Copyright © 2020 Peter et al.)- Published
- 2020
- Full Text
- View/download PDF
36. Shotgun Transcriptome and Isothermal Profiling of SARS-CoV-2 Infection Reveals Unique Host Responses, Viral Diversification, and Drug Interactions.
- Author
-
Butler DJ, Mozsary C, Meydan C, Danko D, Foox J, Rosiene J, Shaiber A, Afshinnekoo E, MacKay M, Sedlazeck FJ, Ivanov NA, Sierra M, Pohle D, Zietz M, Gisladottir U, Ramlall V, Westover CD, Ryon K, Young B, Bhattacharya C, Ruggiero P, Langhorst BW, Tanner N, Gawrys J, Meleshko D, Xu D, Steel PAD, Shemesh AJ, Xiang J, Thierry-Mieg J, Thierry-Mieg D, Schwartz RE, Iftner A, Bezdan D, Sipley J, Cong L, Craney A, Velu P, Melnick AM, Hajirasouliha I, Horner SM, Iftner T, Salvatore M, Loda M, Westblade LF, Cushing M, Levy S, Wu S, Tatonetti N, Imielinski M, Rennert H, and Mason CE
- Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets., Competing Interests: Conflicts of Interest Nathan Tanner and Bradley W. Langhorst are employees at New England Biolabs.
- Published
- 2020
- Full Text
- View/download PDF
37. Description of Citrobacter cronae sp. nov., isolated from human rectal swabs and stool samples.
- Author
-
Oberhettinger P, Schüle L, Marschal M, Bezdan D, Ossowski S, Dörfel D, Vogel W, Rossen JW, Willmann M, and Peter S
- Subjects
- Bacterial Typing Techniques, Base Composition, Citrobacter isolation & purification, DNA, Bacterial genetics, Fatty Acids chemistry, Genes, Bacterial, Germany, Humans, Immunocompromised Host, Multilocus Sequence Typing, Nucleic Acid Hybridization, RNA, Ribosomal, 16S genetics, Sequence Analysis, DNA, Citrobacter classification, Feces microbiology, Phylogeny, Rectum microbiology
- Abstract
Nine independent Gram-negative bacterial strains were isolated from rectal swabs or stool samples of immunocompromised patients from two different wards of a university hospital. All isolates were phylogenetically analysed based on their 16S rRNA gene sequence, housekeeping gene recN , multilocus sequence analysis of concatenated partial fusA , leuS , pyrG and rpoB sequences, and by whole genome sequencing data. The analysed strains of the new species cluster together and form a separate branch with Citrobacter werkmanii NBRC105721
T as the most closely related species. An average nucleotide identity value of 95.9-96% and computation of digital DNA-DNA hybridization values separate the new species from all other type strains of the genus Citrobacter . Biochemical characteristics further delimit the isolates from closely related Citrobacter type strains. As a result of the described data, a new Citrobacter species is introduced, for which the name Citrobacter cronae sp. nov. is proposed. The type strain is Tue2-1T with a G+C DNA content of 52.2 mol%.- Published
- 2020
- Full Text
- View/download PDF
38. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight.
- Author
-
Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, Piening BD, Rizzardi LF, Sharma K, Siamwala JH, Taylor L, Vitaterna MH, Afkarian M, Afshinnekoo E, Ahadi S, Ambati A, Arya M, Bezdan D, Callahan CM, Chen S, Choi AMK, Chlipala GE, Contrepois K, Covington M, Crucian BE, De Vivo I, Dinges DF, Ebert DJ, Feinberg JI, Gandara JA, George KA, Goutsias J, Grills GS, Hargens AR, Heer M, Hillary RP, Hoofnagle AN, Hook VYH, Jenkinson G, Jiang P, Keshavarzian A, Laurie SS, Lee-McMullen B, Lumpkins SB, MacKay M, Maienschein-Cline MG, Melnick AM, Moore TM, Nakahira K, Patel HH, Pietrzyk R, Rao V, Saito R, Salins DN, Schilling JM, Sears DD, Sheridan CK, Stenger MB, Tryggvadottir R, Urban AE, Vaisar T, Van Espen B, Zhang J, Ziegler MG, Zwart SR, Charles JB, Kundrot CE, Scott GBI, Bailey SM, Basner M, Feinberg AP, Lee SMC, Mason CE, Mignot E, Rana BK, Smith SM, Snyder MP, and Turek FW
- Subjects
- Adaptive Immunity, Body Weight, Carotid Arteries diagnostic imaging, Carotid Intima-Media Thickness, DNA Damage, DNA Methylation, Gastrointestinal Microbiome, Genomic Instability, Humans, Male, Telomere Homeostasis, Time Factors, United States, United States National Aeronautics and Space Administration, Adaptation, Physiological, Astronauts, Space Flight
- Abstract
To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress-related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
