Bastien Mennecart, Laura Dziomber, Manuela Aiglstorfer, Faysal Bibi, Daniel DeMiguel, Masaki Fujita, Mugino O. Kubo, Flavie Laurens, Jin Meng, Grégoire Métais, Bert Müller, María Ríos, Gertrud E. Rössner, Israel M. Sánchez, Georg Schulz, Shiqi Wang, Loïc Costeur, GeoBioTec - Geobiociências, Geoengenharias e Geotecnologias, and DCV - Departamento de Ciências da Vida
We would like to thank all the curators, collection manager, and scientists who helped us allowed us to study and provided access to material: C. Argot and G. Billet (Muséum national d’Histoire naturelle, Paris), D. Geraads (Museum national d’Histoire Naturelle) for providing the Sivatherium specimen, E. Robert (Université Claude Bernard, Lyon 1), D. Berthet (Musée des Confluences Lyon), M. Orliac (Université Montpellier 2) for providing the bony labyrinth of Bachitherium, F. Duranthon and Y. Laurent (Muséum d’histoire naturelle, Toulouse), S. Legal, P. Coster, C. Balm, O. Maridet, O. Lapauze and J. Tissier (Parc Naturel Régional du Luberon and excavation team Murs Project), A. de Perthuie for accessing his private collection, Christiane Zeitler, R. Ziegler and E. Heizmann (Staatliches Museum für Naturkunde Stuttgart), P. Brewer, A. Garbout, and F. Ahmed (Natural History Museum, London), U. Göhlich and G. Daxner-Höck (Naturhistorisches Museum Wien), A. Van der Geer (Netherland Centre for Biodiversity Leiden), R. C. Hulbert Jr. (University of Florida, Gainesville), A. M. García Forner and P. Montoya (Museu de Geologia de la Universitat de València, Burjassot) for providing the petrosals of Birgerbohlinia, M. Pina (University of Manchester) for scanning support, and J. Morales (Museo Nacional de Ciencias Naturales, Madrid), J. Galkin, R. O’Leary, M. Hill Chase, C. Grohé and A. Gishlick (AMNH New York, USA), M. Celik (University of Queensland), and M. Scheidegger. We are also grateful to all the persons and institutions who scanned for us. Tandra Fairbanks (NMB) is thanked for her help with the English. B.M. and L.C. are grateful to the Swiss National Science Foundation for supporting this research through the projects 200021_178853 and 200021_159854/1 on the ear region evolution in ruminants. B.M. P300P2_161065 and P3P3P2_161066 on the evolution of the early ruminants. F.B. acknowledges support from a Gerstner Scholarship at the American Museum of Natural History. G.R. thanks the German Research Foundation project RO 1197/3-1. G.M., B.M., and L.C. want to thank the Museum National d’Histoire Naturelle de Paris for financing the Ast-RX-2013-051 Project. D.D.M. acknowledges R+D+I project ref. PID2020-116220GB-I00 from the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación/10.13039/501100011033/. I.S. acknowledges support by the Spanish Ministry of Science and Innovation (projects ref. PID2020-117289GB-I00 and PID2020-116220GB-I00), and the Generalitat de Catalunya (CERCA Programme). M.K. is funded by Japan Society for the Promotion of Science (KAKENHI Grant No. 19K04060). M.R. acknowledges MINECO project CGL2011-25754 for providing funding for the analysis. S.W. thanks the Strategic Priority Research Program of Chinese Academy of Sciences (XDB26000000) and the National Natural Science Foundation of China (41872001). G.S. and B.Mü. acknowledge financial support from the Swiss National Science Foundation in the frame of the R’equip initiative (316030_133802). Publisher Copyright: © 2022, The Author(s). Extrinsic and intrinsic factors impact diversity. On deep-time scales, the extrinsic impact of climate and geology are crucial, but poorly understood. Here, we use the inner ear morphology of ruminant artiodactyls to test for a deep-time correlation between a low adaptive anatomical structure and both extrinsic and intrinsic variables. We apply geometric morphometric analyses in a phylogenetic frame to X-ray computed tomographic data from 191 ruminant species. Contrasting results across ruminant clades show that neutral evolutionary processes over time may strongly influence the evolution of inner ear morphology. Extant, ecologically diversified clades increase their evolutionary rate with decreasing Cenozoic global temperatures. Evolutionary rate peaks with the colonization of new continents. Simultaneously, ecologically restricted clades show declining or unchanged rates. These results suggest that both climate and paleogeography produced heterogeneous environments, which likely facilitated Cervidae and Bovidae diversification and exemplifies the effect of extrinsic and intrinsic factors on evolution in ruminants. publishersversion published