2,005 results on '"Benson, T."'
Search Results
2. Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory
- Author
-
XLZD Collaboration, Aalbers, J., Abe, K., Adrover, M., Maouloud, S. Ahmed, Akerib, D. S., Musalhi, A. K. Al, Alder, F., Althueser, L., Amaral, D. W. P., Amarasinghe, C. S., Ames, A., Andrieu, B., Angelides, N., Angelino, E., Antunovic, B., Aprile, E., Araújo, H. M., Armstrong, J. E., Arthurs, M., Babicz, M., Bajpai, D., Baker, A., Balzer, M., Bang, J., Barberio, E., Bargemann, J. W., Barillier, E., Basharina-Freshville, A., Baudis, L., Bauer, D., Bazyk, M., Beattie, K., Beaupere, N., Bell, N. F., Bellagamba, L., Benson, T., Bhatti, A., Biesiadzinski, T. P., Biondi, R., Biondi, Y., Birch, H. J., Bishop, E., Bismark, A., Boehm, C., Boese, K., Bolotnikov, A., Brás, P., Braun, R., Breskin, A., Brew, C. A. J., Brommer, S., Brown, A., Bruni, G., Budnik, R., Burdin, S., Cai, C., Capelli, C., Carini, G., Carmona-Benitez, M. C., Carter, M., Chauvin, A., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Chavez, A. P. Cimental, Clark, K., Colijn, A. P., Colling, D. J., Conrad, J., Converse, M. V., Coronel, R., Costanzo, D., Cottle, A., Cox, G., Cuenca-García, J. J., Curran, D., Cussans, D., D'Andrea, V., Garcia, L. C. Daniel, Darlington, I., Dave, S., David, A., Davies, G. J., Decowski, M. P., Deisting, A., Delgaudio, J., Dey, S., Di Donato, C., Di Felice, L., Di Gangi, P., Diglio, S., Ding, C., Dobson, J. E. Y., Doerenkamp, M., Drexlin, G., Druszkiewicz, E., Dunbar, C. L., Eitel, K., Elykov, A., Engel, R., Eriksen, S. R., Fayer, S., Fearon, N. M., Ferella, A. D., Ferrari, C., Fieldhouse, N., Fischer, H., Flaecher, H., Flehmke, T., Flierman, M., Fraser, E. D., Fruth, T. M. A., Fujikawa, K., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Gaitskell, R. J., Gallice, N., Galloway, M., Gao, F., Garroum, N., Geffre, A., Genovesi, J., Ghag, C., Ghosh, S., Giacomobono, R., Gibbons, R., Girard, F., Glade-Beucke, R., Glück, F., Gokhale, S., Grandi, L., Green, J., Grigat, J., van der Grinten, M. G. D., Größle, R., Guan, H., Guida, M., Gyorgy, P., Haiston, J. J., Hall, C. R., Hall, T., Hammann, R., Hannen, V., Hansmann-Menzemer, S., Hargittai, N., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M., Hertel, S. A., Higuera, A., Hils, C., Hiraoka, K., Hoetzsch, L., Hoferichter, M., Homenides, G. J., Hood, N. F., Horn, M., Huang, D. Q., Hughes, S., Hunt, D., Iacovacci, M., Itow, Y., Jacquet, E., Jakob, J., James, R. S., Joerg, F., Jones, S., Kaboth, A. C., Kahlert, F., Kamaha, A. C., Kaminaga, Y., Kara, M., Kavrigin, P., Kazama, S., Keller, M., Kemp-Russell, P., Khaitan, D., Kharbanda, P., Kilminster, B., Kim, J., Kirk, R., Kleifges, M., Klute, M., Kobayashi, M., Kodroff, D., Koke, D., Kopec, A., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., von Krosigk, B., Kudryavtsev, V. A., Kuger, F., Kurita, N., Landsman, H., Lang, R. F., Lawes, C., Lee, J., Lehnert, B., Leonard, D. S., Lesko, K. T., Levinson, L., Li, A., Li, I., Li, S., Liang, S., Liang, Z., Lin, J., Lin, Y. -T., Lindemann, S., Linden, S., Lindner, M., Lindote, A., Lippincott, W. H., Liu, K., Loizeau, J., Lombardi, F., Lopes, J. A. M., Lopes, M. I., Lorenzon, W., Loutit, M., Lu, C., Lucchetti, G. M., Luce, T., Luitz, S., Ma, Y., Macolino, C., Mahlstedt, J., Maier, B., Majewski, P. A., Manalaysay, A., Mancuso, A., Manenti, L., Mannino, R. L., Marignetti, F., Marley, T., Undagoitia, T. Marrodán, Martens, K., Masbou, J., Masson, E., Mastroianni, S., Maupin, C., McCabe, C., McCarthy, M. E., McKinsey, D. N., McLaughlin, J. B., Melchiorre, A., Menéndez, J., Messina, M., Miller, E. H., Milosovic, B., Milutinovic, S., Miuchi, K., Miyata, R., Mizrachi, E., Molinario, A., Monteiro, C. M. B., Monzani, M. E., Morå, K., Moriyama, S., Morrison, E., Morteau, E., Mosbacher, Y., Mount, B. J., Müller, J., Murdy, M., Murphy, A. St. J., Murra, M., Naylor, A., Nelson, H. N., Neves, F., Newstead, J. L., Nguyen, A., Ni, K., O'Hare, C., Oberlack, U., Obradovic, M., Olcina, I., Oliver-Mallory, K. C., Gann, G. D. Orebi, Orpwood, J., Ostrowskiy, I., Ouahada, S., Oyulmaz, K., Paetsch, B., Palladino, K. J., Palmer, J., Pan, Y., Pandurovic, M., Pannifer, N. J., Paramesvaran, S., Patton, S. J., Pellegrini, Q., Penning, B., Pereira, G., Peres, R., Perry, E., Pershing, T., Piastra, F., Pienaar, J., Piepke, A., Pierre, M., Plante, G., Pollmann, T. R., Principe, L., Qi, J., Qiao, K., Qie, Y., Qin, J., Radeka, S., Radeka, V., Rajado, M., García, D. Ramírez, Ravindran, A., Razeto, A., Reichenbacher, J., Rhyne, C. A., Richards, A., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Roy, A., Rushton, T., Rynders, D., Saakyan, R., Sanchez, L., Sanchez-Lucas, P., Santone, D., Santos, J. M. F. dos, Sartorelli, G., Sazzad, A. B. M. R., Scaffidi, A., Schnee, R. W., Schreiner, J., Schulte, P., Schulze, H., Eißing, Schumann, M., Schwenck, A., Schwenk, A., Lavina, L. Scotto, Selvi, M., Semeria, F., Shagin, P., Sharma, S., Shaw, S., Shen, W., Sherman, L., Shi, S., Shi, S. Y., Shimada, T., Shutt, T., Silk, J. J., Silva, C., Simgen, H., Sinev, G., Singh, R., Siniscalco, J., Solmaz, M., Solovov, V. N., Song, Z., Sorensen, P., Soria, J., Stanley, O., Steidl, M., Stenhouse, T., Stevens, A., Stifter, K., Sumner, T. J., Takeda, A., Tan, P. -L., Taylor, D. J., Taylor, W. C., Thers, D., Thümmler, T., Tiedt, D. R., Tönnies, F., Tong, Z., Toschi, F., Tovey, D. R., Tranter, J., Trask, M., Trinchero, G., Tripathi, M., Tronstad, D. R., Trotta, R., Tunnell, C. D., Urquijo, P., Usón, A., Utoyama, M., Vaitkus, A. C., Valentino, O., Valerius, K., Vecchi, S., Velan, V., Vetter, S., de