1. PlanNetX: Learning an Efficient Neural Network Planner from MPC for Longitudinal Control
- Author
-
Hoffmann, Jasper, Fernandez, Diego, Brosseit, Julien, Bernhard, Julian, Esterle, Klemens, Werling, Moritz, Karg, Michael, and Boedecker, Joschka
- Subjects
Computer Science - Robotics ,Mathematics - Optimization and Control - Abstract
Model predictive control (MPC) is a powerful, optimization-based approach for controlling dynamical systems. However, the computational complexity of online optimization can be problematic on embedded devices. Especially, when we need to guarantee fixed control frequencies. Thus, previous work proposed to reduce the computational burden using imitation learning (IL) approximating the MPC policy by a neural network. In this work, we instead learn the whole planned trajectory of the MPC. We introduce a combination of a novel neural network architecture PlanNetX and a simple loss function based on the state trajectory that leverages the parameterized optimal control structure of the MPC. We validate our approach in the context of autonomous driving by learning a longitudinal planner and benchmarking it extensively in the CommonRoad simulator using synthetic scenarios and scenarios derived from real data. Our experimental results show that we can learn the open-loop MPC trajectory with high accuracy while improving the closed-loop performance of the learned control policy over other baselines like behavior cloning., Comment: 6th Annual Learning for Dynamics & Control Conference (L4DC 2024)
- Published
- 2024