39. Single-molecule sequencing detection of N6-methyladenine in microbial reference materials.
- Author
-
McIntyre ABR, Alexander N, Grigorev K, Bezdan D, Sichtig H, Chiu CY, and Mason CE
- Subjects
- Adenosine analysis, Algorithms, DNA Methylation genetics, Immunoprecipitation, Software, Adenosine analogs & derivatives, DNA Methylation physiology, Sequence Analysis, DNA methods
- Abstract
The DNA base modification N6-methyladenine (m
6 A) is involved in many pathways related to the survival of bacteria and their interactions with hosts. Nanopore sequencing offers a new, portable method to detect base modifications. Here, we show that a neural network can improve m6 A detection at trained sequence contexts compared to previously published methods using deviations between measured and expected current values as each adenine travels through a pore. The model, implemented as the mCaller software package, can be extended to detect known or confirm suspected methyltransferase target motifs based on predictions of methylation at untrained contexts. We use PacBio, Oxford Nanopore, methylated DNA immunoprecipitation sequencing (MeDIP-seq), and whole-genome bisulfite sequencing data to generate and orthogonally validate methylomes for eight microbial reference species. These well-characterized microbial references can serve as controls in the development and evaluation of future methods for the identification of base modifications from single-molecule sequencing data.- Published
- 2019
- Full Text
- View/download PDF
40. Minerva: an alignment- and reference-free approach to deconvolve Linked-Reads for metagenomics.
- Author
-
Danko DC, Meleshko D, Bezdan D, Mason C, and Hajirasouliha I
- Subjects
- Algorithms, Metagenome, Metagenomics methods, Sequence Analysis, DNA methods, Software
- Abstract
Emerging Linked-Read technologies (aka read cloud or barcoded short-reads) have revived interest in short-read technology as a viable approach to understand large-scale structures in genomes and metagenomes. Linked-Read technologies, such as the 10x Chromium system, use a microfluidic system and a specialized set of 3' barcodes (aka UIDs) to tag short DNA reads sourced from the same long fragment of DNA; subsequently, the tagged reads are sequenced on standard short-read platforms. This approach results in interesting compromises. Each long fragment of DNA is only sparsely covered by reads, no information about the ordering of reads from the same fragment is preserved, and 3' barcodes match reads from roughly 2-20 long fragments of DNA. However, compared to long-read technologies, the cost per base to sequence is far lower, far less input DNA is required, and the per base error rate is that of Illumina short-reads. In this paper, we formally describe a particular algorithmic issue common to Linked-Read technology: the deconvolution of reads with a single 3' barcode into clusters that represent single long fragments of DNA. We introduce Minerva, a graph-based algorithm that approximately solves the barcode deconvolution problem for metagenomic data (where reference genomes may be incomplete or unavailable). Additionally, we develop two demonstrations where the deconvolution of barcoded reads improves downstream results, improving the specificity of taxonomic assignments and of k -mer-based clustering. To the best of our knowledge, we are the first to address the problem of barcode deconvolution in metagenomics., (© 2019 Danko et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2019
- Full Text
- View/download PDF
41. Multi-drug resistant Enterobacter bugandensis species isolated from the International Space Station and comparative genomic analyses with human pathogenic strains.
