36 results on '"Bertille Martinez"'
Search Results
2. Road Map for Nanocrystal Based Infrared Photodetectors
- Author
-
Clément Livache, Bertille Martinez, Nicolas Goubet, Julien Ramade, and Emmanuel Lhuillier
- Subjects
infrared ,nanocrystals ,photodetection ,device ,interband ,intraband ,Chemistry ,QD1-999 - Abstract
Infrared (IR) sensors based on epitaxially grown semiconductors face two main challenges which are their prohibitive cost and the difficulty to rise the operating temperature. The quest for alternative technologies which will tackle these two difficulties requires the development of new IR active materials. Over the past decade, significant progresses have been achieved. In this perspective, we summarize the current state of the art relative to nanocrystal based IR sensing and stress the main materials, devices and industrial challenges which will have to be addressed over the 5 next years.
- Published
- 2018
- Full Text
- View/download PDF
3. Potential of Colloidal Quantum Dot Based Solar Cells for Near-Infrared Active Detection
- Author
-
Julien Ramade, Junling Qu, Grégory Vincent, Bertille Martinez, Clément Livache, Charlie Gréboval, Nicolas Goubet, Audrey Chu, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DOTA, ONERA, Université Paris Saclay (COmUE) [Palaiseau], ONERA-Université Paris Saclay (COmUE), ANR-10-LABX-0067,MATISSE,MATerials, InterfaceS, Surfaces, Environment(2010), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), and European Project: 756225,blackQD
- Subjects
Materials science ,near infrared ,Active detection ,quantum dots ,02 engineering and technology ,Photodetection ,Electronic structure ,near-infrared ,01 natural sciences ,7. Clean energy ,active imaging ,law.invention ,010309 optics ,Colloid ,law ,0103 physical sciences ,Solar cell ,long-distance imaging ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Electrical and Electronic Engineering ,photodetection ,business.industry ,Near-infrared spectroscopy ,time-gated detection ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,solar cell ,PbS nanocrystals ,Nanocrystal ,Quantum dot ,Optoelectronics ,0210 nano-technology ,business ,Biotechnology - Abstract
International audience; Nanocrystal-based solar cell technologies currently have two materials competing for the highest performances: PbS and perovskites. These latter benefit from a defect-tolerant electronic structure, while PbS benefits from a mature diode fabrication technique and from its near-infrared absorption. Here we choose to revisit the potential of these PbS photodiodes for near-infrared detection and more precisely for active imaging. This mode of detection combines an eye invisible source with a detector. Such detection mode is used for surveillance, industrial sorting, LIDAR, etc. Here we use a state-of-the-art photodiode geometry and we reveal its potential for near-IR active detection at 940 nm. The diode can achieve a high photoresponse of 0.5 A.W-1, corresponding to an external quantum efficiency of 66% and a detectivity above 1012 Jones at room temperature. The time response which is often neglected for solar cells is found to be 10 ns for rise time and 1 µs for decay time. We demonstrate that long-distance (over 150 m) and time-gated active imaging can be conducted using this device.
- Published
- 2019
4. HgTe Nanocrystals for SWIR Detection and Their Integration up to the Focal Plane Array
- Author
-
Emmanuel Lhuillier, Nicolas Goubet, Vincent Noguier, Hervé Cruguel, Grégory Vincent, Lenart Dudy, Simon Ferré, Bertille Martinez, Charlie Gréboval, Clément Livache, Mathieu G. Silly, Yoann Prado, Nicolas Casaretto, Audrey Chu, Junling Qu, DOTA, ONERA, Université Paris Saclay (COmUE) [Palaiseau], ONERA-Université Paris Saclay (COmUE), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), New Imaging Technology (.) (NIT), Sorbonne Université (SU), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), and European Project: 756225,blackQD
- Subjects
Materials science ,focal plane array ,Infrared ,02 engineering and technology ,Electronic structure ,Photodetection ,010402 general chemistry ,HgTe ,01 natural sciences ,7. Clean energy ,nanocrystal ,nanocrystals ,Short wave infrared ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,short wave infrared ,photodetection ,business.industry ,infrared detection ,[CHIM.MATE]Chemical Sciences/Material chemistry ,electronic structure ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Cardinal point ,Nanocrystal ,infrared ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Infrared applications remain too often a niche market due to their prohibitive cost. Nanocrystals offer an interesting alternative to reach cost disruption especially in the shortwave infrared (SWIR, λ
- Published
- 2019
5. Designing photovoltaic Devices using HgTe Nanocrystals for Short and Mid Wave Infrared Detection
- Author
-
Clément Livache, Charlie Gréboval, Hervé Cruguel, Nicolas Goubet, Emmanuel Lhuillier, Bertille Martinez, Audrey Chu, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0067,MATISSE,MATerials, InterfaceS, Surfaces, Environment(2010), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), and European Project: 756225,blackQD
- Subjects
Materials science ,Infrared ,02 engineering and technology ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,Materials Chemistry ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Absorption (electromagnetic radiation) ,Electrical conductor ,010302 applied physics ,Inkwell ,business.industry ,Photoconductivity ,Photovoltaic system ,Surfaces and Interfaces ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Photodiode ,Nanocrystal ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; HgTe nanocrystals offer a unique combination of broadly tunable optical absorption in the infrared from 1 to 100 µm and photoconductive properties. Here, we discuss some of the recent developments relative to their integration into photodiodes. We discuss concepts such as the development of colloidal unipolar barrier, development of ink to achieve strongly absorbing and conductive film as well as the recent proposition of intraband photodiode.
- Published
- 2020
6. Electronic properties of (Sb;Bi)2Te3 colloidal heterostructured nanoplates down to the single particle level
- Author
-
Wasim J. Mir, Alexandre Assouline, Clément Livache, Bertille Martinez, Nicolas Goubet, Xiang Zhen Xu, Gilles Patriarche, Sandrine Ithurria, Hervé Aubin, and Emmanuel Lhuillier
- Subjects
lcsh:R ,lcsh:Medicine ,lcsh:Q ,lcsh:Science - Abstract
We investigate the potential use of colloidal nanoplates of Sb2Te3 by conducting transport on single particle with in mind their potential use as 3D topological insulator material. We develop a synthetic procedure for the growth of plates with large lateral extension and probe their infrared optical and transport properties. These two properties are used as probe for the determination of the bulk carrier density and agree on a value in the 2–3 × 1019 cm−3 range. Such value is compatible with the metallic side of the Mott criterion which is also confirmed by the weak thermal dependence of the conductance. By investigating the transport at the single particle level we demonstrate that the hole mobility in this system is around 40 cm2V−1s−1. For the bulk material mixing n-type Bi2Te3 with the p-type Sb2Te3 has been a successful way to control the carrier density. Here we apply this approach to the case of colloidally obtained nanoplates by growing a core-shell heterostructure of Sb2Te3/Bi2Te3 and demonstrates a reduction of the carrier density by a factor 2.5.