Viveiros, L., Volta, G., Vorkapic, D., Wang, A., Wang, J. J., Wang, W., Wang, Y., Waters, D., Weerman, K. M., Weinheimer, C., Weiss, M., Wenz, D., Whitis, T. J., Wild, K., Williams, M., Wilson, M., Wilson, S. T., Wittweg, C., Wolf, J., Wolfs, F. L. H., Woodford, S., Woodward, D., Worcester, M., Wright, C. J., Wu, V. H. S., üstling, S. W, Wurm, M., Xia, Q., Xing, Y., Xu, D., Xu, J., Xu, Y., Xu, Z., Yamashita, M., Yang, L., Ye, J., Yeh, M., Yu, B., Zavattini, G., Zha, W., Zhong, M., and Zuber, K.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in $^{136}$Xe using a natural-abundance xenon target. XLZD can reach a 3$\sigma$ discovery potential half-life of 5.7$\times$10$^{27}$ yr (and a 90% CL exclusion of 1.3$\times$10$^{28}$ yr) with 10 years of data taking, corresponding to a Majorana mass range of 7.3-31.3 meV (4.8-20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community., Comment: 29 pages, 7 figures
- Published
- 2024
3. The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics
- Author
-
XLZD Collaboration, Aalbers, J., Abe, K., Adrover, M., Maouloud, S. Ahmed, Akerib, D. S., Musalhi, A. K. Al, Alder, F., Althueser, L., Amaral, D. W. P., Amarasinghe, C. S., Ames, A., Andrieu, B., Angelides, N., Angelino, E., Antunovic, B., Aprile, E., Araújo, H. M., Armstrong, J. E., Arthurs, M., Babicz, M., Bajpai, D., Baker, A., Balzer, M., Bang, J., Barberio, E., Bargemann, J. W., Barillier, E., Basharina-Freshville, A., Baudis, L., Bauer, D., Bazyk, M., Beattie, K., Beaupere, N., Bell, N. F., Bellagamba, L., Benson, T., Bhatti, A., Biesiadzinski, T. P., Biondi, R., Biondi, Y., Birch, H. J., Bishop, E., Bismark, A., Boehm, C., Boese, K., Bolotnikov, A., Brás, P., Braun, R., Breskin, A., Brew, C. A. J., Brommer, S., Brown, A., Bruni, G., Budnik, R., Burdin, S., Cai, C., Capelli, C., Carini, G., Carmona-Benitez, M. C., Carter, M., Chauvin, A., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Chavez, A. P. Cimental, Clark, K., Colijn, A. P., Colling, D. J., Conrad, J., Converse, M. V., Coronel, R., Costanzo, D., Cottle, A., Cox, G., Cuenca-García, J. J., Curran, D., Cussans, D., D'Andrea, V., Garcia, L. C. Daniel, Darlington, I., Dave, S., David, A., Davies, G. J., Decowski, M. P., Deisting, A., Delgaudio, J., Dey, S., Di Donato, C., Di Felice, L., Di Gangi, P., Diglio, S., Ding, C., Dobson, J. E. Y., Doerenkamp, M., Drexlin, G., Druszkiewicz, E., Dunbar, C. L., Eitel, K., Elykov, A., Engel, R., Eriksen, S. R., Fayer, S., Fearon, N. M., Ferella, A. D., Ferrari, C., Fieldhouse, N., Fischer, H., Flaecher, H., Flehmke, T., Flierman, M., Fraser, E. D., Fruth, T. M. A., Fujikawa, K., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Gaitskell, R. J., Gallice, N., Galloway, M., Gao, F., Garroum, N., Geffre, A., Genovesi, J., Ghag, C., Ghosh, S., Giacomobono, R., Gibbons, R., Girard, F., Glade-Beucke, R., Glück, F., Gokhale, S., Grandi, L., Green, J., Grigat, J., van der Grinten, M. G. D., Größle, R., Guan, H., Guida, M., Gyorgy, P., Haiston, J. J., Hall, C. R., Hall, T., Hammann, R., Hannen, V., Hansmann-Menzemer, S., Hargittai, N., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M., Hertel, S. A., Higuera, A., Hils, C., Hiraoka, K., Hoetzsch, L., Hoferichter, M., Homenides, G. J., Hood, N. F., Horn, M., Huang, D. Q., Hughes, S., Hunt, D., Iacovacci, M., Itow, Y., Jacquet, E., Jakob, J., James, R. S., Joerg, F., Jones, S., Kaboth, A. C., Kahlert, F., Kamaha, A. C., Kaminaga, Y., Kara, M., Kavrigin, P., Kazama, S., Keller, M., Kemp-Russell, P., Khaitan, D., Kharbanda, P., Kilminster, B., Kim, J., Kirk, R., Kleifges, M., Klute, M., Kobayashi, M., Kodroff, D., Koke, D., Kopec, A., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., von Krosigk, B., Kudryavtsev, V. A., Kuger, F., Kurita, N., Landsman, H., Lang, R. F., Lawes, C., Lee, J., Lehnert, B., Leonard, D. S., Lesko, K. T., Levinson, L., Li, A., Li, I., Li, S., Liang, S., Liang, Z., Lin, J., Lin, Y. -T., Lindemann, S., Linden, S., Lindner, M., Lindote, A., Lippincott, W. H., Liu, K., Loizeau, J., Lombardi, F., Lopes, J. A. M., Lopes, M. I., Lorenzon, W., Loutit, M., Lu, C., Lucchetti, G. M., Luce, T., Luitz, S., Ma, Y., Macolino, C., Mahlstedt, J., Maier, B., Majewski, P. A., Manalaysay, A., Mancuso, A., Manenti, L., Mannino, R. L., Marignetti, F., Marley, T., Undagoitia, T. Marrodán, Martens, K., Masbou, J., Masson, E., Mastroianni, S., Maupin, C., McCabe, C., McCarthy, M. E., McKinsey, D. N., McLaughlin, J. B., Melchiorre, A., Menéndez, J., Messina, M., Miller, E. H., Milosovic, B., Milutinovic, S., Miuchi, K., Miyata, R., Mizrachi, E., Molinario, A., Monteiro, C. M. B., Monzani, M. E., Morå, K., Moriyama, S., Morrison, E., Morteau, E., Mosbacher, Y., Mount, B. J., Müller, J