- Author
-
Singh NK, Bezdan D, Checinska Sielaff A, Wheeler K, Mason CE, and Venkateswaran K
- Subjects
- Anti-Bacterial Agents pharmacology, Enterobacter classification, Enterobacter isolation & purification, Genome, Bacterial, Genomics, Humans, Microbial Sensitivity Tests, Multilocus Sequence Typing, Phylogeny, Whole Genome Sequencing, Drug Resistance, Multiple, Bacterial, Enterobacter drug effects, Enterobacter genetics, Enterobacteriaceae Infections microbiology, Spacecraft statistics & numerical data
- Abstract
Background: The antimicrobial resistance (AMR) phenotypic properties, multiple drug resistance (MDR) gene profiles, and genes related to potential virulence and pathogenic properties of five Enterobacter bugandensis strains isolated from the International Space Station (ISS) were carried out and compared with genomes of three clinical strains. Whole genome sequences of ISS strains were characterized using the hybrid de novo assembly of Nanopore and Illumina reads. In addition to traditional microbial taxonomic approaches, multilocus sequence typing (MLST) analysis was performed to classify the phylogenetic lineage. Agar diffusion discs assay was performed to test antibiotics susceptibility. The draft genomes after assembly and scaffolding were annotated with the Rapid Annotations using Subsystems Technology and RNAmmer servers for downstream analysis., Results: Molecular phylogeny and whole genome analysis of the ISS strains with all publicly available Enterobacter genomes revealed that ISS strains were E. bugandensis and similar to the type strain EB-247
T and two clinical isolates (153_ECLO and MBRL 1077). Comparative genomic analyses of all eight E. bungandensis strains showed, a total of 4733 genes were associated with carbohydrate metabolism (635 genes), amino acid and derivatives (496 genes), protein metabolism (291 genes), cofactors, vitamins, prosthetic groups, pigments (275 genes), membrane transport (247 genes), and RNA metabolism (239 genes). In addition, 112 genes identified in the ISS strains were involved in virulence, disease, and defense. Genes associated with resistance to antibiotics and toxic compounds, including the MDR tripartite system were also identified in the ISS strains. A multiple antibiotic resistance (MAR) locus or MAR operon encoding MarA, MarB, MarC, and MarR, which regulate more than 60 genes, including upregulation of drug efflux systems that have been reported in Escherichia coli K12, was also observed in the ISS strains., Conclusion: Given the MDR results for these ISS Enterobacter genomes and increased chance of pathogenicity (PathogenFinder algorithm with > 79% probability), these species pose important health considerations for future missions. Thorough genomic characterization of the strains isolated from ISS can help to understand the pathogenic potential, and inform future missions, but analyzing them in in-vivo systems is required to discern the influence of microgravity on their pathogenicity.- Published
- 2018
- Full Text
- View/download PDF
42. LRBA Deficiency in a Patient With a Novel Homozygous Mutation Due to Chromosome 4 Segmental Uniparental Isodisomy.
- Author
-
Soler-Palacín P, Garcia-Prat M, Martín-Nalda A, Franco-Jarava C, Rivière JG, Plaja A, Bezdan D, Bosio M, Martínez-Gallo M, Ossowski S, and Colobran R
- Subjects
- Comparative Genomic Hybridization, Humans, Leukocytes immunology, Leukocytes metabolism, Lymphocytes immunology, Lymphocytes metabolism, Exome Sequencing, Adaptor Proteins, Signal Transducing deficiency, Chromosomes, Human, Pair 4, Genetic Association Studies methods, Genetic Predisposition to Disease, Homozygote, Mutation, Uniparental Disomy
- Abstract
LRBA deficiency was first described in 2012 as an autosomal recessive disorder caused by biallelic mutations in the LRBA gene (OMIM #614700). It was initially characterized as producing early-onset hypogammaglobulinemia, autoimmune manifestations, susceptibility to inflammatory bowel disease, and recurrent infection. However, further reports expanded this phenotype (including patients without hypogammaglobulinemia) and described LRBA deficiency as a clinically variable syndrome with a wide spectrum of clinical manifestations. We present the case of a female patient who presented with type 1 diabetes, psoriasis, oral thrush, and enlarged liver and spleen at the age of 8 months. She later experienced recurrent bacterial and viral infections, including pneumococcal meningitis and Epstein Barr viremia. She underwent two consecutive stem cell transplants at the age of 8 and 9 years, and ultimately died. Samples from the patient and her parents were subjected to whole exome sequencing, which revealed a homozygous 1-bp insertion in exon 23 of the patient's LRBA gene, resulting in frameshift and premature stop codon. The patient's healthy mother was heterozygous for the mutation and her father tested wild-type. This finding suggested that either one copy of the paternal chromosome 4 bore a deletion including the LRBA locus, or the patient inherited two copies of the mutant maternal LRBA allele. The patient's sequencing data showed a 1-Mb loss of heterozygosity region in chromosome 4, including the LRBA gene. Comparative genomic hybridization array of the patient's and father's genomic DNA yielded normal findings, ruling out genomic copy number abnormalities. Here, we present the first case of LRBA deficiency due to a uniparental disomy (UPD). In contrast to classical Mendelian inheritance, UPD involves inheritance of 2 copies of a chromosomal region from only 1 parent. Specifically, our patient carried a small segmental isodisomy of maternal origin affecting 1 Mb of chromosome 4.
- Published
- 2018
- Full Text
- View/download PDF
43. The Microbe Directory: An annotated, searchable inventory of microbes' characteristics.
- Author
-
Shaaban H, Westfall DA, Mohammad R, Danko D, Bezdan D, Afshinnekoo E, Segata N, and Mason CE
- Abstract
The Microbe Directory is a collective research effort to profile and annotate more than 7,500 unique microbial species from the MetaPhlAn2 database that includes bacteria, archaea, viruses, fungi, and protozoa. By collecting and summarizing data on various microbes' characteristics, the project comprises a database that can be used downstream of large-scale metagenomic taxonomic analyses, allowing one to interpret and explore their taxonomic classifications to have a deeper understanding of the microbial ecosystem they are studying. Such characteristics include, but are not limited to: optimal pH, optimal temperature, Gram stain, biofilm-formation, spore-formation, antimicrobial resistance, and COGEM class risk rating. The database has been manually curated by trained student-researchers from Weill Cornell Medicine and CUNY-Hunter College, and its analysis remains an ongoing effort with open-source capabilities so others can contribute. Available in SQL, JSON, and CSV (i.e. Excel) formats, the Microbe Directory can be queried for the aforementioned parameters by a microorganism's taxonomy. In addition to the raw database, The Microbe Directory has an online counterpart ( https://microbe.directory/) that provides a user-friendly interface for storage, retrieval, and analysis into which other microbial database projects could be incorporated. The Microbe Directory was primarily designed to serve as a resource for researchers conducting metagenomic analyses, but its online web interface should also prove useful to any individual who wishes to learn more about any particular microbe., Competing Interests: No competing interests were disclosed.
- Published
- 2018
- Full Text
- View/download PDF
44. Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa.
- Author
-
Peter S, Oberhettinger P, Schuele L, Dinkelacker A, Vogel W, Dörfel D, Bezdan D, Ossowski S, Marschal M, Liese J, and Willmann M
- Subjects
- Humans, Phylogeny, Pseudomonas putida drug effects, Pseudomonas putida physiology, Anti-Bacterial Agents pharmacology, Drug Resistance, Bacterial genetics, Environment, Gene Transfer, Horizontal, Genomics, Pseudomonas aeruginosa genetics, Pseudomonas putida genetics
- Abstract
Background: Pseudomonas putida is a Gram-negative, non-fermenting bacterium frequently encountered in various environmental niches. P. putida rarely causes disease in humans, though serious infections and outbreaks have been reported from time to time. Some have suggested that P. putida functions as an exchange platform for antibiotic resistance genes (ARG), and thus represents a serious concern in the spread of ARGs to more pathogenic organisms within a hospital. Though poorly understood, the frequency of ARG exchange between P. putida and the more virulent Pseudomonas aeruginosa and its clinical relevance are particularly important for designing efficient infection control strategies, such as deciding whether high-risk patients colonized with a multidrug resistant but typically low pathogenic P. putida strain should be contact isolated or not., Results: In this study, 21,373 screening samples (stool, rectal and throat swab) were examined to determine the presence of P. putida in a high-risk group of haemato-oncology patients during a 28-month period. A total of 89 P. putida group strains were isolated from 85 patients, with 41 of 89 (46.1%) strains harbouring the metallo-beta-lactamase gene bla
