32 results on '"Berulava, Tea"'
Search Results
2. The Coding and Small Non-coding Hippocampal Synaptic RNAome
- Author
-
Epple, Robert, Krüger, Dennis, Berulava, Tea, Brehm, Gerrit, Ninov, Momchil, Islam, Rezaul, Köster, Sarah, and Fischer, Andre
- Published
- 2021
- Full Text
- View/download PDF
3. A microRNA signature that correlates with cognition and is a target against cognitive decline
- Author
-
Islam, Md Rezaul, Kaurani, Lalit, Berulava, Tea, Heilbronner, Urs, Budde, Monika, Centeno, Tonatiuh Pena, Elerdashvili, Vakthang, Zafieriou, Maria‐Patapia, Benito, Eva, Sertel, Sinem M, Goldberg, Maria, Senner, Fanny, Kalman, Janos L, Burkhardt, Susanne, Oepen, Anne Sophie, Sakib, Mohammad Sadman, Kerimoglu, Cemil, Wirths, Oliver, Bickeböller, Heike, Bartels, Claudia, Brosseron, Frederic, Buerger, Katharina, Cosma, Nicoleta‐Carmen, Fliessbach, Klaus, Heneka, Michael T., Janowitz, Daniel, Kilimann, Ingo, Kleinedam, Luca, Laske, Christoph, Metzger, Coraline D, Munk, Matthias H, Perneczky, Robert, Peters, Oliver, Priller, Josef, Rauchmann, Boris S., Roy, Nina, Schneider, Anja, Spottke, Annika, Spruth, Eike J, Teipel, Stefan, Tscheuschler, Maike, Wagner, Michael, Wiltfang, Jens, Düzel, Emrah, Jessen, Frank, Rizzoli, Silvio O, Zimmermann, Wolfram‐Hubertus, Schulze, Thomas G, Falkai, Peter, Sananbenesi, Farahnaz, and Fischer, Andre
- Published
- 2021
- Full Text
- View/download PDF
4. Epigenetic gene expression links heart failure to memory impairment
- Author
-
Islam, Md Rezaul, Lbik, Dawid, Sakib, M Sadman, Maximilian Hofmann, Raoul, Berulava, Tea, Jiménez Mausbach, Martí, Cha, Julia, Goldberg, Maria, Vakhtang, Elerdashvili, Schiffmann, Christian, Zieseniss, Anke, Katschinski, Dörthe Magdalena, Sananbenesi, Farahnaz, Toischer, Karl, and Fischer, Andre
- Published
- 2021
- Full Text
- View/download PDF
5. Correction to: The Coding and Small Non-coding Hippocampal Synaptic RNAome
- Author
-
Epple, Robert, Krüger, Dennis, Berulava, Tea, Brehm, Gerrit, Ninov, Momchil, Islam, Rezaul, Köster, Sarah, and Fischer, Andre
- Published
- 2021
- Full Text
- View/download PDF
6. A combined miRNA–piRNA signature to detect Alzheimer’s disease
- Author
-
Jain, Gaurav, Stuendl, Anne, Rao, Pooja, Berulava, Tea, Pena Centeno, Tonatiuh, Kaurani, Lalit, Burkhardt, Susanne, Delalle, Ivana, Kornhuber, Johannes, Hüll, Michael, Maier, Wolfgang, Peters, Oliver, Esselmann, Hermann, Schulte, Claudia, Deuschle, Christian, Synofzik, Mathis, Wiltfang, Jens, Mollenhauer, Brit, Maetzler, Walter, Schneider, Anja, and Fischer, Andre
- Published
- 2019
- Full Text
- View/download PDF
7. Conserved reduction of m 6 A RNA modifications during aging and neurodegeneration is linked to changes in synaptic transcripts
- Author
-
Castro-Hernández, Ricardo, primary, Berulava, Tea, additional, Metelova, Maria, additional, Epple, Robert, additional, Peña Centeno, Tonatiuh, additional, Richter, Julia, additional, Kaurani, Lalit, additional, Pradhan, Ranjit, additional, Sakib, M. Sadman, additional, Burkhardt, Susanne, additional, Ninov, Momchil, additional, Bohnsack, Katherine E., additional, Bohnsack, Markus T., additional, Delalle, Ivana, additional, and Fischer, Andre, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms
- Author
-
Voight, Benjamin F., Scott, Laura J., Steinthorsdottir, Valgerdur, Morris, Andrew P., Dina, Christian, Welch, Ryan P., Zeggini, Eleftheria, Huth, Cornelia, Aulchenko, Yurii S., Thorleifsson, Gudmar, McCulloch, Laura J., Ferreira, Teresa, Grallert, Harald, Amin, Najaf, Wu, Guanming, Willer, Cristen J., Raychaudhuri, Soumya, McCarroll, Steve A., Langenberg, Claudia, Hofmann, Oliver M., Dupuis, Josée, Qi, Lu, Segrè, Ayellet V., van Hoek, Mandy, Navarro, Pau, Ardlie, Kristin, Balkau, Beverley, Benediktsson, Rafn, Bennett, Amanda J., Blagieva, Roza, Boerwinkle, Eric, Bonnycastle, Lori L., Boström, Kristina Bengtsson, Bravenboer, Bert, Bumpstead, Suzannah, Burtt, Noël P., Charpentier, Guillaume, Chines, Peter S., Cornelis, Marilyn, Couper, David J., Crawford, Gabe, Doney, Alex S.F., Elliott, Katherine S., Elliott, Amanda L., Erdos, Michael R., Fox, Caroline S., Franklin, Christopher S., Ganser, Martha, Gieger, Christian, Grarup, Niels, Green, Todd, Griffin, Simon, Groves, Christopher J., Guiducci, Candace, Hadjadj, Samy, Hassanali, Neelam, Herder, Christian, Isomaa, Bo, Jackson, Anne U., Johnson, Paul R.V., Jørgensen, Torben, Kao, Wen H.L., Klopp, Norman, Kong, Augustine, Kraft, Peter, Kuusisto, Johanna, Lauritzen, Torsten, Li, Man, Lieverse, Aloysius, Lindgren, Cecilia M., Lyssenko, Valeriya, Marre, Michel, Meitinger, Thomas, Midthjell, Kristian, Morken, Mario A., Narisu, Narisu, Nilsson, Peter, Owen, Katharine R., Payne, Felicity, Perry, John R.B., Petersen, Ann-Kristin, Platou, Carl, Proença, Christine, Prokopenko, Inga, Rathmann, Wolfgang, Rayner, N. William, Robertson, Neil R., Rocheleau, Ghislain, Roden, Michael, Sampson, Michael J., Saxena, Richa, Shields, Beverley