., Murdy, M., Murphy, A. St. J., Murra, M., Naylor, A., Nelson, H. N., Neves, F., Newstead, J. L., Nguyen, A., Ni, K., O'Hare, C., Oberlack, U., Obradovic, M., Olcina, I., Oliver-Mallory, K. C., Gann, G. D. Orebi, Orpwood, J., Ostrowskiy, I., Ouahada, S., Oyulmaz, K., Paetsch, B., Palladino, K. J., Palmer, J., Pan, Y., Pandurovic, M., Pannifer, N. J., Paramesvaran, S., Patton, S. J., Pellegrini, Q., Penning, B., Pereira, G., Peres, R., Perry, E., Pershing, T., Piastra, F., Pienaar, J., Piepke, A., Pierre, M., Plante, G., Pollmann, T. R., Principe, L., Qi, J., Qiao, K., Qie, Y., Qin, J., Radeka, S., Radeka, V., Rajado, M., García, D. Ramírez, Ravindran, A., Razeto, A., Reichenbacher, J., Rhyne, C. A., Richards, A., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Roy, A., Rushton, T., Rynders, D., Saakyan, R., Sanchez, L., Sanchez-Lucas, P., Santone, D., Santos, J. M. F. dos, Sartorelli, G., Sazzad, A. B. M. R., Scaffidi, A., Schnee, R. W., Schreiner, J., Schulte, P., Schulze, H., Eißing, Schumann, M., Schwenck, A., Schwenk, A., Lavina, L. Scotto, Selvi, M., Semeria, F., Shagin, P., Sharma, S., Shaw, S., Shen, W., Sherman, L., Shi, S., Shi, S. Y., Shimada, T., Shutt, T., Silk, J. J., Silva, C., Simgen, H., Sinev, G., Singh, R., Siniscalco, J., Solmaz, M., Solovov, V. N., Song, Z., Sorensen, P., Soria, J., Stanley, O., Steidl, M., Stenhouse, T., Stevens, A., Stifter, K., Sumner, T. J., Takeda, A., Tan, P. -L., Taylor, D. J., Taylor, W. C., Thers, D., Thümmler, T., Tiedt, D. R., Tönnies, F., Tong, Z., Toschi, F., Tovey, D. R., Tranter, J., Trask, M., Trinchero, G., Tripathi, M., Tronstad, D. R., Trotta, R., Tunnell, C. D., Urquijo, P., Usón, A., Utoyama, M., Vaitkus, A. C., Valentino, O., Valerius, K., Vecchi, S., Velan, V., Vetter, S., de Viveiros, L., Volta, G., Vorkapic, D., Wang, A., Wang, J. J., Wang, W., Wang, Y., Waters, D., Weerman, K. M., Weinheimer, C., Weiss, M., Wenz, D., Whitis, T. J., Wild, K., Williams, M., Wilson, M., Wilson, S. T., Wittweg, C., Wolf, J., Wolfs, F. L. H., Woodford, S., Woodward, D., Worcester, M., Wright, C. J., Wu, V. H. S., üstling, S. W, Wurm, M., Xia, Q., Xing, Y., Xu, D., Xu, J., Xu, Y., Xu, Z., Yamashita, M., Yang, L., Ye, J., Yeh, M., Yu, B., Zavattini, G., Zha, W., Zhong, M., and Zuber, K.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Physics - Instrumentation and Detectors - Abstract
This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generation experiments, LZ and XENONnT. A baseline design and opportunities for further optimization of the individual detector components are discussed. The experiment envisaged here has the capability to explore parameter space for Weakly Interacting Massive Particle (WIMP) dark matter down to the neutrino fog, with a 3$\sigma$ evidence potential for the spin-independent WIMP-nucleon cross sections as low as $3\times10^{-49}\rm cm^2$ (at 40 GeV/c$^2$ WIMP mass). The observatory is also projected to have a 3$\sigma$ observation potential of neutrinoless double-beta decay of $^{136}$Xe at a half-life of up to $5.7\times 10^{27}$ years. Additionally, it is sensitive to astrophysical neutrinos from the atmosphere, sun, and galactic supernovae., Comment: 32 pages, 14 figures
- Published
- 2024
4. Dark Matter Search Results from 4.2 Tonne-Years of Exposure of the LUX-ZEPLIN (LZ) Experiment
- Author
-
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Bargemann, J. W., Barillier, E. E., Bauer, D., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Converse, M. V., Coronel, R., Cottle, A., Cox, G., Curran, D., Dahl, C. E., Darlington, I., Dave, S., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Di Felice, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Dubey, S., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fieldhouse, N., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Ghosh, A., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Haiston, J. J., Hall, C. R., Hall, T. J., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M. A., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., K., Meghna K., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kim, Y. D., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Lawes, C., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Lippincott, W. H., Lopes, M. I., Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., McLaughlin, J. B., McMonigle, R., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nelson, H. N., Neves, F., Nguyen, A., O'Brien, C. L., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Oyulmaz, K. Y, Palladino, K. J., Palmer, J., Pannifer, N. J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Ritchey, E., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Sehr, G., Shafer, B., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Siniscalco, J., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Usón, A., Vacheret, A., Vaitkus, A. C., Valentino, O., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Weeldreyer, L., Whitis, T. J., Wild, K., Williams, M., Wisniewski, W. J., Wolf, L., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xu, J., Xu, Y., Yeh, M., Yeum, D., Zha, W., and Zweig, E. A.
- Subjects
High Energy Physics - Experiment - Abstract
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $\beta$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.1\times10^{-48}$ cm$^{2}$ at the 90% confidence level at a mass of 36 GeV/$c^2$, and the best SI median sensitivity achieved is $5.0\times10^{-48}$ cm$^{2}$ for a mass of 40 GeV/$c^2$., Comment: 9 pages, 7 figures. See https://www.hepdata.net/record/155182 for a data release related to this paper
- Published
- 2024
5. The data acquisition system of the LZ dark matter detector: FADR
- Author
-
Aalbers, J, Akerib, DS, Al Musalhi, AK, Alder, F, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Baker, A, Balashov, S, Bang, J, Barillier, EE, Bargemann, JW, Beattie, K, Benson, T, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Bishop, E, Blockinger, GM, Boxer, B, Brew, CAJ, Brás, P, Buckley, JH, Burdin, S, Buuck, M, Carmona-Benitez, MC, Carter, M, Chawla, A, Chen, H, Cherwinka, JJ, Chin, YT, Chott, NI, Converse, MV, Cottle, A, Cox, G, Curran, D, Dahl, CE, David, A, Delgaudio, J, Dey, S, de Viveiros, L, Di Felice, L, Dimino, T, Ding, C, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fearon, NM, Fieldhouse, N, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, TMA, Gaitskell, RJ, Geffre, A, Gelfand, R, Genovesi, J, Ghag, C, Gibbons, R, Gokhale, S, Green, J, van der Grinten, MGD, Haiston, JJ, Hall, CR, Han, S, Hartigan-O’Connor, E, Haselschwardt, SJ, Hernandez, MA, Hertel, SA, Heuermann, G, Homenides, GJ, Horn, M, Huang, DQ, Hunt, D, Jacquet, E, James, RS, Johnson, J, Kaboth, AC, Kamaha, AC, Kannichankandy, M, Khaitan, D, Khazov, A, Khurana, I, Kim, J, Kim, YD, Kingston, J, Kirk, R, Kodroff, D, Korley, L, Korolkova, EV, Koyuncu, M, Kraus, H, Kravitz, S, and Kreczko, L
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Networking and Information Technology R&D (NITRD) ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Other Physical Sciences ,Nuclear & Particles Physics ,Nuclear and plasma physics - Abstract
The Data Acquisition System (DAQ) for the LUX-ZEPLIN (LZ) dark matter detector is described. The signals from 745 PMTs, distributed across three subsystems, are sampled with 100-MHz 32-channel digitizers (DDC-32s). A basic waveform analysis is carried out on the on-board Field Programmable Gate Arrays (FPGAs) to extract information about the observed scintillation and electroluminescence signals. This information is used to determine if the digitized waveforms should be preserved for offline analysis. The system is designed around the Kintex-7 FPGA. In addition to digitizing the PMT signals and providing basic event selection in real time, the flexibility provided by the use of FPGAs allows us to monitor the performance of the detector and the DAQ in parallel to normal data acquisition. The hardware and software/firmware of this FPGA-based Architecture for Data acquisition and Realtime monitoring (FADR) are discussed and performance measurements are described.
- Published
- 2024
6. Probing the Scalar WIMP-Pion Coupling with the first LUX-ZEPLIN data
- Author
-
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Barillier, E. E., Bargemann, J. W., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E. J., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Converse, M. V., Cottle, A., Cox, G., Curran, D., Dahl, C. E., David, A., Delgaudio, J., Dey, S., deViveiros, L., DiFelice, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Gibbons, R., Gokhale, S., Green, J., vanderGrinten, M. G. D., Haiston, J. J., Hall, C. R., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M. A., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kannichankandy, M., Khaitan, D., Khazov, A., Khurana, I., DKim, J., Kim, J., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Lopes, M. I., Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., McLaughlin, J. B., McMonigle, R., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Palladino, K. J., Palmer, J., Pannifer, N. J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Siniscalco, J., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Taylor, W. C., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Vacheret, A., Vaitkus, A. C., Valentino, O., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Webb, R. C., Weeldreyer, L., Whitis, T. J., Williams, M., Wisniewski, W. J., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., Yeh, M., and Zweig, E. A.
- Subjects
High Energy Physics - Experiment - Abstract
Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5~tonne fiducial mass of liquid xenon, we report the results on a search for WIMP-pion interactions. We observe no significant excess and set an upper limit of $1.5\times10^{-46}$~cm$^2$ at a 90\% confidence level for a WIMP mass of 33~GeV/c$^2$ for this interaction.
- Published
- 2024
- Full Text
- View/download PDF
7. The design, implementation, and performance of the LZ calibration systems
- Author
-
Aalbers, J, Akerib, DS, Al Musalhi, AK, Alder, F, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Baker, A, Balashov, S, Bang, J, Barillier, EE, Bargemann, JW, Beattie, K, Benson, T, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Bishop, E, Blockinger, GM, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Buuck, M, Carmona-Benitez, MC, Carter, M, Chawla, A, Chen, H, Cherwinka, JJ, Chin, YT, Chott, NI, Converse, MV, Cottle, A, Cox, G, Curran, D, Dahl, CE, David, A, Delgaudio, J, Dey, S, de Viveiros, L, Di Felice, L, Ding, C, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fearon, NM, Fieldhouse, N, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, TMA, Gaitskell, RJ, Geffre, A, Genovesi, J, Ghag, C, Gibbons, R, Gokhale, S, Green, J, van der Grinten, MGD, Haiston, JJ, Hall, CR, Han, S, Hartigan-O'Connor, E, Haselschwardt, SJ, Hernandez, MA, Hertel, SA, Heuermann, G, Homenides, GJ, Horn, M, Huang, DQ, Hunt, D, Jacquet, E, James, RS, Johnson, J, Kaboth, AC, Kamaha, AC, Kannichankandy, M, Khaitan, D, Khazov, A, Khurana, I, Kim, J, Kim, YD, Kingston, J, Kirk, R, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Kudryavtsev, VA, Leonard, DS, Lesko, KT, and Levy, C
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Engineering ,Nuclear & Particles Physics ,Physical sciences - Abstract
LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ’s ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ’s WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments.
- Published
- 2024
8. New constraints on ultraheavy dark matter from the LZ experiment
- Author
-
Aalbers, J, Akerib, DS, Al Musalhi, AK, Alder, F, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Baker, A, Balashov, S, Bang, J, Barillier, EE, Bargemann, JW, Baxter, A, Beattie, K, Benson, T, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Bishop, EJ, Blockinger, GM, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Buuck, M, Carmona-Benitez, MC, Carter, M, Chawla, A, Chen, H, Cherwinka, JJ, Chin, YT, Chott, NI, Converse, MV, Cottle, A, Cox, G, Curran, D, Dahl, CE, David, A, Delgaudio, J, Dey, S, de Viveiros, L, Di Felice, L, Ding, C, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, TMA, Gaitskell, RJ, Geffre, A, Genovesi, J, Ghag, C, Gibbons, R, Gokhale, S, Green, J, van der Grinten, MGD, Haiston, JH, Hall, CR, Han, S, Hartigan-O’Connor, E, Haselschwardt, SJ, Hernandez, MA, Hertel, SA, Heuermann, G, Homenides, GJ, Horn, M, Huang, DQ, Hunt, D, Ignarra, CM, Jacquet, E, James, RS, Johnson, J, Kaboth, AC, Kamaha, AC, Kannichankandy, M, Khaitan, D, Khazov, A, Khurana, I, Kim, J, Kingston, J, Kirk, R, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Lee, J, and Leonard, DS
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences - Abstract
Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/c2 to a few TeV/c2. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a reanalysis of the first science run of the LZ experiment, with an exposure of 0.9 tonne×yr, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 1017 GeV/c2.