VIM . These 41 clinical isolates, plus 18 blaVIM positive environmental P. putida isolates, and 17 blaVIM positive P. aeruginosa isolates, were characterized by whole genome sequencing (WGS). We constructed a maximum-likelihood tree to separate the 59 blaVIM positive P. putida group strains into eight distinct phylogenetic clusters. BlaVIM-1 was present in 6 clusters while blaVIM-2 was detected in 4 clusters. Five P. putida group strains contained both, blaVIM-1 and blaVIM-2 genes. In contrast, all P. aeruginosa strains belonged to a single genetic cluster and contained the same ARGs. Apart from blaVIM-2 and sul genes, no other ARGs were shared between P. aeruginosa and P. putida. Furthermore, the blaVIM-2 gene in P. aeruginosa was predicted to be only chromosomally located., Conclusion: These data provide evidence that no exchange of comprehensive ARG harbouring mobile genetic elements had occurred between P. aeruginosa and P. putida group strains during the study period, thus eliminating the need to implement enhanced infection control measures for high-risk patients colonized with a blaVIM positiv P. putida group strains in our clinical setting.- Published
- 2017
- Full Text
- View/download PDF
45. Genomic Methods and Microbiological Technologies for Profiling Novel and Extreme Environments for the Extreme Microbiome Project (XMP).
- Author
-
Tighe S, Afshinnekoo E, Rock TM, McGrath K, Alexander N, McIntyre A, Ahsanuddin S, Bezdan D, Green SJ, Joye S, Stewart Johnson S, Baldwin DA, Bivens N, Ajami N, Carmical JR, Herriott IC, Colwell R, Donia M, Foox J, Greenfield N, Hunter T, Hoffman J, Hyman J, Jorgensen E, Krawczyk D, Lee J, Levy S, Garcia-Reyero N, Settles M, Thomas K, Gómez F, Schriml L, Kyrpides N, Zaikova E, Penterman J, and Mason CE
- Subjects
- DNA, Bacterial genetics, DNA, Bacterial isolation & purification, Extreme Environments, Metagenome, Molecular Typing standards, RNA, Bacterial genetics, RNA, Bacterial isolation & purification, Reference Standards, Sequence Analysis, DNA standards, Environmental Microbiology, Microbiota genetics
- Abstract
The Extreme Microbiome Project (XMP) is a project launched by the Association of Biomolecular Resource Facilities Metagenomics Research Group (ABRF MGRG) that focuses on whole genome shotgun sequencing of extreme and unique environments using a wide variety of biomolecular techniques. The goals are multifaceted, including development and refinement of new techniques for the following: 1) the detection and characterization of novel microbes, 2) the evaluation of nucleic acid techniques for extremophilic samples, and 3) the identification and implementation of the appropriate bioinformatics pipelines. Here, we highlight the different ongoing projects that we have been working on, as well as details on the various methods we use to characterize the microbiome and metagenome of these complex samples. In particular, we present data of a novel multienzyme extraction protocol that we developed, called Polyzyme or MetaPolyZyme. Presently, the XMP is characterizing sample sites around the world with the intent of discovering new species, genes, and gene clusters. Once a project site is complete, the resulting data will be publically available. Sites include Lake Hillier in Western Australia, the "Door to Hell" crater in Turkmenistan, deep ocean brine lakes of the Gulf of Mexico, deep ocean sediments from Greenland, permafrost tunnels in Alaska, ancient microbial biofilms from Antarctica, Blue Lagoon Iceland, Ethiopian toxic hot springs, and the acidic hypersaline ponds in Western Australia.
- Published
- 2017
- Full Text
- View/download PDF
46. Assessment of REPLI-g Multiple Displacement Whole Genome Amplification (WGA) Techniques for Metagenomic Applications.
- Author
-
Ahsanuddin S, Afshinnekoo E, Gandara J, Hakyemezoğlu M, Bezdan D, Minot S, Greenfield N, and Mason CE
- Subjects
- Base Composition, DNA, Bacterial genetics, DNA, Bacterial isolation & purification, Genome, Bacterial, Metagenomics, Microbiota genetics, Environmental Microbiology, High-Throughput Nucleotide Sequencing methods, Sequence Analysis, DNA methods
- Abstract
Amplification of minute quantities of DNA is a fundamental challenge in low-biomass metagenomic and microbiome studies because of potential biases in coverage, guanine-cytosine (GC) content, and altered species abundances. Whole genome amplification (WGA), although widely used, is notorious for introducing artifact sequences, either by amplifying laboratory contaminants or by nonrandom amplification of a sample's DNA. In this study, we investigate the effect of REPLI-g multiple displacement amplification (MDA; Qiagen, Valencia, CA, USA) on sequencing data quality and species abundance detection in 8 paired metagenomic samples and 1 titrated, mixed control sample. We extracted and sequenced genomic DNA (gDNA) from 8 environmental samples and compared the quality of the sequencing data for the MDA and their corresponding non-MDA samples. The degree of REPLI-g MDA bias was evaluated by sequence metrics, species composition, and cross-validating observed species abundance and species diversity estimates using the One Codex and MetaPhlAn taxonomic classification tools. Here, we provide evidence of the overall efficacy of REPLI-g MDA on retaining sequencing data quality and species abundance measurements while providing increased yields of high-fidelity DNA. We find that species abundance estimates are largely consistent across samples, even with REPLI-g amplification, as demonstrated by the Spearman's rank order coefficient (R
2 > 0.8). However, REPLI-g MDA often produced fewer classified reads at the species, genera, and family level, resulting in decreased species diversity. We also observed some areas with the PCR "jackpot effect," with varying input DNA values for the Metagenomics Research Group (MGRG) controls at specific genomic loci. We visualize this effect in whole genome coverage plots and with sequence composition analyses and note these caveats of the MDA method. Despite overall concordance of species abundance between the amplified and unamplified samples, these results demonstrate that amplification of DNA using the REPLI-g method has some limitations. These concerns could be addressed by future improvements in the enzymes or methods for REPLI-g to be considered a >99% robust method for increasing the amount of high-fidelity DNA from low-biomass samples or at the very least, accounted for during computational analysis of MDA samples.- Published
- 2017
- Full Text
- View/download PDF
47. Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms.
- Author
-
Zapata L, Ding J, Willing EM, Hartwig B, Bezdan D, Jiao WB, Patel V, Velikkakam James G, Koornneef M, Ossowski S, and Schneeberger K
- Subjects
- Gene Dosage, Genome, Plant, Haplotypes, Karyotyping, Arabidopsis genetics, Chromosome Inversion, Chromosomes, Plant, Genomic Structural Variation, Translocation, Genetic
- Abstract
Resequencing or reference-based assemblies reveal large parts of the small-scale sequence variation. However, they typically fail to separate such local variation into colinear and rearranged variation, because they usually do not recover the complement of large-scale rearrangements, including transpositions and inversions. Besides the availability of hundreds of genomes of diverse Arabidopsis thaliana accessions, there is so far only one full-length assembled genome: the reference sequence. We have assembled 117 Mb of the A. thaliana Landsberg erecta (Ler) genome into five chromosome-equivalent sequences using a combination of short Illumina reads, long PacBio reads, and linkage information. Whole-genome comparison against the reference sequence revealed 564 transpositions and 47 inversions comprising ∼3.6 Mb, in addition to 4.1 Mb of nonreference sequence, mostly originating from duplications. Although rearranged regions are not different in local divergence from colinear regions, they are drastically depleted for meiotic recombination in heterozygotes. Using a 1.2-Mb inversion as an example, we show that such rearrangement-mediated reduction of meiotic recombination can lead to genetically isolated haplotypes in the worldwide population of A. thaliana Moreover, we found 105 single-copy genes, which were only present in the reference sequence or the Ler assembly, and 334 single-copy orthologs, which showed an additional copy in only one of the genomes. To our knowledge, this work gives first insights into the degree and type of variation, which will be revealed once complete assemblies will replace resequencing or other reference-dependent methods.
- Published
- 2016
- Full Text
- View/download PDF
48. The cis-regulatory code of Hox function in Drosophila.
- Author
-
Sorge S, Ha N, Polychronidou M, Friedrich J, Bezdan D, Kaspar P, Schaefer MH, Ossowski S, Henz SR, Mundorf J, Rätzer J, Papagiannouli F, and Lohmann I
- Published
- 2015
- Full Text
- View/download PDF
49. Analysis of a long-term outbreak of XDR Pseudomonas aeruginosa: a molecular epidemiological study.
- Author
-
Willmann M, Bezdan D, Zapata L, Susak H, Vogel W, Schröppel K, Liese J, Weidenmaier C, Autenrieth IB, Ossowski S, and Peter S
- Subjects
- Disease Transmission, Infectious, Environmental Microbiology, Epidemiologic Studies, Genome, Bacterial, Germany epidemiology, Hospitals, University, Humans, Molecular Epidemiology, Molecular Typing, Pseudomonas Infections transmission, Pseudomonas aeruginosa genetics, Pseudomonas aeruginosa isolation & purification, Sequence Analysis, DNA, Spatio-Temporal Analysis, Disease Outbreaks, Drug Resistance, Multiple, Bacterial, Pseudomonas Infections epidemiology, Pseudomonas Infections microbiology, Pseudomonas aeruginosa classification, Pseudomonas aeruginosa drug effects
- Abstract
Objectives: Here we report on a long-term outbreak from 2009 to 2012 with an XDR Pseudomonas aeruginosa on two wards at a university hospital in southern Germany., Methods: Whole-genome sequencing was performed on the outbreak isolates and a core genome was constructed for molecular epidemiological analysis. We applied a time-place-sequence algorithm to improve estimation of transmission probabilities., Results: By using conventional infection control methods we identified 49 P. aeruginosa strains, including eight environmental isolates that belonged to ST308 (by MLST) and carried the metallo-β-lactamase IMP-8. Phylogenetic analysis on the basis of a non-recombinant core genome that contained 22 outbreak-specific SNPs revealed a pattern of four dominant clades with a strong phylogeographic structure and allowed us to determine the potential temporal origin of the outbreak to July 2008, 1 year before the index case was diagnosed. Superspreaders at the root of clades exhibited a high number of probable and predicted transmissions, indicating their exceptional position in the outbreak., Conclusions: Our results suggest that the initial expansion of dominant sublineages was driven by a few superspreaders, while environmental contamination seemed to sustain the outbreak for a long period despite regular environmental control measures., (© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
50. Chromatin-wide profiling of DYRK1A reveals a role as a gene-specific RNA polymerase II CTD kinase.
- Author
-
Di Vona C, Bezdan D, Islam AB, Salichs E, López-Bigas N, Ossowski S, and de la Luna S
- Subjects
- Binding Sites, Cell Line, Tumor, Cell Nucleus genetics, HeLa Cells, Humans, Inverted Repeat Sequences, Molecular Sequence Data, Phosphorylation, Protein Serine-Threonine Kinases chemistry, Protein Serine-Threonine Kinases genetics, Protein-Tyrosine Kinases chemistry, Protein-Tyrosine Kinases genetics, RNA Polymerase II, Serine metabolism, Transcription, Genetic, Dyrk Kinases, Promoter Regions, Genetic, Protein Kinases metabolism, Protein Serine-Threonine Kinases metabolism, Protein-Tyrosine Kinases metabolism, RNA, Messenger metabolism
- Abstract
DYRK1A is a dosage-sensitive protein kinase that fulfills key roles during development and in tissue homeostasis, and its dysregulation results in human pathologies. DYRK1A is present in both the nucleus and cytoplasm of mammalian cells, although its nuclear function remains unclear. Genome-wide analysis of DYRK1A-associated loci reveals that the kinase is recruited preferentially to promoters of genes actively transcribed by RNA polymerase II (RNAPII), which are functionally associated with translation, RNA processing, and cell cycle. DYRK1A-bound promoter sequences are highly enriched in a conserved palindromic motif, which is necessary to drive DYRK1A-dependent transcriptional activation. DYRK1A phosphorylates the C-terminal domain (CTD) of RNAPII at Ser2 and Ser5. Depletion of DYRK1A results in reduced association of RNAPII at the target promoters as well as hypophosphorylation of the RNAPII CTD along the target gene bodies. These results are consistent with DYRK1A being a transcriptional regulator by acting as a CTD kinase., (Copyright © 2015 Elsevier Inc. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.