- Published
- 2017
7. Azobenzene as Light-Activable Carrier Density Switches in Nanocrystals
- Author
-
Hervé Cruguel, Sandrine Ithurria, Xiang Zhen Xu, Nicolas Goubet, Charlie Gréboval, Junling Qu, Audrey Chu, Prachi Rastogi, Mathieu G. Silly, Clément Livache, Emmanuel Lhuillier, Rémi Plamont, Yoann Prado, Bertille Martinez, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of Twente [Netherlands], Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), European Project: 756225,blackQD, Biomolecular Nanotechnology, and University of Twente
- Subjects
Materials science ,business.industry ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,n/a OA procedure ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Optical pumping ,Dipole ,General Energy ,Nanocrystal ,Impurity ,Optoelectronics ,Molecule ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,business ,Excitation ,Cis–trans isomerism ,Visible spectrum - Abstract
International audience; Control of carrier density in colloidal quantum dots is a major challenge for their integration into optoelectronic devices. Several chemical methods have been proposed to reach this goal including: introduction of impurities, non-stoichiometric compounds, introduction of redox molecules as ligands and surface gating obtained by tuning the dipole associated with surface ligands. None of these techniques allows post synthesis tunability. Alternatively, optical pumping requires high excitation power which may heat and finally damage the sample. Here, we propose a new procedure based on grafting of azobenzenes (AZBs) on the nanocrystal surface. The AZBs have two conformations (cis and trans), which are associated with strongly different dipole moments. The transition from one conformation to the other can be activated using UV or visible light at low intensities (
- Published
- 2019
8. Designing Photovoltaic Devices Using HgTe Nanocrystals for SWIR and MWIR Detection
- Author
-
Nicolas Goubet, Bertille Martinez, Charlie Gréboval, Clément Livache, Audrey Chu, and Emmanuel Lhuillier
- Subjects
Materials science ,business.industry ,Photovoltaic system ,Optoelectronics ,business - Published
- 2019
9. HgTe Nanocrystal Inks for Extended Short‐Wave Infrared Detection
- Author
-
Loïc Becerra, Christophe Méthivier, Julien Ramade, William L. Watkins, Charlie Gréboval, Nicolas Goubet, Emmanuelle Lacaze, Emmanuel Lhuillier, Audrey Chu, Bertille Martinez, Clément Livache, Junling Qu, Erwan Dandeu, Jean Louis Fave, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Réactivité de Surface (LRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), and European Project: 756225,blackQD
- Subjects
Materials science ,focal plane array ,Cost effectiveness ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,HgTe ,nanocrystal ,Responsivity ,nanocrystals ,photodiode ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Absorption (electromagnetic radiation) ,Diode ,short wave infrared ,Organic electronics ,business.industry ,infrared detection ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Wavelength ,Nanocrystal ,Optoelectronics ,0210 nano-technology ,business ,Order of magnitude - Abstract
International audience; Short‐wave infrared (IR) detection is currently driven by InGaAs technology which has limited the perspective of cost effectiveness and consequently slows the development of IR sensors. Since organic electronics are ineffective in this wavelength range, an alternative to conductive polymers is the use of colloidal quantum dots (CQDs) which exhibit strongly tunable IR absorption. In this paper, the extended short‐wave IR (2.5 µm cut‐off) is focused on to expand the capabilities of InGaAs, while using HgTe nanocrystals as the active material. Previous devices based on this material suffer from a low responsivity due to weak absorption (few percents). The integration of HgTe nanocrystals is presented in ink form to build thick (up to 600 nm), strongly absorbing nanoparticle films. This ink is integrated into a diode, allowing one to boost the responsivity by two orders of magnitude and the detectivity by one order of magnitude compared to previous HgTe devices at the same wavelength. Detectivity reaches 3 × 109 Jones, while the time response is found to be 370 ns for room temperature and 0 V bias operation. Finally, the material is integrated into a focal plane array which is used to determine laser beam profile.
- Published
- 2019
10. Doping as a strategy to tune color of 2D colloidal nanoplatelets
- Author
-
Sandrine Ithurria, Eva Izquierdo, Christophe Delerue, Emmanuel Lhuillier, Mathieu G. Silly, Bertille Martinez, Marion Dufour, Clément Livache, Thomas Pons, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Physique - IEMN (PHYSIQUE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), ACKNOWLEDGMENTSWe acknowledge the use of clean-room facilities from the'Centrale de ProximitéParis-Centre'. We acknowledge Islah ElMasoudi of UMR 7178 who did the ICP-MS measurements.This work has been supported by the Region Ile-de-France inthe framework of DIM Nano-K (grant dopQD). This work wassupported by French state funds managed by the ANR withinthe Investissements d’Avenir programme under referenceANR-11-IDEX-0004-02 and, more specifically, within theframework of the Cluster of Excellence MATISSE and alsoby the grant Nanodose and IPER-Nano2. E.L. thanks thesupport ERC starting grant blackQD (grant no. 756225), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), European Project: 756225,blackQD, and Physique-IEMN (PHYSIQUE-IEMN)
- Subjects
Materials science ,Photoluminescence ,Phosphor ,02 engineering and technology ,doping ,010402 general chemistry ,01 natural sciences ,gamut ,symbols.namesake ,luminescence ,[CHIM]Chemical Sciences ,General Materials Science ,Spectroscopy ,Dopant ,business.industry ,Fermi level ,Doping ,nanoplatelets ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanocrystal ,symbols ,Optoelectronics ,0210 nano-technology ,Luminescence ,business - Abstract
Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of II-VI compounds appear as a special class of emitters with an especially narrow photoluminescence signal. However, the PL signal in the case of NPLs is only tunable by a discrete step. Here, we demonstrate that doping is a viable path to finely tune the color of these NPLs from green to red, making them extremely interesting as phosphors for wide-gamut display. In addition, using a combination of luminescence spectroscopy, tight-binding simulation, transport, and photoemission, we provide a consistent picture for the Ag+-doped CdSe NPLs. The Ag-activated state is strongly bound and located 340 meV above the valence band of the bulk material. The Ag dopant induces a relative shift of the Fermi level toward the valence band by up to 400 meV but preserves the n-type nature of the material.
- Published
- 2019
11. Field effect transistor and photo transistor of narrow band gap nanocrystal arrays using ionic glasses
- Author
-
Nicolas Goubet, Ulrich Nguétchuissi Noumbé, Yoann Prado, Charlie Gréboval, Audrey Chu, Emmanuel Lhuillier, Abdelkarim Ouerghi, Bertille Martinez, Sandrine Ithurria, Junling Qu, Hervé Aubin, Julien Ramade, Clément Livache, Jean-Francois Dayen, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), European Project: 756225,blackQD, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,infrared nanocrystal ,Bioengineering ,02 engineering and technology ,Photodetection ,Dielectric ,Capacitance ,HgTe ,law.invention ,field effect transistor ,Operating temperature ,law ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Photocurrent ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Photodiode ,Nanocrystal ,ionic glass ,infrared ,Optoelectronics ,Field-effect transistor ,0210 nano-technology ,business ,solid state gating ,LaF3 ,ionic glasses ,HgTe nanocrystal - Abstract
The gating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO2 or the use of electrolyte. SiO2 allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolytes, thanks to large capacitances, lead to the significant reduction of operating bias but are limited to slow and quasi-room-temperature operation. None of these operating conditions are optimal for narrow-band-gap nanocrystal-based phototransistors, for which the necessary large-capacitance gate has to be combined with low-temperature operation. Here, we explore the use of a LaF3 ionic glass as a high-capacitance gating alternative. We demonstrate for the first time the use of such ionic glasses to gate thin films made of HgTe and PbS nanocrystals. This gating strategy allows operation in the 180 to 300 K range of temperatures with capacitance as high as 1 μF·cm-2. We unveil the unique property of ionic glass gate to enable the unprecedented tunability of both magnitude and dynamics of the photocurrent thanks to high charge-doping capability within an operating temperature window relevant for infrared photodetection. We demonstrate that by carefully choosing the operating gate bias, the signal-to-noise ratio can be improved by a factor of 100 and the time response accelerated by a factor of 6. Moreover, the good transparency of LaF3 substrate allows back-side illumination in the infrared range, which is highly valuable for the design of phototransistors.
- Published
- 2019
12. A colloidal quantum dot infrared photodetector and its use for intraband detection
- Author
-
Benoit Dubertret, Clément Livache, Emmanuel Lhuillier, Nicolas Goubet, Sébastien Royer, Audrey Chu, Bertille Martinez, Charlie Gréboval, Sandrine Ithurria, Junling Qu, Mathieu G. Silly, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), and European Project: 756225,blackQD
- Subjects
0301 basic medicine ,Materials science ,Science ,General Physics and Astronomy ,Photodetector ,02 engineering and technology ,intraband ,7. Clean energy ,General Biochemistry, Genetics and Molecular Biology ,Article ,law.invention ,03 medical and health sciences ,chemistry.chemical_compound ,Condensed Matter::Materials Science ,law ,Electronic devices ,Mercury selenide ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,lcsh:Science ,Quantum well ,Multidisciplinary ,business.industry ,Quantum dots ,Mercury telluride ,quantum dot ,General Chemistry ,infrared detection ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Photodiode ,030104 developmental biology ,chemistry ,Nanocrystal ,Quantum dot ,Optoelectronics ,lcsh:Q ,0210 nano-technology ,business ,Dark current - Abstract
Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices., The field of wavefunction engineering using intraband transition to design infrared devices has been limited to epitaxially grown semiconductors. Here the authors demonstrate that a device with similar energy landscape can be obtained from a mixture of colloidal quantum dots made of HgTe and HgSe.
- Published
- 2019
13. Road Map for Nanocrystal Based Infrared Photodetectors
- Author
-
Bertille Martinez, Nicolas Goubet, Julien Ramade, Emmanuel Lhuillier, Clément Livache, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Infrared ,Computer science ,Photodetector ,Review ,02 engineering and technology ,010402 general chemistry ,intraband ,01 natural sciences ,7. Clean energy ,[SPI.MAT]Engineering Sciences [physics]/Materials ,interband ,lcsh:Chemistry ,Operating temperature ,nanocrystals ,Road map ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,device ,photodetection ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Engineering physics ,0104 chemical sciences ,Chemistry ,Nanocrystal ,lcsh:QD1-999 ,infrared ,0210 nano-technology - Abstract
International audience; Infrared (IR) sensors based on epitaxially grown semiconductors face two main challenges which are their prohibitive cost and the difficulty to rise the operating temperature. The quest for alternative technologies which will tackle these two difficulties requires the development of new IR active materials. Over the past decade, significant progresses have been achieved. In this perspective, we summarize the current state of the art relative to nanocrystal based IR sensing and stress the main materials, devices and industrial challenges which will have to be addressed over the 5 next years.
- Published
- 2018
14. Design of Unipolar Barrier for Nanocrystal Based Short Wave Infrared Photodiode
- Author
-
Charlie Gréboval, Mathieu G. Silly, Julien Ramade, Bertille Martinez, Clément Livache, Audrey Chu, Amaury Triboulin, Dylan Amelot, Nicolas Goubet, Amardeep Jagtap, Sandrine Ithurria, Emmanuel Lhuillier, Benoit Dubertret, Paul Trousset, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Materials science ,Infrared ,Band gap ,Infrared spectroscopy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,nanocrystal ,nanocrystals ,law ,photodiode ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Diode ,short wave infrared ,photodetection ,business.industry ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Cutoff frequency ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Photodiode ,Nanocrystal ,infrared ,Optoelectronics ,infrared photodetection ,0210 nano-technology ,business ,Biotechnology ,Dark current - Abstract
International audience; Nanocrystals are promising materials for the design of low cost infrared detectors. Here we focus on HgTe colloidal quantum dots (CQDs) as an active material for detection in the extended short-wave infrared (2.5 µm as cut-off wavelength). In this paper, we propose a strategy to enhance the performances of previously reported photodiodes. In particular we integrate in this diode an unipolar barrier which role is to prevent the dark current injection to enhance the signal to noise ratio. We demonstrate that such unipolar barrier can be designed from another layer of HgTe CQDs with a wider band gap. Using a combination of IR spectroscopy and photoemission, we show that the barrier is resonant with the absorbing layer valence band, while presenting a clear offset with the conduction band. The combination of contacts with improved design and use of unipolar barrier allows us to reach a detectivity as high as 3·108 Jones at room temperature with 3 dB cut off frequency above 10 kHz.
- Published
- 2018
15. Polyoxometalate as Control Agent for the Doping in HgSe Self-Doped Nanocrystals
- Author
-
Elisa Meriggio, Mathieu G. Silly, Emmanuel Lhuillier, Hervé Cruguel, Emmanuelle Lacaze, Clément Livache, Bertille Martinez, Florence Volatron, Gregory Cabailh, Sandrine Ithurria, Xiang Zhen Xu, Anna Proust, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Oxydes en basses dimensions (INSP-E9), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Inorganique et Matériaux Moléculaires (CIM2), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Materials science ,Physics::Optics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,nanocrystal ,Condensed Matter::Superconductivity ,self doping ,Physical and Theoretical Chemistry ,Absorption (electromagnetic radiation) ,Astrophysics::Galaxy Astrophysics ,Plasmon ,POM ,business.industry ,Doping ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Polyoxometalate ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,business ,Doped nanocrystals - Abstract
International audience; Intraband and plasmonic transitions have appeared over the last years as an interesting tool to achieve optical absorption in the mid infrared. Tuning the doping magnitude has become a major challenge not only to tune the optical spectrum but also properties such as the dark current or the time response. Here we investigate the case of self-doped HgSe colloidal quantum dots (CQDs). Tuning of the doping was so far relying on band bending induced by a dipole design at the nanoparticle surface. With such a surface gating approach, it is difficult to conciliate both the massive tuning of the Fermi level with the preservation of transport properties of the CQD arrays. Here we propose a strategy to graft functionalized polyoxometalates (POMs) at the CQD surface and obtain simultaneously a massive tuning of the carrier density (≈5 electrons per nanoparticle) and conduction properties. We bring a consistent demonstration of the HgSe CQD doping decrease by a charge transfer to the POM. This method is highly promising for large tuning of carrier density in degenerately doped semiconductor nanoparticles.
- Published
- 2018
16. Dynamics in Narrow Band Gap Nanocrystals
- Author
-
Nicolas Goubet, Emmanuel Lhuillier, Clément Livache, and Bertille Martinez
- Subjects
Narrow band ,Materials science ,Nanocrystal ,business.industry ,Dynamics (mechanics) ,Optoelectronics ,business - Published
- 2018
17. Intraband transition in narrow band gap nanocrystals
- Author
-
Nicolas Goubet, Adrien Robin, Clément Livache, Emmanuel Lhuillier, and Bertille Martinez
- Subjects
Narrow band ,Materials science ,Condensed matter physics ,Nanocrystal - Published
- 2018
18. Short Wave Infrared Devices Based on HgTe Nanocrystals with Air Stable Performances
- Author
-
Amardeep Jagtap, Nicolas Goubet, Audrey Chu, Junling Qu, Charlie Gréboval, Nadine Witkowski, Sandrine Ithurria, Benoit Dubertret, Mathieu G. Silly, Bertille Martinez, Erwan Dandeu, Clément Livache, Fabrice Mathevet, Loïc Becerra, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces ( INSP-E6 ), Institut des Nanosciences de Paris ( INSP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique et d'Etude des Matériaux ( LPEM ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -ESPCI ParisTech-Centre National de la Recherche Scientifique ( CNRS ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Chimie des polymères ( LCP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut Parisien de Chimie Moléculaire ( IPCM ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Synchrotron SOLEIL ( SSOLEIL ), Centre National de la Recherche Scientifique ( CNRS ), matisse, ANR-11-IDEX-0004-02/10-LABX-0067,MATISSE,MATerials, InterfaceS, Surfaces, Environment ( 2011 ), European Project : 756225,blackQD, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), European Project: 756225,blackQD, and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Infrared ,Annealing (metallurgy) ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,HgTe ,law.invention ,nanocrystal ,law ,Short wave infrared ,photodiode ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[PHYS]Physics [physics] ,[ PHYS ] Physics [physics] ,business.industry ,Photoconductivity ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Photodiode ,Ambient air ,General Energy ,photodetction ,Nanocrystal ,[ CHIM.MATE ] Chemical Sciences/Material chemistry ,infrared ,Optoelectronics ,0210 nano-technology ,business ,[ PHYS.COND ] Physics [physics]/Condensed Matter [cond-mat] ,Dark current - Abstract
International audience; Colloidal quantum dots (CQDs) are candidates of interest for the design of low cost IR detector especially in the short wave infrared (SWIR; 0.8-3 µm), where the vicinity of the visible range makes the high cost of available technologies even more striking. HgTe nanocrystals are among the most promising candidates to address SWIR since their spectrum can be tuned all over this range while demonstrating photoconductive properties. However, several main issues have been kept under the rug, which prevents further development of active materials and devices. Here we address two central questions, which are (i) the stability of the device under ambient air condition and (ii) the reduction of dark current. Encapsulation of HgTe CQDs is difficult because of their extreme sensitivity to annealing, we nevertheless demonstrate an efficient encapsulation method based on a combination of O2 and H2O repellant layers leading to stability over >100 days. Finally, we demonstrate that the dark current reduction can be obtained by switching from a photoconductive geometry to a photovoltaic (PV) device, which is fabricated using solution and low temperature based approach. We demonstrate fast photoresponse (>10 kHz) and detectivity enhancement by 1 order of magnitude in the PV configuration at room temperature. These results pave the way for narrow bandgap CQD based cost-effective optoelectronic devices in developing next generation SWIR photonic systems.
- Published
- 2018
19. Wavefunction engineering in HgSe/HgTe colloidal heterostructures to enhance mid infrared photoconductive properties
- Author
-
Nicolas Goubet, Sébastien Royer, Sandrine Ithurria, Bertille Martinez, Hervé Cruguel, Xiang Zhen Xu, Emmanuel Lhuillier, Clément Livache, Mathieu G. Silly, Gilles Patriarche, Benoit Dubertret, Abdelkarim Ouerghi, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), European Project: 756225,blackQD, Physico-chimie et dynamique des surfaces ( INSP-E6 ), Institut des Nanosciences de Paris ( INSP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique et d'Etude des Matériaux ( LPEM ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -ESPCI ParisTech-Centre National de la Recherche Scientifique ( CNRS ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de Nanosciences et de Nanotechnologies [Marcoussis] ( C2N ), Université Paris-Sud - Paris 11 ( UP11 ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Synchrotron SOLEIL ( SSOLEIL ), Centre National de la Recherche Scientifique ( CNRS ), ANR-11-IDEX-0004-02/10-LABX-0067,MATISSE,MATerials, InterfaceS, Surfaces, Environment ( 2011 ), ANR : H2DH, ANR : nanodose, European Project : 756225,blackQD, and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Materials science ,nanpocrystal ,Infrared spectroscopy ,Bioengineering ,intraband transition ,02 engineering and technology ,Photodetection ,010402 general chemistry ,intraband ,7. Clean energy ,01 natural sciences ,Condensed Matter::Materials Science ,HgSe/HgTe heterostructures ,Condensed Matter::Superconductivity ,General Materials Science ,heterostrcture ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Wave function ,narrow band gap nanocrystals ,[PHYS]Physics [physics] ,[ PHYS ] Physics [physics] ,business.industry ,Mechanical Engineering ,Photoconductivity ,Doping ,Heterojunction ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Thermal conduction ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,mid infrared ,0104 chemical sciences ,Wavelength ,[ CHIM.MATE ] Chemical Sciences/Material chemistry ,infrared ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,business ,[ PHYS.COND ] Physics [physics]/Condensed Matter [cond-mat] - Abstract
The use of intraband transition is an interesting alternative path for the design of optically active complex colloidal materials in the mid-infrared range. However, so far, the performance obtained for photodetection based on intraband transition remains much smaller than the one relying on interband transition in narrow-band-gap materials operating at the same wavelength. New strategies have to be developed to make intraband materials more effective. Here, we propose growing a heterostructure of HgSe/HgTe as a means of achieving enhanced intraband-based photoconduction. We first tackle the synthetic challenge of growing a heterostructure on soft (Hg-based) material. The electronic spectrum of the grown heterostructure is then investigated using a combination of numerical simulation, infrared spectroscopy, transport measurement, and photoemission. We report a type-II band alignment with reduced doping compared with a core-only object and boosted hole conduction. Finally, we probe the photoconductive properties of the heterostructure while resonantly exciting the intraband transition by using a high-power-density quantum cascade laser. Compared to the previous generation of material based on core-only HgSe, the heterostructures have a lower dark current, stronger temperature dependence, faster photoresponse (with a time response below 50 μs), and detectivity increased by a factor of 30.
- Published
- 2018
20. Coupled HgSe colloidal quantum wells through a tunable barrier: a strategy to uncouple optical and transport band gap
- Author
-
Marion Dufour, Sandrine Ithurria, Audrey Chu, Nicolas Lequeux, Eva Izquierdo, Clément Livache, Gilles Patriarche, Emmanuel Lhuillier, Dylan Amelot, Bertille Martinez, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), and European Project: 756225,blackQD
- Subjects
Materials science ,Chalcogenide ,Infrared ,Band gap ,nanoplatelest ,General Chemical Engineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Materials Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Quantum well ,business.industry ,Nanoplatelets ,Inner core ,Wide-bandgap semiconductor ,Heterojunction ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Band engineering ,0104 chemical sciences ,Narrow band gap materials ,Semiconductor ,chemistry ,infrared ,Heterostructure ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Among semiconductor nanocrystals (NCs), 2D nanoplatelets (NPLs) are a special class of nanomaterials with well controlled optical features. So far most of the efforts have been focused on wide band gap materials such as cadmium chalcogenide semiconductors. However, optical absorption can be pushed toward the Infra-Red (IR) range using narrow band gap materials such as mercury chalcogenides. Here we demonstrate the feasibility of a core/shell structure made of a CdSe core with two HgSe external wells. We demonstrate that the optical spectrum of the heterostructure is set by the HgSe wells and this, despite the quasi type II band alignment which makes the band edge energy independent of the inner core thickness. On the other hand, these core/shell NPLs behave, from a transport point of view, as a wide band gap material. We demonstrate that the introduction of a wide band gap CdSe core makes the material less conductive and with a larger photoresponse. Hence the heterostructure presents an effective electric band gap wider than the optical band gap. This strategy will be of utmost interest to design infrared effective colloidal materials for which the reduction of the carrier density and the associated dark current is a critical property.
- Published
- 2018
21. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals
- Author
-
Clément Livache, Mathieu G. Silly, Sandrine Ithurria, Junling Qu, Benoit Dubertret, Nicolas Goubet, Bertille Martinez, Amardeep Jagtap, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Imagination ,band edge dynamics ,Materials science ,Chalcogenide ,media_common.quotation_subject ,02 engineering and technology ,Electronic structure ,Photodetection ,Photon energy ,multi-exciton generation ,010402 general chemistry ,01 natural sciences ,HgTe ,chemistry.chemical_compound ,General Materials Science ,media_common ,narrow band gap nanocrystals ,photodetection ,business.industry ,Detector ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,mid infrared ,0104 chemical sciences ,Nanocrystal ,chemistry ,Excited state ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.
- Published
- 2018
22. Probing Charge Carrier Dynamics to Unveil the Role of Surface Ligands in HgTe Narrow Band Gap Nanocrystals
- Author
-
Mathieu G. Silly, Hervé Cruguel, Nicolas Goubet, Amardeep Jagtap, Emmanuelle Lacaze, Bertille Martinez, Abdelkarim Ouerghi, Emmanuel Lhuillier, Clément Livache, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), and ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
- Subjects
Infrared ,02 engineering and technology ,Trapping ,010402 general chemistry ,01 natural sciences ,HgTe ,nanocrystal ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,Thin film ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Photocurrent ,business.industry ,Photoconductivity ,Conductance ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Nanocrystal ,infrared ,Optoelectronics ,Charge carrier ,traps ,0210 nano-technology ,business - Abstract
International audience; Colloidal nanocrystals are an interesting platform for the design of low cost optoelectronic devices especially in the infrared range of wavelengths. Mercury chalcogenides have reached high maturity to address wavelengths above the telecom range (1.5 µm). However, no screening of the surface chemistry influence has been conducted yet. In this paper, we systematically probe the influence of a series of ligands: Cl-, SCN-, 1,2 ethanedithiol, 1,4 benzenedithiol, 1 octanethiol, 1 butanethiol, As2S3 , S2- on the photoconductive properties of HgTe nanocrystal thin films. A high bandwidth, large dynamic transient photocurrent setup is used to determine the photocarrier dynamics. Two regimes are clearly identified. At early stage (few ns) a fast decay of the photocurrent is resulting from recombination and trapping. Then transport enters in a multiple trapping regime where carriers present a continuously decreasing effective value of their mobility. The power law dependence of the conductance can be used to estimate the trap carrier density and determine the value of the Urbach energy (35 to 50 meV). We demonstrate that a proper choice of ligand is necessary for a trade-off between the material performance (µτ product) and the quality of the surface passivation (to keep a low Urbach energy
- Published
- 2017
23. Investigation of the Self-Doping Process in HgSe Nanocrystals
- Author
-
Nicolas Goubet, Bertille Martinez, Clément Livache, Adrien Robin, Hongyue Wang, Hervé Aubin, Emmanuel Lhuillier, Benoit Dubertret, Sandrine Ithurria, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
- Subjects
Materials science ,Infrared ,self-doping ,Mid infrared ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,nanocrystal ,colloidal quantum dot ,Optoelectronic materials ,Materials Chemistry ,self doping ,photoresponse ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,business.industry ,Doping ,Surfaces and Interfaces ,[CHIM.MATE]Chemical Sciences/Material chemistry ,single particle ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,HgSe ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Nanocrystal ,transport ,infrared ,Optoelectronics ,0210 nano-technology ,business ,electrolyte gating ,Doped nanocrystals - Abstract
International audience; Colloidal nanocrystals are an interesting platform for the design of low cost infrared optoelectronic materials. In addition to the conventionally observed interband features, doped nanocrystals present intraband transitions, which expand the possibilities for electronic spectrum engineering. In this paper, the recent results obtained in the field of mercury chalcogenides self-doped nanocrystals presenting absorption features in the mid infrared range are reviewed. In particular, the results relative to the synthesis, control of doping and transport properties of HgSe colloidal nanocrystals are discussed.
- Published
- 2017
24. Electronic structure of CdSe-ZnS 2D nanoplatelets
- Author
-
Emmanuelle Lacaze, Hervé Cruguel, Eva Izquierdo, Mathieu G. Silly, Clément Livache, Hervé Aubin, Emmanuel Lhuillier, Silvia Pedetti, Bertille Martinez, Sandrine Ithurria, Marion Dufour, Benoit Dubertret, Abdelkarim Ouerghi, Debora Pierucci, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Micro et NanoMagnétisme (MNM ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Micro et NanoMagnétisme (NEEL - MNM)
- Subjects
Physics and Astronomy (miscellaneous) ,business.industry ,Chemistry ,nanoplatelets ,Nanotechnology ,Heterojunction ,02 engineering and technology ,Electronic structure ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Active layer ,2D matyerial ,Semiconductor ,X-ray photoelectron spectroscopy ,Nanocrystal ,heteostructure ,Work function ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,business ,Leakage (electronics) - Abstract
International audience; Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of cadmium chalcogenides have led to especially well controlled optical features. However, the growth of core shell heterostructures has so far been mostly focused on CdS shells, while more confined materials will be more promising to decouple the emitting quantum states of the core from their external environment. Using k·p simulation, we demonstrate that a ZnS shell reduces by a factor 10 the leakage of the wavefunction into the surrounding medium. Using X-ray photoemission (XPS), we confirm that the CdSe active layer is indeed unoxidized. Finally, we build an effective electronic spectrum for these CdSe/ZnS NPLs on an absolute energy scale which is a critical set of parameters for the future integration of this material into optoelectronic devices. We determine the work function (WF) to be 4.47 eV while the material is behaving as an n-type semiconductor.
- Published
- 2017
25. Shape and confinement control in mid and far infrared nanocrystals
- Author
-
Bertille Martinez, Emmanuel Lhuillier, Xian Zhen Xu, Marion Dufour, Hervé Cruguel, Clément Livache, Eva Izquierdo, Sandrine Ithurria, Sébastien Royer, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
- Subjects
Materials science ,Infrared ,Terahertz radiation ,Near infrared ,Far infrared ,02 engineering and technology ,010402 general chemistry ,Optoelectronic devices ,7. Clean energy ,01 natural sciences ,Absorption ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,business.industry ,Near-infrared spectroscopy ,Doping ,Mercury ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanocrystals ,Nanocrystal ,Optoelectronics ,0210 nano-technology ,business ,Chalcogenides - Abstract
International audience; In this paper, we discuss recent progress obtained on infrared nanocrystal based on mercury chalcogenides (HgTe and HgSe). These materials can become some key building blocks for the next generation of infrared optoelectronic devices. To reach this goal, the infrared nanocrystals need to combine fine control on the optical features and efficient electronic transport. Here, we report about (i) the development of HgTe NPL for enhanced optical features (narrower and faster PL) in the near IR and (ii) about the development of self-doped nanocrystals of HgSe to demonstrate tunable intraband absorption up to the THz range.
- Published
- 2017
26. Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells
- Author
-
Emmanuelle Lacaze, Clément Livache, Mathieu G. Silly, Jean Louis Fave, Marion Dufour, Emmanuel Lhuillier, Eva Izquierdo, Bertille Martinez, Benoit Dubertret, Abdelkarim Ouerghi, Loïc Becerra, Debora Pierucci, Sean Keuleyan, Hervé Aubin, Hervé Cruguel, Sandrine Ithurria, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Micro et NanoMagnétisme (NEEL - MNM), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), University of Oregon [Eugene], Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and Micro et NanoMagnétisme (MNM )
- Subjects
Materials science ,Photoemission spectroscopy ,Bioengineering ,Phot ,02 engineering and technology ,Electronic structure ,010402 general chemistry ,01 natural sciences ,HgTe ,Ion ,nanocrystals ,General Materials Science ,photoresponse ,carrier dynamics ,Quantum well ,Photocurrent ,[PHYS]Physics [physics] ,business.industry ,Mechanical Engineering ,Photoconductivity ,Relaxation (NMR) ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Chemical physics ,Optoelectronics ,2D nanoplatelets ,0210 nano-technology ,business - Abstract
International audience; We investigate the electronic and transport properties of HgTe 2D colloidal quantum wells. We demonstrate that the material can be made p or n-type depending on the capping ligands. In addition to the control of majority carrier type, the surface chemistry also strongly affects the photoconductivity of the material,. These transport measurements are correlated with the electronic structure determined by high resolution X-ray photoemission. We attribute the change of majority carriers to the strong hybridization of an n-doped HgS layer resulting from capping of the HgTe nanoplatelets by S 2-ions. We further investigate the gate and temperature dependence of the photoresponse and its dynamics. We show that the photocurrent rise and fall times can be tuned from 100 µs to 1 ms using the gate bias. Finally, we use time-resolved photoemission spectroscopy as a probe of the transport relaxation to determine if the observed dynamics are limited by a fundamental process such as trapping. These pump probe surface photovoltage measurements show an even faster relaxation in the 100 ns to 500 ns range, which suggests that the current performances are rather limited by geometrical factors.
- Published
- 2017
- Full Text
- View/download PDF
27. Intraband transition in self-doped narrow band gap colloidal quantum dots
- Author
-
Hervé Aubin, Bertille Martinez, Xiang Zhen Xu, Hervé Cruguel, Adrien Robin, Sandrine Ithurria, Clément Livache, Sébastien Royer, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
- Subjects
Materials science ,Infrared ,Mid-IR ,self-doping ,02 engineering and technology ,Photodetection ,010402 general chemistry ,01 natural sciences ,Absorption ,nanocrystal ,Condensed Matter::Materials Science ,Condensed Matter::Superconductivity ,Doping ,Work function ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Absorption (electromagnetic radiation) ,narrow band gap ,Condensed matter physics ,business.industry ,Quantum dots ,mid-infrared ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanocrystals ,Nanocrystal ,Quantum dot ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,business ,Order of magnitude - Abstract
International audience; In this article we discuss the infrared properties of self-doped nanocrystals and in particular the case of HgSe. HgSe colloidal quantum dots have recently been reported for their tunable optical features all over the mid infrared from 3 to 20 μm. Their optical absorption is a combination of interband absorption at high energy and intraband absorption at low energy. The latter results from the self-doped character of HgSe. The origin of this self-doping is also discussed. We demonstrated that the doping results from the combination of the narrow band gap and high work function of HgSe, which leads to a reduction of the CQD by the water in the environment. In addition, we demonstrated that the doping density can be tuned over an order of magnitude thanks to the control of the capping ligands.
- Published
- 2017
28. Strategy to overcome recombination limited photocurrent generation in CsPbX3 nanocrystal arrays
- Author
-
Hervé Cruguel, Amardeep Jagtap, Thierry Barisien, Clément Livache, Nicolas Goubet, Emmanuel Lhuillier, Audrey Chu, Nathan Coutard, Benoit Dubertret, Abdelkarim Ouerghi, Angshuman Nag, Wasim J. Mir, Mathieu G. Silly, Bertille Martinez, Sandrine Ithurria, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Photonique et cohérence de spin (INSP-E12), Laboratoire Photons Et Matière, Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,perovskites ,Photodetector ,Photoconduction ,02 engineering and technology ,Photodetection ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,law.invention ,nanocrystal ,law ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Perovskite (structure) ,CsPbX3 ,photodetection ,Photocurrent ,Electronic Properties ,business.industry ,Photoconductivity ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Carrier lifetime ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Perovskite nanocrystals ,Nanocrystal ,transport ,Optoelectronics ,0210 nano-technology ,business ,Light-emitting diode - Abstract
International audience; We discuss the transport properties of CsPbBrxI3x perovskite nanocrystal arrays as a modelensemble system of caesium lead halide-based perovskite nanocrystal arrays. While this material isvery promising for the design of light emitting diodes, laser, and solar cells, very little work hasbeen devoted to the basic understanding of their (photo)conductive properties in an ensemblesystem. By combining DC and time-resolved photocurrent measurements, we demonstrate fastphotodetection with time response below 2 ns. The photocurrent generation in perovskitenanocrystal-based arrays is limited by fast bimolecular recombination of the material, which limitsthe lifetime of the photogenerated electron-hole pairs. We propose to use nanotrench electrodes asa strategy to ensure that the device size fits within the obtained diffusion length of the material inorder to boost the transport efficiency and thus observe an enhancement of the photoresponse by afactor of 1000.
- Published
- 2018
29. Intraband Mid-Infrared Transitions in Ag 2 Se Nanocrystals: Potential and Limitations for Hg-Free Low-Cost Photodetection
- Author
-
Hervé Cruguel, Julien Ramade, Dylan Amelot, Nicolas Goubet, Mathieu G. Silly, Bertille Martinez, Audrey Chu, Clément Livache, Sandrine Ithurria, Emmanuel Lhuillier, Junling Qu, Charlie Gréboval, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Materials science ,Infrared ,Infrared spectroscopy ,Nanoparticle ,02 engineering and technology ,Photodetection ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,photoconduction ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Physical and Theoretical Chemistry ,Absorption (electromagnetic radiation) ,doped nanocrystal ,business.industry ,Doping ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Nanocrystal ,infrared ,intraband transistion ,Optoelectronics ,0210 nano-technology ,business ,Excitation - Abstract
International audience; Infrared photodetection based on colloidal nanoparticles is a promising path toward low cost devices. However, mid-infrared absorption relies on interband transition in heavy metal based materials, which is a major flaw for the development toward mass market. In the quest of infrared active colloidal materials, we here investigate Ag2Se nanoparticles presenting intraband transition between 3 and 15 µm. With photoemission and infrared spectroscopy, we are able to propose an electronic spectrum of the material in absolute energy scale. We also investigate the origin of doping and demonstrate that it is the result of cation excess under Ag+ form. We demonstrate photoconduction into this material including under resonant excitation of the intraband transition. However, performances are currently quite weak with (i) a slow photoresponse (several seconds), and (ii) some electrochemical instabilities at room temperature.
- Full Text
- View/download PDF
30. Terahertz HgTe Nanocrystals: Beyond Confinement
- Author
-
Clément Livache, Hervé Portalès, Ricardo P. S. M. Lobo, Nicolas Goubet, Xiang Zhen Xu, Emmanuel Lhuillier, Benoit Dubertret, Bertille Martinez, Amardeep Jagtap, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 756225,blackQD
- Subjects
Infrared ,Terahertz radiation ,business.industry ,Chemistry ,Transistor ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Catalysis ,Cutoff frequency ,0104 chemical sciences ,Shape control ,law.invention ,Colloid and Surface Chemistry ,Charge-carrier density ,Nanocrystal ,law ,Optoelectronics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,business - Abstract
International audience; We report the synthesis of nanocrystals with an optical feature in the THz range. To do so, we develop a new synthetic procedure for the growth of HgTe, HgSe, and HgS nanocrystals, with strong size tunability from 5 to 200 nm. This is used to tune the absorption of the nanocrystals all over the infrared range up to terahertz (from 2 to 65 μm for absorption peak and even 200 μm for cutoff wavelength). The interest for this procedure is not limited to large sizes since for small objects we demonstrate low aggregation and good shape control (i.e., spherical object) while using nonexpansive and simple mercury halogenide precursors. By integrating these nanocrystals into an electrolyte-gated transistor, we evidence a change of carrier density from p-doped to n-doped as the confinement is vanishing.
- Full Text
- View/download PDF
31. Transport in ITO Nanocrystals with Short- to Long-Wave Infrared Absorption for Heavy-Metal-Free Infrared Photodetection
- Author
-
Nicolas Goubet, Audrey Chu, Elisa Meriggio, Charlie Gréboval, Hervé Cruguel, Gregory Cabailh, Florence Volatron, Emmanuel Lhuillier, Bertille Martinez, Junling Qu, Clément Livache, Xiang Zhen Xu, Anna Proust, Julien Ramade, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Oxydes en basses dimensions (INSP-E9), Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), European Project: 756225,blackQD, Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Long wave infrared ,Infrared ,02 engineering and technology ,Photodetection ,heavy metal free ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,plasmon ,Oxide nanocrystals ,General Materials Science ,photoconduction ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Absorption (electromagnetic radiation) ,Plasmon ,photodetection ,business.industry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanocrystal ,Metal free ,intraband absorption ,transport ,infrared ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Nanocrystals are often described as interesting materials for the design of low-cost optoelectronic devices especially in the infrared range. However the driving materials reaching infrared absorption are generally heavy metal-containing (Pb and Hg) with a high toxicity. An alternative strategy to achieve infrared transition is the use of doped semiconductors presenting intraband or plasmonic transition in the short, mid and long-wave infrared. This strategy may offer more flexibility regarding the range of possible candidate materials. In particular, significant progress have been achieved for the synthesis of doped oxides and for the control of their doping magnitude. Among them, tin doped indium oxide (ITO) is the one providing the broadest spectral tunability. Here we test the potential of such ITO nanoparticles for photoconduction in the infrared. We demonstrate that In2O3 nanoparticles present an intraband absorption in the mid infrared range which is transformed into a plasmonic feature as doping is introduced. We have determined the cross section associated with the plasmonic transition to be in the 1-3x10-13 cm 2 range. We have observed that the nanocrystals can be made conductive and photoconductive due to a ligand exchange using a short carboxylic acid, leading to a dark conduction with n-type character. We bring evidence that the observed photoresponse in the infrared is the result of a bolometric effect.
- Full Text
- View/download PDF
32. HgSe Self-Doped Nanocrystals as a Platform to Investigate the Effects of Vanishing Confinement
- Author
-
Nicolas Goubet, Emmanuelle Lacaze, L.Donald Mouafo Notemgnou, Sean Keuleyan, Hervé Aubin, Hervé Cruguel, Clément Livache, Jean-Francois Dayen, Bernard Doudin, Bertille Martinez, Mathieu G. Silly, Ricardo P. S. M. Lobo, Benoit Dubertret, Abdelkarim Ouerghi, Emmanuel Lhuillier, Sandrine Ithurria, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), voxtel nano, Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Condensed matter physics ,Infrared ,business.industry ,Infrared spectroscopy ,02 engineering and technology ,Electronic structure ,Electron ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Nanocrystal ,Optoelectronics ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,Electronic band structure ,business ,Absorption (electromagnetic radiation) ,Doped nanocrystals - Abstract
International audience; Self-doped colloidal quantum dots (CQDs) attract a strong interest for the design of a new generation of low-cost infrared (IR) optoelectronic devices because of their tunable intraband absorption feature in the mid-IR region. However, very little remains known about their electronic structure which combines confinement and an inverted band structure, complicating the design of optimized devices. We use a combination of IR spectroscopy and photoemission to determine the absolute energy levels of HgSe CQDs with various sizes and surface chemistries. We demonstrate that the filling of the CQD states ranges from 2 electrons per CQD at small sizes (
- Full Text
- View/download PDF
33. Revealing the Band Structure of FAPI Quantum Dot Film and Its Interfaces with Electron and Hole Transport Layer Using Time Resolved Photoemission
- Author
-
Bertille Martinez, Dylan Amelot, Sang-Soo Chee, Abdelkarim Ouerghi, Mayank Goyal, Francesco Andrea Bresciani, Hervé Cruguel, Charlie Gréboval, Nadine Witkowski, Angshuman Nag, Xiang Zhen Xu, Emmanuel Lhuillier, Nicolas Casaretto, Mathieu G. Silly, Junling Qu, Audrey Chu, Clément Livache, Prachi Rastogi, Christophe Méthivier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Indian Institute of Science Education and Research Pune (IISER Pune), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Réactivité de Surface (LRS), Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004-02/10-LABX-0067,MATISSE,MATerials, InterfaceS, Surfaces, Environment(2011), ANR: copin, ANR: frontal, ANR: graskop,graskop, European Project: 756225,blackQD, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), and ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019)
- Subjects
Materials science ,Field (physics) ,business.industry ,Halide ,02 engineering and technology ,Electron ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Nanocrystal ,Quantum dot ,Optoelectronics ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,Electronic band structure ,business ,Perovskite (structure) ,Diode - Abstract
International audience; Lead halide perovskite nanocrystals have attracted attention in the field of nanocrystal-based light-emitting diode and solar cells, because their devices showed high performances in only a few years. Among them, CsPbI3 is a promising candidate for solar cell design in spite of a too wide band gap and severe structural stability issue. Its hybrid organic–inorganic counterpart (NH2)2CHPbI3 (FAPI), where the Cs is replaced with formamidinium (FA), presents a smaller band gap and also an improved structural stability. Here, we have investigated the energy landscape of pristine FAPI, and the interface of FAPI with electron and hole selective layers using transport, photoemission, and noncontact surface photovoltage by means of time-resolved photoemission. We have found from transport and photoemission that its Fermi level is deeply positioned in the band gap, enabling the material to be almost intrinsic. Time-resolved photoemission has revealed that the interface of pristine FAPI is bended toward downward side, which is consistent with a p-type nature for the interface (i.e., hole as majority carrier). Using TiOx and MoOx contacts, as a model for the electron and hole transport layer, respectively, allows the electron transfer from the TiOx to the FAPI and from the FAPI to the MoOx. The latter is revealed by time-resolved photoemission showing inverted band bending for the two interfaces. From these results, we clearly present the energy landscape of FAPI and its interfaces with TiOx and MoOx in the dark and under illumination. These insights are of utmost interest for the future design of FAPI-based solar cell.
- Full Text
- View/download PDF
34. HgTe, the Most Tunable Colloidal Material: from the Strong Confinement Regime to THz Material
- Author
-
Eva Izquierdo, Emmanuel Lhuillier, Charlie Gréboval, Clément Livache, Bertille Martinez, Nicolas Goubet, Sandrine Ithurria, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), and European Project: 756225,blackQD
- Subjects
Materials science ,Absorption spectroscopy ,Infrared ,Terahertz radiation ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Colloid ,nanocrystals ,General Materials Science ,photoconduction ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Absorption (electromagnetic radiation) ,business.industry ,Mechanical Engineering ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Hgte ,0104 chemical sciences ,Wavelength ,Nanocrystal ,Mechanics of Materials ,Quantum dot ,infrared ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; HgTe nanocrystals are extremely interesting materials to obtain a highly tunable absorption spectrum in the infrared range. Here, we discuss the two extreme cases of strongly confined and barely confined HgTe nanocrystals. We discuss the synthesis and optoelectronic properties of HgTe 2D nanoplatelets where the confinement energy can be as large as 1.5 eV. This material presents enhanced (mostly narrower) light emitting properties compared to spherical nanocrystals emitting at the same wavelength. Moreover, absorption spectra, majority carriers and time response can be tuned by carefully choosing the surface chemistry and applying a well-chosen gate bias. HgTe can also be used to explore the effect of vanishing confinement and to obtain quasi bulk properties with tunable absorption in the THz, up to 150 µm.
- Full Text
- View/download PDF
35. Effect of Pressure on Interband and Intraband Transition of Mercury Chalcogenide Quantum Dots
- Author
-
Amaury Triboulin, Francesco Capitani, Guy Fishman, Charlie Gréboval, Bertille Martinez, Julien Ramade, Nicolas Goubet, Sébastien Sauvage, Clément Livache, Stefan Klotz, Hervé Cruguel, Benoit Baptiste, Junling Qu, Emmanuel Lhuillier, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'électronique fondamentale (IEF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), European Project: 756225,blackQD, and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay
- Subjects
Infrared ,Band gap ,Chalcogenide ,interband transistion ,02 engineering and technology ,Electronic structure ,010402 general chemistry ,01 natural sciences ,nanocrystal ,chemistry.chemical_compound ,pressure ,Effective mass (solid-state physics) ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Condensed matter physics ,Heterojunction ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Nanocrystal ,chemistry ,Quantum dot ,infrared ,intraband transistion ,0210 nano-technology - Abstract
International audience; Mercury chalcogenide nanocrystals generate a lot of interest as active materials for low cost infrared sensing. Device improvement requires building a deeper understanding of their electronic structure which combines inverted band ordering, quantum confinement and dependence to surface chemistry. This is particularly true with the development of mercury chalcogenide colloidal heterostructures (HgSe/HgTe, HgTe/CdS…). In this case the lattice mismatch induces a strain which affects significantly the band gap given the narrow band gap nature of the material. Here we study the effect of pressure on interband and intraband transitions in a series of HgTe and HgSe colloidal quantum dots. We demonstrate that in HgTe and HgSe, the nanocrystal morphology stabilizes the zinc blende phase up to 3 GPa. Under compressive strain, the interband signal blueshifts by 60 meV/GPa, while the intraband transition redshifts by a small amount (8 meV/GPa). Using an 8-band k·p formalism, we reveal that the interband shift has the same origin as the one observed for bulk material (change of effective mass, followed by band gap opening), while the intraband shift can be attributed to an increase of effective mass only.
- Full Text
- View/download PDF
36. Emergence of intraband transitions in colloidal nanocrystals [Invited]
- Author
-
Nicolas Goubet, Emmanuel Lhuillier, Junling Qu, Clément Livache, Charlie Gréboval, Bertille Martinez, Amardeep Jagtap, and Audrey Chu
- Subjects
Materials science ,Chalcogenide ,Infrared ,Physics::Optics ,02 engineering and technology ,Photodetection ,010402 general chemistry ,01 natural sciences ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,Astrophysics::Galaxy Astrophysics ,Condensed Matter::Other ,business.industry ,Photoconductivity ,Doping ,Energy conversion efficiency ,Wide-bandgap semiconductor ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,chemistry ,Quantum dot ,Optoelectronics ,0210 nano-technology ,business - Abstract
The chemistry of nanocrystals enables the receipt of semiconductor nanoparticles with tunable optical properties. So far most scientific efforts have been focused on wide band gap materials to achieve a bright luminescence and a higher solar power conversion efficiency. Their properties in the infrared range of wavelengths are interesting as well. Two strategies can be used to achieve mid-infrared (mid-IR) transition, either interband transition in narrow band gap material or intraband transition in doped material. In this review, we discuss recent progress to achieve stable doped nanocrystals. We focus on mercury chalcogenide compounds since they are so far the only materials that combine mid-IR absorption with photoconductive properties in this range of energies. We discuss the origin of the doping and its tunability as well as how the doping impacts the optical, transport, and photodetection properties. Finally, we discuss Hg-free alternative materials, and present mid-IR transitions.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.