- Published
- 2024
9. The Data Acquisition System of the LZ Dark Matter Detector: FADR
- Author
-
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Barillier, E. E., Bargemann, J. W., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Buckley, J. H., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Converse, M. V., Cottle, A., Cox, G., Curran, D., Dahl, C. E., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Di Felice, L., Dimino, T., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fearon, N. M., Fieldhouse, N., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Gelfand, R., Genovesi, J., Ghag, C., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Haiston, J. J., Hall, C. R., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M. A., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kannichankandy, M., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kim, Y. D., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Koyuncu, M., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Loniewski, C., Lopes, M. I., Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., Mclaughlin, J. B., McMonigle, R., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Moongweluwan, M., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Oh, H., Olcina, I., Olevitch, M. A., Oliver-Mallory, K. C., Orpwood, J., Palladino, K. J., Palmer, J., Pannifer, N. J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sarkis, R., Sazzad, A. B. M. R., Schnee, R. W., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Siniscalco, J., Skulski, W., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Taylor, W. C., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Vacheret, A., Vaitkus, A. C., Vaitkus, J., Valentino, O., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Webb, R. C., Weeldreyer, L., Whitis, T. J., Williams, M., Wisniewski, W. J., Wolfs, F. L. H., Wolfs, J. D., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., Yeh, M., and Yin, J.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Data Acquisition System (DAQ) for the LUX-ZEPLIN (LZ) dark matter detector is described. The signals from 745 PMTs, distributed across three subsystems, are sampled with 100-MHz 32-channel digitizers (DDC-32s). A basic waveform analysis is carried out on the on-board Field Programmable Gate Arrays (FPGAs) to extract information about the observed scintillation and electroluminescence signals. This information is used to determine if the digitized waveforms should be preserved for offline analysis. The system is designed around the Kintex-7 FPGA. In addition to digitizing the PMT signals and providing basic event selection in real time, the flexibility provided by the use of FPGAs allows us to monitor the performance of the detector and the DAQ in parallel to normal data acquisition. The hardware and software/firmware of this FPGA-based Architecture for Data acquisition and Realtime monitoring (FADR) are discussed and performance measurements are described., Comment: 18 pages, 24 figures
- Published
- 2024
10. The Design, Implementation, and Performance of the LZ Calibration Systems
- Author
-
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Barillier, E. E., Bargemann, J. W., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Converse, M. V., Cottle, A., Cox, G., Curran, D., Dahl, C. E., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Di Felice, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fearon, N. M., Fieldhouse, N., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Haiston, J. J., Hall, C. R., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M. A., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kannichankandy, M., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kim, Y. D., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Lopes, M. I., Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., Mclaughlin, J. B., McMonigle, R., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Palladino, K. J., Palmer, J., Pannifer, N. J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Siniscalco, J., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Taylor, W. C., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Vacheret, A., Vaitkus, A. C., Valentino, O., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Webb, R. C., Weeldreyer, L., Whitis, T. J., Williams, M., Wisniewski, W. J., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., and Yeh, M.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ's ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ's WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments.
- Published
- 2024
- Full Text
- View/download PDF
11. Constraints On Covariant WIMP-Nucleon Effective Field Theory Interactions from the First Science Run of the LUX-ZEPLIN Experiment
- Author
-
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Barillier, E. E., Bargemann, J. W., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E. J., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Converse, M. V., Cottle, A., Cox, G., Curran, D., Dahl, C. E., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Di Felice, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Haiston, J. H., Hall, C. R., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M. A., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Ignarra, C. M., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kannichankandy, M., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Lopes, M. I., Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., McLaughlin, J. B., McMonigle, R., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Palladino, K. J., Palmer, J., Pannifer, N. J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Siniscalco, J., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Taylor, W. C., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Vacheret, A., Vaitkus, A. C., Valentino, O., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Webb, R. C., Weeldreyer, L., Whitis, T. J., Williams, M., Wisniewski, W. J., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., Yeh, M., and Zweig, E. A.
- Subjects
High Energy Physics - Experiment - Abstract
The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV$_\text{nr}$ to 270~keV$_\text{nr}$, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases., Comment: 7 pages, 4 figures
- Published
- 2024
12. New constraints on ultraheavy dark matter from the LZ experiment
- Author
-
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Bargemann, J. W., Baxter, A., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chott, N. I., Converse, M. V., Cottle, A., Cox, G., Curran, D., Dahl, C. E., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Hall, C. R., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Ignarra, C. M., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Lopes, M. I., Asamar, E. Lopez, Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., McMonigle, R., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Palladino, K. J., Palmer, J., Pannifer, N. J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Taylor, W. C., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Turner, W., Vacheret, A., Vaitkus, A. C., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Webb, R. C., Weeldreyer, L., Whitis, T. J., Williams, M., Wisniewski, W. J., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., Yeh, M., and Zweig, E. A.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/$c^2$ to a few TeV/$c^2$. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of $0.9$ tonne$\times$year, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10$^{17}$ GeV/$c^2$., Comment: 9 pages, 7 figures
- Published
- 2024
- Full Text
- View/download PDF
13. First constraints on WIMP-nucleon effective field theory couplings in an extended energy region from LUX-ZEPLIN
- Author
-
Aalbers, J, Akerib, DS, Al Musalhi, AK, Alder, F, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Baker, A, Balashov, S, Bang, J, Bargemann, JW, Baxter, A, Beattie, K, Benson, T, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Bishop, E, Blockinger, GM, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Buuck, M, Carmona-Benitez, MC, Carter, M, Chawla, A, Chen, H, Cherwinka, JJ, Chott, NI, Converse, MV, Cottle, A, Cox, G, Curran, D, Dahl, CE, David, A, Delgaudio, J, Dey, S, de Viveiros, L, Ding, C, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, TMA, Gaitskell, RJ, Geffre, A, Genovesi, J, Ghag, C, Gibbons, R, Gokhale, S, Green, J, van der Grinten, MGD, Hall, CR, Han, S, Hartigan-O’Connor, E, Haselschwardt, SJ, Hernandez, MA, Hertel, SA, Heuermann, G, Homenides, GJ, Horn, M, Huang, DQ, Hunt, D, Ignarra, CM, Jacquet, E, James, RS, Johnson, J, Kaboth, AC, Kamaha, AC, Khaitan, D, Khazov, A, Khurana, I, Kim, J, Kingston, J, Kirk, R, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Lin, J, Lindote, A, and Linehan, R
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Affordable and Clean Energy - Abstract
Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent nonrelativistic effective field theory describing the complete set of possible interactions of a weakly interacting massive particle (WIMP) with a nucleon. These results utilize the same 5.5 t fiducial mass and 60 live days of exposure collected for the LZ spin-independent and spin-dependent analyses while extending the upper limit of the energy region of interest by a factor of 7.5 to 270 keV. No significant excess in this high energy region is observed. Using a profile-likelihood ratio analysis, we report 90% confidence level exclusion limits on the coupling of each individual nonrelativistic WIMP-nucleon operator for both elastic and inelastic interactions in the isoscalar and isovector bases.
- Published
- 2024
14. First Constraints on WIMP-Nucleon Effective Field Theory Couplings in an Extended Energy Region From LUX-ZEPLIN
- Author
-
LZ Collaboration, Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Bargemann, J. W., Baxter, A., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chott, N. I., Converse, M. V., Cottle, A., Cox, G., Curran, D., Dahl, C. E., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Hall, C. R., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Ignarra, C. M., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Lopes, M. I., Asamar, E. Lopez, Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Palladino, K. J., Palmer, J., Pannifer, N., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Taylor, W. C., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Turner, W., Vacheret, A., Vaitkus, A. C., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Webb, R. C., Weeldreyer, L., Whitis, T. J., Williams, M., Wisniewski, W. J., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., Yeh, M., and Zweig, E. A.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent non-relativistic effective field theory describing the complete set of possible interactions of a weakly interacting massive particle (WIMP) with a nucleon. These results utilize the same 5.5 t fiducial mass and 60 live days of exposure collected for the LZ spin-independent and spin-dependent analyses while extending the upper limit of the energy region of interest by a factor of 7.5 to 270 keVnr. No significant excess in this high energy region is observed. Using a profile-likelihood ratio analysis, we report 90% confidence level exclusion limits on the coupling of each individual non-relativistic WIMP-nucleon operator for both elastic and inelastic interactions in the isoscalar and isovector bases., Comment: 17 pages 11 figures
- Published
- 2023
- Full Text
- View/download PDF
15. Correction: Mitochondrial Transfusion Improves Mitochondrial Function Through Up-regulation of Mitochondrial Complex II Protein Subunit SDHB in the Hippocampus of Aged Mice
- Author
-
Adlimoghaddam, A., Benson, T., and Albensi, B. C.
- Published
- 2024
- Full Text
- View/download PDF
16. Pregnenolone 16-Alpha Carbonitrile, an Agonist of Rodent Pregnane X Receptor, Regulates Testosterone Biosynthesis in Rodent Leydig Cells
- Author
-
Julia M. Salamat, Elizabeth M. Ayala, Chen-Che J. Huang, Frank S. Wilbanks, Rachel C. Knight, Benson T. Akingbemi, and Satyanarayana R. Pondugula
- Subjects
Leydig cells ,MA-10 cells ,pregnenolone 16-alpha carbonitrile (PCN) ,pregnane X receptor (PXR) ,testis ,testosterone ,Therapeutics. Pharmacology ,RM1-950 ,Toxicology. Poisons ,RA1190-1270 - Abstract
Leydig cells (LCs) in the testes produce the male sex hormone testosterone (T). Several xenobiotics, including clinical drugs, supplements, and environmental chemicals, are known to disrupt T homeostasis. Notably, some of these xenobiotics are known to activate the pregnane X receptor (PXR), a ligand-dependent nuclear receptor. However, it is currently unknown whether PXR is expressed in LCs and whether PXR activation alters T synthesis in rodent LCs. Therefore, in this study, we sought to determine whether PXR is expressed in rodent LCs and whether pregnenolone 16-alpha carbonitrile (PCN), the prototype agonist of rodent PXR, regulates T biosynthesis in rodent LCs. Hormonal as well as protein and gene expression analyses were conducted in rat primary LCs and MA-10 mouse Leydig cells. Results showed that PXR was expressed at the mRNA and protein level in both rat primary LCs and MA-10 cells. Incubation of rat primary LCs with PCN resulted in a significant decrease in T secretion. This PCN-induced decrease in T secretion was associated with decreased protein expression of key steroidogenic enzymes such as 3β-HSD and CYP17A1. RNA-seq results from MA-10 cells showed that PCN down-regulated the transcripts of steroidogenic enzymes and proteins involved in the T synthesis pathway. Together, these results suggest that PCN, an agonist of rodent PXR, can regulate T biosynthesis in rodent LCs by down-regulating the expression of the steroidogenic enzymes involved in T biosynthesis. Our results are significant as they provide a potential novel mechanism for disruption of testosterone homeostasis by a variety of xenobiotics.
- Published
- 2024
- Full Text
- View/download PDF
17. A search for new physics in low-energy electron recoils from the first LZ exposure
- Author
-
The LZ Collaboration, Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Bargemann, J. W., Baxter, A., Beattie, K., Beltrame, P., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Chan, C., Chawla, A., Chen, H., Cherwinka, J. J., Chott, N. I., Converse, M. V., Cottle, A., Cox, G., Curran, D., Dahl, C. E., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Hall, C. R., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Huang, D. Q., Hertel, S. A., Heuermann, G., Horn, M., Hunt, D., Ignarra, C. M., Jahangir, O., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Lorenzon, W., Lu, C., Lucero, D., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Palladino, K. J., Palmer, J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Poudel, S., Qie, Y., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Taylor, W. C., Temples, D. J., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Turner, W., Vacheret, A., Vaitkus, A. C., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Webb, R. C., Weeldreyer, L., Whitis, T. J., Williams, M., Wisniewski, W. J., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., Yeh, M., and Zweig, E. A.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment's first exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar axion electron coupling, solar neutrino magnetic moment and millicharge, and electron couplings to galactic axion-like particles and hidden photons. Similar limits are set on weakly interacting massive particle (WIMP) dark matter producing signals through ionized atomic states from the Migdal effect., Comment: 13 pages, 10 figures. See https://tinyurl.com/LZDataReleaseRun1ER for a data release related to this paper
- Published
- 2023
- Full Text
- View/download PDF
18. Search for new physics in low-energy electron recoils from the first LZ exposure
- Author
-
Aalbers, J, Akerib, DS, Al Musalhi, AK, Alder, F, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Baker, A, Balashov, S, Bang, J, Bargemann, JW, Baxter, A, Beattie, K, Beltrame, P, Benson, T, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Buuck, M, Carmona-Benitez, MC, Chan, C, Chawla, A, Chen, H, Cherwinka, JJ, Chott, NI, Converse, MV, Cottle, A, Cox, G, Curran, D, Dahl, CE, David, A, Delgaudio, J, Dey, S, de Viveiros, L, Ding, C, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, TMA, Gaitskell, RJ, Geffre, A, Genovesi, J, Ghag, C, Gibbons, R, Gokhale, S, Green, J, van der Grinten, MGD, Hall, CR, Han, S, Hartigan-O’Connor, E, Haselschwardt, SJ, Huang, DQ, Hertel, SA, Heuermann, G, Horn, M, Hunt, D, Ignarra, CM, Jahangir, O, James, RS, Johnson, J, Kaboth, AC, Kamaha, AC, Khaitan, D, Khazov, A, Khurana, I, Kim, J, Kingston, J, Kirk, R, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Lin, J, Lindote, A, Linehan, R, and Lippincott, WH
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences - Abstract
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment's first exposure of 60 live days and a fiducial mass of 5.5 t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar axion electron coupling, solar neutrino magnetic moment and millicharge, and electron couplings to galactic axionlike particles and hidden photons. Similar limits are set on weakly interacting massive particle (WIMP) dark matter producing signals through ionized atomic states from the Migdal effect.
- Published
- 2023
19. Predicting air quality index using attention hybrid deep learning and quantum-inspired particle swarm optimization
- Author
-
Nguyen, Anh Tuan, Pham, Duy Hoang, Oo, Bee Lan, Ahn, Yonghan, and Lim, Benson T. H.
- Published
- 2024
- Full Text
- View/download PDF
20. Geohistory: Crowdsourcing and Democratizing the Landscape of Battle
- Author
-
Benson, T. Lloyd
- Published
- 2012
- Full Text
- View/download PDF
21. Rapid Expansion of the Young Type Ia Supernova Remnant 0519-69.0: More Evidence for a Circumstellar Shell
- Author
-
Guest, Benson T., Borkowski, Kazimierz J., Ghavamian, Parviz, Petre, Robert, Picquenot, Adrien, Reynolds, Stephen P., Seitenzahl, Ivo R., and Williams, Brian J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The nature of Type Ia supernovae remains controversial. The youngest remnants of Ia supernovae hold clues to the explosion and to the immediate surroundings. We present a third epoch of Chandra observations of the $\sim600$-year-old Type Ia remnant 0519-69.0 in the Large Magellanic Cloud, extending the time baseline to 21 years from the initial 2000 observations. We find rapid expansion of X-ray emitting material, with an average velocity of 4760 km s$^{-1}$. At the distance of the LMC this corresponds to an undecelerated age of 750 years, with the true age somewhat smaller. We also find that the bright ring of emission has expanded by 1.3\%, corresponding to a velocity of 1900 km s$^{-1}$ and an undecelerated age of 1600 years. The high velocity of the peripheral X-rays, contrasted with the modest expansion of the main X-ray shell, provides further evidence for a massive shell of circumstellar material., Comment: 8 pages, 4 figures, accepted for publication in ApJ
- Published
- 2023
- Full Text
- View/download PDF
22. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment
- Author
-
Aalbers, J, Akerib, DS, Akerlof, CW, Al Musalhi, AK, Alder, F, Alqahtani, A, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Azadi, S, Bailey, AJ, Baker, A, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Barry, MJ, Barthel, J, Bauer, D, Baxter, A, Beattie, K, Belle, J, Beltrame, P, Bensinger, J, Benson, T, Bernard, EP, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Birrittella, B, Blockinger, GM, Boast, KE, Boxer, B, Bramante, R, Brew, CAJ, Brás, P, Buckley, JH, Bugaev, VV, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carels, C, Carlsmith, DL, Carlson, B, Carmona-Benitez, MC, Cascella, M, Chan, C, Chawla, A, Chen, H, Cherwinka, JJ, Chott, NI, Cole, A, Coleman, J, Converse, MV, Cottle, A, Cox, G, Craddock, WW, Creaner, O, Curran, D, Currie, A, Cutter, JE, Dahl, CE, David, A, Davis, J, Davison, TJR, Delgaudio, J, Dey, S, de Viveiros, L, Dobi, A, Dobson, JEY, Druszkiewicz, E, Dushkin, A, Edberg, TK, Edwards, WR, Elnimr, MM, Emmet, WT, Eriksen, SR, Faham, CH, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Ford, P, Francis, VB, Fraser, ED, Fruth, T, Gaitskell, RJ, Gantos, NJ, Garcia, D, Geffre, A, Gehman, VM, and Genovesi, J
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,LUX-ZEPLIN Collaboration ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c^{2}. The most stringent limit is set for spin-independent scattering at 36 GeV/c^{2}, rejecting cross sections above 9.2×10^{-48} cm at the 90% confidence level.
- Published
- 2023
23. The X-ray synchrotron rims in Cassiopeia A narrow with energy
- Author
-
Picquenot, Adrien, Williams, Brian J., Acero, Fabio, and Guest, Benson T.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Some young supernova remnants exhibit thin filaments of X-ray synchrotron radiation coinciding with the forward shock due to accelerated electrons interacting with the local magnetic field. The two main models accounting for the radial brightness evolution of these filaments differ in their prediction of the narrowing (or not) of the filaments with increasing photon energy. In this paper, we report our observation of such a narrowing of the synchrotron filaments in Cassiopeia A at X-ray energies, and how this finding could help in understanding the mechanisms at stake in their formation. We used a new blind source separation method on the 1 Ms Chandra observation of Cassiopeia A, in order to obtain detailed and unpolluted images of the synchrotron emission in three energy bands. We then extracted the profiles of several filaments at the forward shock and the reverse shock to estimate and compare their widths. We find that there is indeed a narrowing with energy of the synchrotron filaments both at the forward and at the reverse shocks in Cassiopeia A. The energy dependency of this narrowing seems stronger at high energy, which is indicative of a damping effect, confirmed by radio observations., Comment: Accepted by A&A
- Published
- 2023
- Full Text
- View/download PDF
24. An X-ray Proper Motion Study of the LMC SNR 0509-67.5
- Author
-
Guest, Benson T., Borkowski, Kazimierz J., Ghavamian, Parviz, Petre, Robert, Reynolds, Stephen P., Seitenzahl, Ivo R., and Williams, Brian J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present a third epoch of Chandra observations of the Type Ia Large Magellanic Cloud Supernova remnant (SNR) 0509-67.5. With these new observations from 2020, the baseline for proper motion measurements of the expansion has grown to 20 years (from the earliest Chandra observations in 2000). We report here the results of these new expansion measurements. The lack of nearby bright point sources renders absolute image alignment difficult. However, we are able to measure the average expansion of the diameter of the remnant along several projection directions. We find that the remnant is expanding with an average velocity of 6120 (4900 -- 7360) km s$^{-1}$. This high shock velocity is consistent with previous works, and also consistent with the inference that 0509-67.5 is expanding into a very low density surrounding medium. At the distance of the LMC, this velocity corresponds to an undecelerated age of 600 yrs, with the real age somewhat smaller., Comment: 9 pages, 5 figures. Accepted for publication in ApJ
- Published
- 2022
- Full Text
- View/download PDF
25. Predicting air quality index using attention hybrid deep learning and quantum-inspired particle swarm optimization
- Author
-
Anh Tuan Nguyen, Duy Hoang Pham, Bee Lan Oo, Yonghan Ahn, and Benson T. H. Lim
- Subjects
Air Quality Index ,Long short term memory ,Time series forecasting ,Quantum particle swarm optimization ,Attention ,Hybrid deep learning ,Computer engineering. Computer hardware ,TK7885-7895 ,Information technology ,T58.5-58.64 ,Electronic computers. Computer science ,QA75.5-76.95 - Abstract
Abstract Air pollution poses a significant threat to the health of the environment and human well-being. The air quality index (AQI) is an important measure of air pollution that describes the degree of air pollution and its impact on health. Therefore, accurate and reliable prediction of the AQI is critical but challenging due to the non-linearity and stochastic nature of air particles. This research aims to propose an AQI prediction hybrid deep learning model based on the Attention Convolutional Neural Networks (ACNN), Autoregressive Integrated Moving Average (ARIMA), Quantum Particle Swarm Optimization (QPSO)-enhanced-Long Short-Term Memory (LSTM) and XGBoost modelling techniques. Daily air quality data were collected from the official Seoul Air registry for the period 2021 to 2022. The data were first preprocessed through the ARIMA model to capture and fit the linear part of the data and followed by a hybrid deep learning architecture developed in the pretraining–finetuning framework for the non-linear part of the data. This hybrid model first used convolution to extract the deep features of the original air quality data, and then used the QPSO to optimize the hyperparameter for LSTM network for mining the long-terms time series features, and the XGBoost model was adopted to fine-tune the final AQI prediction model. The robustness and reliability of the resulting model were assessed and compared with other widely used models and across meteorological stations. Our proposed model achieves up to 31.13% reduction in MSE, 19.03% reduction in MAE and 2% improvement in R-squared compared to the best appropriate conventional model, indicating a much stronger magnitude of relationships between predicted and actual values. The overall results show that the attentive hybrid deep Quantum inspired Particle Swarm Optimization model is more feasible and efficient in predicting air quality index at both city-wide and station-specific levels.
- Published
- 2024
- Full Text
- View/download PDF
26. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment
- Author
-
Aalbers, J., Akerib, D. S., Akerlof, C. W., Musalhi, A. K. Al, Alder, F., Alqahtani, A., Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Azadi, S., Bailey, A. J., Baker, A., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Barry, M. J., Barthel, J., Bauer, D., Baxter, A., Beattie, K., Belle, J., Beltrame, P., Bensinger, J., Benson, T., Bernard, E. P., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Birrittella, B., Blockinger, G. M., Boast, K. E., Boxer, B., Bramante, R., Brew, C. A. J., Brás, P., Buckley, J. H., Bugaev, V. V., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carels, C., Carlsmith, D. L., Carlson, B., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chawla, A., Chen, H., Cherwinka, J. J., Chott, N. I., Cole, A., Coleman, J., Converse, M. V., Cottle, A., Cox, G., Craddock, W. W., Creaner, O., Curran, D., Currie, A., Cutter, J. E., Dahl, C. E., David, A., Davis, J., Davison, T. J. R., Delgaudio, J., Dey, S., de Viveiros, L., Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Dushkin, A., Edberg, T. K., Edwards, W. R., Elnimr, M. M., Emmet, W. T., Eriksen, S. R., Faham, C. H., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Ford, P., Francis, V. B., Fraser, E. D., Fruth, T., Gaitskell, R. J., Gantos, N. J., Garcia, D., Geffre, A., Gehman, V. M., Genovesi, J., Ghag, C., Gibbons, R., Gibson, E., Gilchriese, M. G. D., Gokhale, S., Gomber, B., Green, J., Greenall, A., Greenwood, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Hans, S., Hanzel, K., Harrison, A., Hartigan-O'Connor, E., Haselschwardt, S. J., Hertel, S. A., Heuermann, G., Hjemfelt, C., Hoff, M. D., Holtom, E., Hor, J. Y-K., Horn, M., Huang, D. Q., Hunt, D., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., James, R. S., Jeffery, S. N., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kasey, V., Kazkaz, K., Keefner, J., Khaitan, D., Khaleeq, M., Khazov, A., Khurana, I., Kim, Y. D., Kocher, C. D., Kodroff, D., Korley, L., Korolkova, E. V., Kras, J., Kraus, H., Kravitz, S., Krebs, H. J., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Kyre, S., Landerud, B., Leason, E. A., Lee, C., Lee, J., Leonard, D. S., Leonard, R., Lesko, K. T., Levy, C., Li, J., Liao, F. -T., Liao, J., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, R., Liu, X., Liu, Y., Loniewski, C., Lopes, M. I., Asamar, E. Lopez, Paredes, B. López, Lorenzon, W., Lucero, D., Luitz, S., Lyle, J. M., Majewski, P. A., Makkinje, J., Malling, D. C., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., Marzioni, M. F., Maupin, C., McCarthy, M. E., McConnell, C. T., McKinsey, D. N., McLaughlin, J., Meng, Y., Migneault, J., Miller, E. H., Mizrachi, E., Mock, J. A., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nehrkorn, C., Neves, F., Nguyen, A., Nikoleyczik, J. A., Nilima, A., O'Dell, J., O'Neill, F. G., O'Sullivan, K., Olcina, I., Olevitch, M. A., Oliver-Mallory, K. C., Orpwood, J., Pagenkopf, D., Pal, S., Palladino, K. J., Palmer, J., Pangilinan, M., Parveen, N., Patton, S. J., Pease, E. K., Penning, B., Pereira, C., Pereira, G., Perry, E., Pershing, T., Peterson, I. B., