1. Evolution of the disky second generation of stars in globular clusters on cosmological timescale
- Author
-
Berczik, Peter, Panamarev, Taras, Ishchenko, Maryna, and Kocsis, Bence
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Context. Many Milky Way globular clusters (GCs) host multiple stellar populations, challenging the traditional view of GCs as single-population systems. It has been suggested that second-generation stars could form in a disk from gas lost by first-generation stars or from external accreted gas. Aims. We investigate how the introduction of a second stellar generation affects mass loss, internal mixing, and rotational properties of GCs in a time-varying Galactic tidal field and different orbital configurations. Methods. We conducted direct N-body simulations of GCs on three types of orbits derived from the observed Milky Way GCs. We evolved the clusters for 8 Gyr in the time-varying Galactic potential of the IllustrisTNG-100 cosmological simulation. After 2 Gyr, we introduced a second stellar generation, comprising 5% of the initial mass of the first generation, as a flattened disk of stars. For comparison, we ran control simulations using a static Galactic potential and isolated clusters. Results. We present the mass loss, structural evolution, and kinematic properties of GCs with two stellar generations, focusing on tidal mass, half-mass radii, velocity distributions, and angular momentum. Conclusions. Our results show that the mass loss of GCs depends primarily on their orbital parameters, with tighter orbits leading to higher mass loss. The Galaxy's growth resulted in tighter orbits, meaning GCs lost less mass than if its mass had always been constant. The initially flattened second-generation disk became nearly spherical within one relaxation time. However, whether its distinct rotational signature was retained depends on the orbit: for the long radial orbit, it vanished quickly; for the tube orbit, it lasted several Gyr; but for the circular orbit, rotation persisted until the present day, Comment: 27 pages, 28 figures. Submitted to A&A
- Published
- 2024