M., Shrader, Peter, Sigurdsson, Gunnar, Sparsø, Thomas, Strassburger, Klaus, Stringham, Heather M., Sun, Qi, Swift, Amy J., Thorand, Barbara, Tichet, Jean, Tuomi, Tiinamaija, van Dam, Rob M., van Haeften, Timon W., van Herpt, Thijs, van Vliet-Ostaptchouk, Jana V., Walters, G. Bragi, Weedon, Michael N., Wijmenga, Cisca, Witteman, Jacqueline, Bergman, Richard N., Cauchi, Stephane, Collins, Francis S., Gloyn, Anna L., Gyllensten, Ulf, Hansen, Torben, Hide, Winston A., Hitman, Graham A., Hofman, Albert, Hunter, David J., Hveem, Kristian, Laakso, Markku, Mohlke, Karen L., Morris, Andrew D., Palmer, Colin N.A., Pramstaller, Peter P., Rudan, Igor, Sijbrands, Eric, Stein, Lincoln D., Tuomilehto, Jaakko, Uitterlinden, Andre, Walker, Mark, Wareham, Nicholas J., Watanabe, Richard M., Abecasis, Goncalo R., Boehm, Bernhard O., Campbell, Harry, Daly, Mark J., Hattersley, Andrew T., Hu, Frank B., Meigs, James B., Pankow, James S., Pedersen, Oluf, Wichmann, H.-Erich, Barroso, Inês, Florez, Jose C., Frayling, Timothy M., Groop, Leif, Sladek, Rob, Thorsteinsdottir, Unnur, Wilson, James F., Illig, Thomas, Froguel, Philippe, van Duijn, Cornelia M., Stefansson, Kari, Altshuler, David, Boehnke, Michael, McCarthy, Mark I., Claussnitzer, Melina, Dankel, Simon N., Klocke, Bernward, Glunk, Viktoria, Berulava, Tea, Lee, Heekyoung, Oskolkov, Nikolay, Fadista, Joao, Ehlers, Kerstin, Wahl, Simone, Hoffmann, Christoph, Qian, Kun, Rönn, Tina, Riess, Helene, Müller-Nurasyid, Martina, Bretschneider, Nancy, Schroeder, Timm, Skurk, Thomas, Horsthemke, Bernhard, Spieler, Derek, Klingenspor, Martin, Seifert, Martin, Kern, Michael J., Mejhert, Niklas, Dahlman, Ingrid, Hansson, Ola, Hauck, Stefanie M., Blüher, Matthias, Arner, Peter, Suhre, Karsten, Hsu, Yi-Hsiang, Mellgren, Gunnar, Hauner, Hans, and Laumen, Helmut
- Published
- 2014
- Full Text
- View/download PDF
9. Conserved reduction of m6A marks during aging and neurodegeneration is linked to altered translation of synaptic transcripts
- Author
-
Castro-Hernández, Ricardo, primary, Berulava, Tea, additional, Metelova, Maria, additional, Epple, Robert, additional, Centeno, Tonatiuh Peña, additional, Sakib, M Sadman, additional, Burkhart, Susanne, additional, Ninov, Momchil, additional, Bohnsack, Katherine E., additional, Bohnsack, Markus T., additional, Delalle, Ivana, additional, and Fischer, Andre, additional
- Published
- 2022
- Full Text
- View/download PDF
10. Conserved reduction of m6 A RNA modifications during aging and neurodegeneration is linked to changes in synaptic transcripts.
- Author
-
Castro-Hernández, Ricardo, Berulava, Tea, Metelova, Maria, Epple, Robert, Centeno, Tonatiuh Peña, Richter, Julia, Kaurani, Lalit, Pradhan, Ranjit, Sakib, M. Sadman, Burkhardt, Susanne, Ninov, Momchil, Bohnsack, Katherine E., Bohnsack, Markus T., Delalle, Ivana, and Fischer, Andre
- Subjects
- *
RNA modification & restriction , *ALZHEIMER'S patients , *RNA methylation , *CINGULATE cortex , *ALZHEIMER'S disease , *DENTATE gyrus - Abstract
N6 -methyladenosine (m6 A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6 A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6 A epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice. We observed a decrease in m6 A levels in aged animals. Comparative analysis of cingulate cortex (CC) brain tissue from cognitively intact human subjects and Alzheimer’s disease (AD) patients showed decreased m6 A RNA methylation in AD patients. m6 A changes common to brains of aged mice and AD patients were found in transcripts linked to synaptic function including calcium/calmodulin-dependent protein kinase 2 (CAMKII) and AMPA-selective glutamate receptor 1 (Glua1). We used proximity ligation assays to show that reduced m6 A levels result in decreased synaptic protein synthesis as exemplified by CAMKII and GLUA1. Moreover, reduced m6 A levels impaired synaptic function. Our results suggest that m6 A RNA methylation controls synaptic protein synthesis and may play a role in cognitive decline associated with aging and AD. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
11. Post-transcriptional regulation by the exosome complex is required for cell survival and forebrain development via repression of P53 signaling
- Author
-
Ulmke, Pauline Antonie, primary, Xie, Yuanbin, additional, Sokpor, Godwin, additional, Pham, Linh, additional, Shomroni, Orr, additional, Berulava, Tea, additional, Rosenbusch, Joachim, additional, Basu, Uttiya, additional, Fischer, Andre, additional, Nguyen, Huu Phuc, additional, Staiger, Jochen F., additional, and Tuoc, Tran, additional
- Published
- 2021
- Full Text
- View/download PDF
12. The Coding And Small-Non-Coding Hippocampal Synaptic RNAome
- Author
-
Epple, Robert, primary, Krüger, Dennis, additional, Berulava, Tea, additional, Brehm, Gerrit, additional, Islam, Rezaul, additional, Köster, Sarah, additional, and Fischer, Andre, additional
- Published
- 2020
- Full Text
- View/download PDF
13. Epigenetic gene-expression links heart failure to memory impairment
- Author
-
Islam, Rezaul, primary, Lbik, Dawid, additional, Sakib, Sadman, additional, Hofmann, Raoul Maximilian, additional, Berulava, Tea, additional, Mausbach, Martí Jiménez, additional, Cha, Julia, additional, Vakhtang, Elerdashvili, additional, Schiffmann, Christian, additional, Zieseniss, Anke, additional, Katschinski, Dörthe Magdalena, additional, Sananbenesi, Farahnaz, additional, Toischer, Karl, additional, and Fischer, Andre, additional
- Published
- 2020
- Full Text
- View/download PDF
14. Comment on: Jowett et al. (2010) Genetic Variation at the FTO Locus Influences RBL2 Gene Expression. Diabetes;59: 726–732
- Author
-
Berulava, Tea and Horsthemke, Bernhard
- Published
- 2010
- Full Text
- View/download PDF
15. RNA methylation in cardiac hypertrophy and heart failure
- Author
-
Berulava, Tea and Fischer, Andre
- Subjects
ddc:610 - Abstract
Introduction:During the last decade, knowledge of gene regulation beyond tran-scription factors has increased dramatically by studying epigenetic processesand modifications. Their deregulation was found to be critically involved in thepathogenesis of heart failure. Among these, the recently described N6-adenosinemethylation (m6A) is the most prevalent modification found in many classes ofRNA (mRNA, noncodingRNA (ncRNA), microRNA (miR)). Being both dynamicand reversible, it is a promising new mechanism of post-transcriptional gene reg-ulation. The degree and pattern of mRNA methylation can affect their splicing,transport, storage, and/or decay, whereas methylation of ncRNAs might influencesignal transduction directly.Purpose:As the role of m6A-RNA methylation in the heart is poorly understood,we aimed to elucidate the state and influence of RNA methylation on cardiachypertrophy and heart failure.Downloaded from https://academic.oup.com/eurheartj/article/39/suppl_1/ehy563.3147/5080629 by Deutsches Zentrum fuer Neurodegenerative Erkrankungen user on 13 August 2020Heart Failure: new targets for treatment / Health economics and policy to improve cardiovascular care and outcomes 645Methods:Pressure overload in mice was induced via transverse aortic constric-tion (TAC) surgery leading to hypertrophic adaptation and finally heart failure.Mice underwent echocardiography 1 week (hypertrophy) and 8 weeks (heart fail-ure) post TAC with subsequent isolation of the left ventricle (LV). Human sampleswere obtained from heart transplants. We analysed total RNA expression via nextgeneration sequencing (NGS) and RNA methylation with a Methylated RNA Im-munoprecipitation (MeRIP) prior to sequencing. Translation efficiency was anal-ysed by polysomal profiling and subsequent NGS of polysomal fractions.Results:We could show, that∼25% of all mRNAs are methylated in LV tissuefrom both, mouse and human. Furthermore we observed a RNA methylation pat-tern change from compensated hypertrophy to heart failure in the TAC mousemodel. Interestingly, no correlation was seen between methylation and expressionof genes in response to hypertrophic changes. Changes in methylation mainly oc-curred in the coding sequence (CDS) and the 3’ untranslated region (3’UTR) ofmRNAs. Similar results were obtained from human samples of patients with heartfailure. Transcripts prevalently hyper methylated in the 5’UTR showed correlationwith a higher expression level. Polysomal sequencing revealed a strong correla-tion between methylation of the CDS and expression efficiency.Conclusions:We conclude that m6A-methylation is a conserved mechanismplaying an important role in the development of heart failure, even if the underly-ing mechanisms were not elucidated until now. Furthermore, especially 3’UTRmethylation is of big interest as it contains miR binding sites, regulatory pro-tein binding sites and silencer regions which can be influenced by a methylationchange. This adds another layer of transcriptional and translational regulation viamiR interactions, even more as miRs can be methylated themselves. A highermethylation of the 5’UTR and CDS enhances gene expression which suggestsnew insights into translation efficiency regulation by m6A methylation.Funding Acknowledgements:Deutsche Forschungsgemeinschaft: Sonderforschungsbereich 1002
- Published
- 2018
16. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation
- Author
-
Berulava, Tea, primary, Buchholz, Eric, additional, Elerdashvili, Vakhtang, additional, Pena, Tonatiuh, additional, Islam, Md Rezaul, additional, Lbik, Dawid, additional, Mohamed, Belal A., additional, Renner, Andre, additional, von Lewinski, Dirk, additional, Sacherer, Michael, additional, Bohnsack, Katherine E., additional, Bohnsack, Markus T., additional, Jain, Gaurav, additional, Capece, Vincenzo, additional, Cleve, Nicole, additional, Burkhardt, Susanne, additional, Hasenfuss, Gerd, additional, Fischer, Andre, additional, and Toischer, Karl, additional
- Published
- 2019
- Full Text
- View/download PDF
17. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation.
- Author
-
Berulava, Tea, Buchholz, Eric, Elerdashvili, Vakhtang, Pena, Tonatiuh, Islam, Md Rezaul, Lbik, Dawid, Mohamed, Belal A., Renner, Andre, Lewinski, Dirk, Sacherer, Michael, Bohnsack, Katherine E., Bohnsack, Markus T., Jain, Gaurav, Capece, Vincenzo, Cleve, Nicole, Burkhardt, Susanne, Hasenfuss, Gerd, Fischer, Andre, Toischer, Karl, and von Lewinski, Dirk
- Subjects
- *
RNA methylation , *GENETIC translation , *HEART failure , *CARDIAC hypertrophy , *NUCLEOTIDE sequencing , *RNA metabolism , *RESEARCH , *ANIMAL experimentation , *RESEARCH methodology , *RNA , *EVALUATION research , *COMPARATIVE studies , *METHYLATION , *GENES , *RESEARCH funding , *MICE - Abstract
Aims: Deregulation of epigenetic processes and aberrant gene expression are important mechanisms in heart failure. Here we studied the potential relevance of m6A RNA methylation in heart failure development.Methods and Results: We analysed m6A RNA methylation via next-generation sequencing. We found that approximately one quarter of the transcripts in the healthy mouse and human heart exhibit m6A RNA methylation. During progression to heart failure we observed that changes in m6A RNA methylation exceed changes in gene expression both in mouse and human. RNAs with altered m6A RNA methylation were mainly linked to metabolic and regulatory pathways, while changes in RNA expression level mainly represented changes in structural plasticity. Mechanistically, we could link m6A RNA methylation to altered RNA translation and protein production. Interestingly, differentially methylated but not differentially expressed RNAs showed differential polysomal occupancy, indicating transcription-independent modulation of translation. Furthermore, mice with a cardiomyocyte restricted knockout of the RNA demethylase Fto exhibited an impaired cardiac function compared to control mice.Conclusions: We could show that m6A landscape is altered in heart hypertrophy and heart failure. m6A RNA methylation changes lead to changes in protein abundance, unconnected to mRNA levels. This uncovers a new transcription-independent mechanisms of translation regulation. Therefore, our data suggest that modulation of epitranscriptomic processes such as m6A methylation might be an interesting target for therapeutic interventions. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
18. MOESM7 of Epigenetic dynamics of monocyte-to-macrophage differentiation
- Author
-
Wallner, Stefan, Schröder, Christopher, Leitão, Elsa, Berulava, Tea, Haak, Claudia, Beißer, Daniela, Rahmann, Sven, Richter, Andreas, Manke, Thomas, Bönisch, Ulrike, Arrigoni, Laura, Fröhler, Sebastian, Klironomos, Filippos, Chen, Wei, Rajewsky, Nikolaus, Müller, Fabian, Ebert, Peter, Lengauer, Thomas, Barann, Matthias, Rosenstiel, Philip, Gasparoni, Gilles, Nordström, Karl, Walter, Jörn, Brors, Benedikt, Zipprich, Gideon, Felder, Bärbel, Klein-Hitpass, Ludger, Attenberger, Corinna, Schmitz, Gerd, and Horsthemke, Bernhard
- Subjects
genetic structures ,bacterial infections and mycoses - Abstract
Additional file 7: Figure S4. Distance of DMRs to the transcription start sites (TSS) of their associated genes (GREAT).
- Published
- 2016
- Full Text
- View/download PDF
19. 317: Human monocyte-derived suppressorcells control graft-vs-host disease whilepreserving graft-vs-leukemia effect andacquire clinically relevant qualities
- Author
-
Berulava, Tea
- Subjects
ddc:610 - Abstract
Graft-vs-host disease(GvHD) heavily limits the curative out-come of allogeneic bone marrow transplan-tation (BMT). Immunosuppressive agentscurrently used to control GvHD diminishthe efficacy of the immune reconstitution.Immunosuppressive cell based therapy is arelatively recent alternative strategy forsuch conditions. We have previously eported on a novel subpopulation ofhuman monocyte-derived suppressive cells(HuMoSC) as a prospective approach forcontrolling GvHD. The objectives of ourcurrent study are to explore the therapeuticrelevance of HuMoSC in clinical condi-tions of allogeneic BMT and to evaluatethe clinical benefits of such therapy on thecurative graft vs leukemia (GvL) reaction.
- Published
- 2016
20. Compound Heterozygosity of Low-Frequency Promoter Deletions and Rare Loss-of-Function Mutations in TXNL4A Causes Burn-McKeown Syndrome
- Author
-
Wieczorek, Dagmar, Newman, William G., Wieland, Thomas, Berulava, Tea, Kaffe, Maria, Falkenstein, Daniela, Beetz, Christian, Graf, Elisabeth, Schwarzmayr, Thomas, Douzgou, Sofia, Clayton-Smith, Jill, Daly, Sarah B., Williams, Simon G., Bhaskar, Sanjeev S., Urquhart, Jill E., Anderson, Beverley, O’Sullivan, James, Boute, Odile, Gundlach, Jasmin, Czeschik, Johanna Christina, van Essen, Anthonie J., Hazan, Filiz, Park, Sarah, Hing, Anne, Kuechler, Alma, Lohmann, Dietmar R., Ludwig, Kerstin U., Mangold, Elisabeth, Steenpaß, Laura, Zeschnigk, Michael, Lemke, Johannes R., Lourenco, Charles Marques, Hehr, Ute, Prott, Eva-Christina, Waldenberger, Melanie, Böhmer, Anne C., Horsthemke, Bernhard, O’Keefe, Raymond T., Meitinger, Thomas, Burn, John, Lüdecke, Hermann-Josef, and Strom, Tim M.
- Published
- 2014
- Full Text
- View/download PDF
21. Epigenetic dynamics of monocyte-to-macrophage differentiation
- Author
-
Wallner, Stefan, primary, Schröder, Christopher, additional, Leitão, Elsa, additional, Berulava, Tea, additional, Haak, Claudia, additional, Beißer, Daniela, additional, Rahmann, Sven, additional, Richter, Andreas S., additional, Manke, Thomas, additional, Bönisch, Ulrike, additional, Arrigoni, Laura, additional, Fröhler, Sebastian, additional, Klironomos, Filippos, additional, Chen, Wei, additional, Rajewsky, Nikolaus, additional, Müller, Fabian, additional, Ebert, Peter, additional, Lengauer, Thomas, additional, Barann, Matthias, additional, Rosenstiel, Philip, additional, Gasparoni, Gilles, additional, Nordström, Karl, additional, Walter, Jörn, additional, Brors, Benedikt, additional, Zipprich, Gideon, additional, Felder, Bärbel, additional, Klein-Hitpass, Ludger, additional, Attenberger, Corinna, additional, Schmitz, Gerd, additional, and Horsthemke, Bernhard, additional
- Published
- 2016
- Full Text
- View/download PDF
22. Expression und Funktion des fettmasse- und adipositas-assoziierten Gens FTO
- Author
-
Berulava, Tea and Horsthemke, Bernhard
- Subjects
Medizinische Fakultät » Universitätsklinikum Essen » Institut für Humangenetik ,endocrine system diseases ,ddc:570 ,nutritional and metabolic diseases ,pathological conditions, signs and symptoms ,ddc:576 - Abstract
Genome-wide association studies have revealed a strong association between a block of single-nucleotide polymorphisms (SNPs) in intron 1 of the fat mass and obesity-associated (FTO) gene, body mass index (BMI) and other obesity-related traits in children and adults of many different populations. Yet, the impact of these variations on expression of FTO and/or other genes has remained unknown. Moreover, the biological function of FTO, in particular its contribution to body weight regulation, is still a subject of extensive investigations. The aim of this thesis was to investigate the impact of FTO genotype on FTO expression and elucidate the function of the FTO protein by determining its subcellular localization and the effect of FTO dosage on RNA expression profiles and RNA modification levels. Hence, expression studies were performed to evaluate the link between obesity-associated SNPs and expression of FTO and/or other genes, and functional studies were performed to gain insight into FTO biology. Allelic expression studies by primer extension assays were carried out to address the question whether obesity-associated variation affects transcription of the FTO and/or other genes in cis. It was demonstrated that the risk allele of FTO makes about 40% more transcripts than the non-risk allele in the different cell types. Characterization of single polymorphisms with regard to their location (in silico approach) and protein binding activity pointed to a complex regulation of the expression of FTO. This was strengthened by the fact that the cellular the level of FTO mRNA is controlled by a number of transcription factors. Allelic expression of the neighboring RPGRIP1L and RBL2 was shown to be independent of the FTO genotype. To elucidate the function of the FTO protein, effects of its altered levels on the transcriptome and RNA methylation were investigated. Overexpression of FTO resulted in changes of steady state levels of genes involved in RNA processing and metabolism, whereas deficiency of FTO led to alterations in transcripts levels of genes determining cellular response to starvation. Subcellular localization studies showed that FTO is enriched in nuclear speckles, where RNA splicing factors are stored and modified, and is present in nucleoli, where ribosomal RNA is transcribed and processed. In vitro studies have suggested that FTO acts as a nucleic acid demethylase and prefers single stranded RNA as a substrate. Therefore, the effects of FTO on RNA methylation were investigated. By comparison of content of modified and non-modified ribonucleosides in total brain RNA of Fto-deficient and wild type mice I could show that the level of FTO affects the 3-methyluridine/uridine and pseudouridine/uridine ratios. In summary, I could show that increased expression of FTO predisposes to obesity, possibly by affecting transcriptome and RNA modifications. Further investigations will help to elucidate the link between FTO function, RNA processing and obesity. Genomweite Assoziationsstudien haben eine starke Assoziation zwischen einem Block von Einzelnukleotid Variationen (single nucleotide polymorphisms - SNPs) im Intron 1 des Fettmasse und Adipositas-assoziierten Gens (FTO), dem body mass index (BMI) und anderen, Adipositas bezogenen Erkrankungen bei Kindern und Erwachsenen vieler verschiedener Populationen gezeigt. Dennoch ist bisher nicht bekannt, wie stark der Effekt dieser Variationen auf die Expression von FTO und/oder anderen Genen ist. Darüber hinaus ist die biologische Funktion von FTO, insbesondere in Bezug auf die Regulation des Körpergewichts, noch immer Gegenstand intensiver Forschung. Das Ziel dieser Arbeit war die Untersuchung des Effekts des FTO Genotyps auf die Expression von FTO sowie die Aufklärung der Funktion des FTO Proteins durch Bestimmung der subzellularen Lokalisation und des Effekts der FTO Dosis auf RNA Expressionsprofile und RNA Modifizierungslevel. Daher wurden Expressionsstudien durchgeführt, um den Zusammenhang zwischen Adipositas-assoziierten SNPs und der Expression von FTO und/oder anderen Genen zu untersuchen sowie funktionelle Studien, um Einblick in die Biologie von FTO zu erlangen. Um die Frage zu klären, ob Adipositas-assoziierte Variationen die Transkription von FTO und/oder anderen Genen in cis beeinflussen, wurden Allel-spezifische Expressionsstudien mittels Primer-Extensions Assays genutzt. In verschiedenen Zelltypen konnte gezeigt werden, dass vom Risiko-Allel des FTO Gens ca. 40% mehr Transkript generiert wird als vom Nicht-Risiko-Allel. Die Charakterisierung einzelner SNPs im Hinblick auf ihre Lokalisation (in silico Ansatz) und Proteinbindeaktivität wies auf eine komplexe Regulation der FTO Expression hin. Dies wurde auch durch die Tatsache unterstützt, dass der zelluläre FTO mRNA Level durch eine Reihe von Transkriptionsfaktoren kontrolliert wird. Weiterhin konnte gezeigt werden, dass die Allel-spezifische Expression der benachbarten Gene RPGRIP1L und RBL2 unabhängig vom FTO Genotyp ist. Zur weiteren Klärung der Funktion des FTO Proteins, wurde der Effekt eines veränderten Protein Gehalts von FTO auf das Transkriptom und die RNA Methylierung untersucht. FTO Überexpression führte zu Veränderungen der steady-state Level von Genen, die bei der RNA Prozessierung und Metabolisierung eine Rolle spielen. Ein Mangel an FTO andererseits wirkte sich auf die Transkriptlevel von Genen aus, die bei der Zellantwort auf Nährstoffmangel beteiligt sind. Untersuchungen zur subzellularen Lokalisation zeigten, dass FTO vermehrt in nuclear speckles (punktförmigen Gebilden im Zellkern) vorkommt werden konnte, in denen RNA Spleißfaktoren gespeichert und modifiziert werden. Außerdem ist FTO in den Nucleoli vorhanden, wo ribosomale RNA transkribiert und prozessiert wird. In vitro Studien hatten Hinweise darauf geliefert, dass FTO als Nukleinsäure Demethylase agiert und dabei Einzelstrang RNA als Substrat bevorzugt. Daher wurden die Effekte von FTO auf RNA Methylierung untersucht. Durch den Vergleich des Gehalts von modifizierten und nicht-modifizierten Ribonukleosiden in RNA aus Gehirn von Fto-defizienten und Wildtyp Mäusen, konnte gezeigt werden, dass der FTO Gehalt das Verhältnis von 3-Methyluridin/Uridin and Pseudouridin/Uridin beeinflusst. In dieser Arbeit konnte ich zeigen, dass eine erhöhte Expression von FTO eine Prädisposition für Adipositas darstellt, möglicherweise durch Einfluss auf das Transkriptom und RNA Modifizierung. Weitere Untersuchungen werden dabei helfen, den Zusammenhang zwischen der Funktion von FTO, RNA Prozessierung und Adipositas weiter aufzuklären.
- Published
- 2013
23. Expression and function of the fat mass and obesity-associated gene FTO
- Author
-
Berulava, Tea and Horsthemke, Bernhard (Akademische Betreuung)
- Subjects
Biologie - Abstract
Duisburg, Essen, Univ., Diss., 2012 Expression und Funktion des fettmasse- und adipositas-assoziierten Gens FTO Genomweite Assoziationsstudien haben eine starke Assoziation zwischen einem Block von Einzelnukleotid Variationen (single nucleotide polymorphisms - SNPs) im Intron 1 des Fettmasse und Adipositas-assoziierten Gens (FTO), dem body mass index (BMI) und anderen, Adipositas bezogenen Erkrankungen bei Kindern und Erwachsenen vieler verschiedener Populationen gezeigt. Dennoch ist bisher nicht bekannt, wie stark der Effekt dieser Variationen auf die Expression von FTO und/oder anderen Genen ist. Darüber hinaus ist die biologische Funktion von FTO, insbesondere in Bezug auf die Regulation des Körpergewichts, noch immer Gegenstand intensiver Forschung. Das Ziel dieser Arbeit war die Untersuchung des Effekts des FTO Genotyps auf die Expression von FTO sowie die Aufklärung der Funktion des FTO Proteins durch Bestimmung der subzellularen Lokalisation und des Effekts der FTO Dosis auf RNA Expressionsprofile und RNA Modifizierungslevel. Daher wurden Expressionsstudien durchgeführt, um den Zusammenhang zwischen Adipositas-assoziierten SNPs und der Expression von FTO und/oder anderen Genen zu untersuchen sowie funktionelle Studien, um Einblick in die Biologie von FTO zu erlangen. Um die Frage zu klären, ob Adipositas-assoziierte Variationen die Transkription von FTO und/oder anderen Genen in cis beeinflussen, wurden Allel-spezifische Expressionsstudien mittels Primer-Extensions Assays genutzt. In verschiedenen Zelltypen konnte gezeigt werden, dass vom Risiko-Allel des FTO Gens ca. 40% mehr Transkript generiert wird als vom Nicht-Risiko-Allel. Die Charakterisierung einzelner SNPs im Hinblick auf ihre Lokalisation (in silico Ansatz) und Proteinbindeaktivität wies auf eine komplexe Regulation der FTO Expression hin. Dies wurde auch durch die Tatsache unterstützt, dass der zelluläre FTO mRNA Level durch eine Reihe von Transkriptionsfaktoren kontrolliert wird. Weiterhin konnte gezeigt werden, dass die Allel-spezifische Expression der benachbarten Gene RPGRIP1L und RBL2 unabhängig vom FTO Genotyp ist. Zur weiteren Klärung der Funktion des FTO Proteins, wurde der Effekt eines veränderten Protein Gehalts von FTO auf das Transkriptom und die RNA Methylierung untersucht. FTO Überexpression führte zu Veränderungen der steady-state Level von Genen, die bei der RNA Prozessierung und Metabolisierung eine Rolle spielen. Ein Mangel an FTO andererseits wirkte sich auf die Transkriptlevel von Genen aus, die bei der Zellantwort auf Nährstoffmangel beteiligt sind. Untersuchungen zur subzellularen Lokalisation zeigten, dass FTO vermehrt in nuclear speckles (punktförmigen Gebilden im Zellkern) vorkommt werden konnte, in denen RNA Spleißfaktoren gespeichert und modifiziert werden. Außerdem ist FTO in den Nucleoli vorhanden, wo ribosomale RNA transkribiert und prozessiert wird. In vitro Studien hatten Hinweise darauf geliefert, dass FTO als Nukleinsäure Demethylase agiert und dabei Einzelstrang RNA als Substrat bevorzugt. Daher wurden die Effekte von FTO auf RNA Methylierung untersucht. Durch den Vergleich des Gehalts von modifizierten und nicht-modifizierten Ribonukleosiden in RNA aus Gehirn von Fto-defizienten und Wildtyp Mäusen, konnte gezeigt werden, dass der FTO Gehalt das Verhältnis von 3-Methyluridin/Uridin and Pseudouridin/Uridin beeinflusst. In dieser Arbeit konnte ich zeigen, dass eine erhöhte Expression von FTO eine Prädisposition für Adipositas darstellt, möglicherweise durch Einfluss auf das Transkriptom und RNA Modifizierung. Weitere Untersuchungen werden dabei helfen, den Zusammenhang zwischen der Funktion von FTO, RNA Prozessierung und Adipositas weiter aufzuklären.
- Published
- 2012
24. N6-Adenosine Methylation in MiRNAs
- Author
-
Berulava, Tea, primary, Rahmann, Sven, additional, Rademacher, Katrin, additional, Klein-Hitpass, Ludgar, additional, and Horsthemke, Bernhard, additional
- Published
- 2015
- Full Text
- View/download PDF
25. Leveraging cross-species transcription factor binding site patterns: from diabetes risk Loci to disease mechanisms.
- Author
-
Claussnitzer, Melina, Dankel, Simon N, Klocke, Bernward, Grallert, Harald, Glunk, Viktoria, Berulava, Tea, Lee, Heekyoung, Oskolkov, Nikolay, Fadista, Joao, Ehlers, Kerstin, Wahl, Simone, Hoffmann, Christoph, Qian, Kun, Rönn, Tina, Riess, Helene, Müller-Nurasyid, Martina, Bretschneider, Nancy, Schroeder, Timm, Skurk, Thomas, Horsthemke, Bernhard, Spieler, Derek, Klingenspor, Martin, Seifert, Martin, Kern, Michael J, Mejhert, Niklas, Dahlman, Ingrid, Hansson, Ola, Hauck, Stefanie M, Blüher, Matthias, Arner, Peter, Groop, Leif, Illig, Thomas, Suhre, Karsten, Hsu, Yi-Hsiang, Mellgren, Gunnar, Hauner, Hans, Laumen, Helmut, Claussnitzer, Melina, Dankel, Simon N, Klocke, Bernward, Grallert, Harald, Glunk, Viktoria, Berulava, Tea, Lee, Heekyoung, Oskolkov, Nikolay, Fadista, Joao, Ehlers, Kerstin, Wahl, Simone, Hoffmann, Christoph, Qian, Kun, Rönn, Tina, Riess, Helene, Müller-Nurasyid, Martina, Bretschneider, Nancy, Schroeder, Timm, Skurk, Thomas, Horsthemke, Bernhard, Spieler, Derek, Klingenspor, Martin, Seifert, Martin, Kern, Michael J, Mejhert, Niklas, Dahlman, Ingrid, Hansson, Ola, Hauck, Stefanie M, Blüher, Matthias, Arner, Peter, Groop, Leif, Illig, Thomas, Suhre, Karsten, Hsu, Yi-Hsiang, Mellgren, Gunnar, Hauner, Hans, and Laumen, Helmut
- Abstract
Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.
- Published
- 2014
26. Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms
- Author
-
Claussnitzer, Melina, primary, Dankel, Simon N., additional, Klocke, Bernward, additional, Grallert, Harald, additional, Glunk, Viktoria, additional, Berulava, Tea, additional, Lee, Heekyoung, additional, Oskolkov, Nikolay, additional, Fadista, Joao, additional, Ehlers, Kerstin, additional, Wahl, Simone, additional, Hoffmann, Christoph, additional, Qian, Kun, additional, Rönn, Tina, additional, Riess, Helene, additional, Müller-Nurasyid, Martina, additional, Bretschneider, Nancy, additional, Schroeder, Timm, additional, Skurk, Thomas, additional, Horsthemke, Bernhard, additional, Spieler, Derek, additional, Klingenspor, Martin, additional, Seifert, Martin, additional, Kern, Michael J., additional, Mejhert, Niklas, additional, Dahlman, Ingrid, additional, Hansson, Ola, additional, Hauck, Stefanie M., additional, Blüher, Matthias, additional, Arner, Peter, additional, Groop, Leif, additional, Illig, Thomas, additional, Suhre, Karsten, additional, Hsu, Yi-Hsiang, additional, Mellgren, Gunnar, additional, Hauner, Hans, additional, Laumen, Helmut, additional, Voight, Benjamin F., additional, Scott, Laura J., additional, Steinthorsdottir, Valgerdur, additional, Morris, Andrew P., additional, Dina, Christian, additional, Welch, Ryan P., additional, Zeggini, Eleftheria, additional, Huth, Cornelia, additional, Aulchenko, Yurii S., additional, Thorleifsson, Gudmar, additional, McCulloch, Laura J., additional, Ferreira, Teresa, additional, Amin, Najaf, additional, Wu, Guanming, additional, Willer, Cristen J., additional, Raychaudhuri, Soumya, additional, McCarroll, Steve A., additional, Langenberg, Claudia, additional, Hofmann, Oliver M., additional, Dupuis, Josée, additional, Qi, Lu, additional, Segrè, Ayellet V., additional, van Hoek, Mandy, additional, Navarro, Pau, additional, Ardlie, Kristin, additional, Balkau, Beverley, additional, Benediktsson, Rafn, additional, Bennett, Amanda J., additional, Blagieva, Roza, additional, Boerwinkle, Eric, additional, Bonnycastle, Lori L., additional, Boström, Kristina Bengtsson, additional, Bravenboer, Bert, additional, Bumpstead, Suzannah, additional, Burtt, Noël P., additional, Charpentier, Guillaume, additional, Chines, Peter S., additional, Cornelis, Marilyn, additional, Couper, David J., additional, Crawford, Gabe, additional, Doney, Alex S.F., additional, Elliott, Katherine S., additional, Elliott, Amanda L., additional, Erdos, Michael R., additional, Fox, Caroline S., additional, Franklin, Christopher S., additional, Ganser, Martha, additional, Gieger, Christian, additional, Grarup, Niels, additional, Green, Todd, additional, Griffin, Simon, additional, Groves, Christopher J., additional, Guiducci, Candace, additional, Hadjadj, Samy, additional, Hassanali, Neelam, additional, Herder, Christian, additional, Isomaa, Bo, additional, Jackson, Anne U., additional, Johnson, Paul R.V., additional, Jørgensen, Torben, additional, Kao, Wen H.L., additional, Klopp, Norman, additional, Kong, Augustine, additional, Kraft, Peter, additional, Kuusisto, Johanna, additional, Lauritzen, Torsten, additional, Li, Man, additional, Lieverse, Aloysius, additional, Lindgren, Cecilia M., additional, Lyssenko, Valeriya, additional, Marre, Michel, additional, Meitinger, Thomas, additional, Midthjell, Kristian, additional, Morken, Mario A., additional, Narisu, Narisu, additional, Nilsson, Peter, additional, Owen, Katharine R., additional, Payne, Felicity, additional, Perry, John R.B., additional, Petersen, Ann-Kristin, additional, Platou, Carl, additional, Proença, Christine, additional, Prokopenko, Inga, additional, Rathmann, Wolfgang, additional, Rayner, N. William, additional, Robertson, Neil R., additional, Rocheleau, Ghislain, additional, Roden, Michael, additional, Sampson, Michael J., additional, Saxena, Richa, additional, Shields, Beverley M., additional, Shrader, Peter, additional, Sigurdsson, Gunnar, additional, Sparsø, Thomas, additional, Strassburger, Klaus, additional, Stringham, Heather M., additional, Sun, Qi, additional, Swift, Amy J., additional, Thorand, Barbara, additional, Tichet, Jean, additional, Tuomi, Tiinamaija, additional, van Dam, Rob M., additional, van Haeften, Timon W., additional, van Herpt, Thijs, additional, van Vliet-Ostaptchouk, Jana V., additional, Walters, G. Bragi, additional, Weedon, Michael N., additional, Wijmenga, Cisca, additional, Witteman, Jacqueline, additional, Bergman, Richard N., additional, Cauchi, Stephane, additional, Collins, Francis S., additional, Gloyn, Anna L., additional, Gyllensten, Ulf, additional, Hansen, Torben, additional, Hide, Winston A., additional, Hitman, Graham A., additional, Hofman, Albert, additional, Hunter, David J., additional, Hveem, Kristian, additional, Laakso, Markku, additional, Mohlke, Karen L., additional, Morris, Andrew D., additional, Palmer, Colin N.A., additional, Pramstaller, Peter P., additional, Rudan, Igor, additional, Sijbrands, Eric, additional, Stein, Lincoln D., additional, Tuomilehto, Jaakko, additional, Uitterlinden, Andre, additional, Walker, Mark, additional, Wareham, Nicholas J., additional, Watanabe, Richard M., additional, Abecasis, Goncalo R., additional, Boehm, Bernhard O., additional, Campbell, Harry, additional, Daly, Mark J., additional, Hattersley, Andrew T., additional, Hu, Frank B., additional, Meigs, James B., additional, Pankow, James S., additional, Pedersen, Oluf, additional, Wichmann, H.-Erich, additional, Barroso, Inês, additional, Florez, Jose C., additional, Frayling, Timothy M., additional, Sladek, Rob, additional, Thorsteinsdottir, Unnur, additional, Wilson, James F., additional, Froguel, Philippe, additional, van Duijn, Cornelia M., additional, Stefansson, Kari, additional, Altshuler, David, additional, Boehnke, Michael, additional, and McCarthy, Mark I., additional
- Published
- 2014
- Full Text
- View/download PDF
27. Epigenetic dynamics of monocyteto-macrophage differentiation.
- Author
-
Wallner, Stefan, Schröder, Christopher, Leitão, Elsa, Berulava, Tea, Haak, Claudia, Beiβer, Daniela, Rahmann, Sven, Richter, Andreas S., Manke, Thomas, Bönisch, Ulrike, Arrigoni, Laura, Fröhler, Sebastian, Klironomos, Filippos, Wei Chen, Rajewsky, Nikolaus, Müller, Fabian, Ebert, Peter, Lengauer, Thomas, Barann, Matthias, and Rosenstiel, Philip
- Subjects
MACROPHAGES ,EPIGENETICS ,CELL differentiation ,BIOCHEMISTRY ,DNA methylation - Abstract
Background: Monocyte-to-macrophage differentiation involves major biochemical and structural changes. In order to elucidate the role of gene regulatory changes during this process, we used high-throughput sequencing to analyze the complete transcriptome and epigenome of human monocytes that were differentiated in vitro by addition of colony-stimulating factor 1 in serum-free medium. Results: Numerous mRNAs and miRNAs were significantly up- or down-regulated. More than 100 discrete DNA regions, most often far away from transcription start sites, were rapidly demethylated by the ten eleven translocation enzymes, became nucleosome-free and gained histone marks indicative of active enhancers. These regions were unique for macrophages and associated with genes involved in the regulation of the actin cytoskeleton, phagocytosis and innate immune response. Conclusions: In summary, we have discovered a phagocytic gene network that is repressed by DNA methylation in monocytes and rapidly de-repressed after the onset of macrophage differentiation. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
28. FTO levels affect RNA modification and the transcriptome
- Author
-
Berulava, Tea, primary, Ziehe, Matthias, additional, Klein-Hitpass, Ludger, additional, Mladenov, Emil, additional, Thomale, Jürgen, additional, Rüther, Ulrich, additional, and Horsthemke, Bernhard, additional
- Published
- 2012
- Full Text
- View/download PDF
29. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels
- Author
-
Berulava, Tea, primary and Horsthemke, Bernhard, additional
- Published
- 2010
- Full Text
- View/download PDF
30. The Human Retinoblastoma Gene Is Imprinted
- Author
-
Kanber, Deniz, primary, Berulava, Tea, additional, Ammerpohl, Ole, additional, Mitter, Diana, additional, Richter, Julia, additional, Siebert, Reiner, additional, Horsthemke, Bernhard, additional, Lohmann, Dietmar, additional, and Buiting, Karin, additional
- Published
- 2009
- Full Text
- View/download PDF
31. FTO levels affect RNA modification and the transcriptome.
- Author
-
Berulava, Tea, Ziehe, Matthias, Klein-Hitpass, Ludger, Mladenov, Emil, Thomale, Jürgen, Rüther, Ulrich, and Horsthemke, Bernhard
- Subjects
- *
RNA modification & restriction , *OBESITY , *GENETIC transcription , *IMMUNOCYTOCHEMISTRY , *CONFOCAL microscopy , *SINGLE nucleotide polymorphisms - Abstract
A block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased body weight, although the underlying mechanism has remained unclear. To elucidate the function of FTO, we examined the consequences of altered FTO levels in cultured cells and murine brain. Here we show that a knockdown of FTO in HEK293 cells affects the transcripts levels of genes involved in the response to starvation, whereas overexpression of FTO affects the transcript levels of genes related to RNA processing and metabolism. Subcellular localization of FTO further strengthens the latter notion. Using immunocytochemistry and confocal laser scanning microscopy, we detected FTO in nuclear speckles and - to a lesser and varying extent - in the nucleoplasm and nucleoli of HEK293, HeLa and MCF-7 cells. Moreover, RNA modification analyses revealed that loss of Fto affects the 3-methyluridine/uridine and pseudouridine/uridine ratios in total brain RNA. We conclude that altered levels of FTO have multiple and diverse consequences on RNA modifications and the transcriptome. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
32. Drug screening identifies tazarotene and bexarotene as therapeutic agents in multiple sulfatase deficiency
- Author
-
Lars Schlotawa, Karolina Tyka, Matthias Kettwig, Rebecca C Ahrens‐Nicklas, Matthias Baud, Tea Berulava, Nicola Brunetti‐Pierri, Alyssa Gagne, Zackary M Herbst, Jean A Maguire, Jlenia Monfregola, Tonatiuh Pena, Karthikeyan Radhakrishnan, Sophie Schröder, Elisa A Waxman, Andrea Ballabio, Thomas Dierks, André Fischer, Deborah L French, Michael H Gelb, Jutta Gärtner, Schlotawa, Lar, Tyka, Karolina, Kettwig, Matthia, Ahrens-Nicklas, Rebecca C, Baud, Matthia, Berulava, Tea, Brunetti-Pierri, Nicola, Gagne, Alyssa, Herbst, Zackary M, Maguire, Jean A, Monfregula, Jlenia, Pena, Tonatiuh, Radhakrishnan, Karthikeyan, Schröder, Sophie, Waxman, Elisa A, Ballabio, Andrea, Dierks, Thoma, Fischer, André, French, Deborah L, Gelb, Michael H, and Gärtner, Jutta
- Subjects
retinoids ,lysosomal disorder ,sulfatase-modifying factor 1 ,Drug Evaluation, Preclinical ,retinoid ,Bexarotene ,formylglycine-generating enzyme ,genetics [Sulfatases] ,Humans ,Molecular Medicine ,Oxidoreductases Acting on Sulfur Group Donors ,ddc:610 ,drug screening ,genetics [Multiple Sulfatase Deficiency Disease] ,pathology [Multiple Sulfatase Deficiency Disease] ,diagnosis [Multiple Sulfatase Deficiency Disease] - Abstract
Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients. © 2023 The Authors. Published under the terms of the CC BY 4.0 license.
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.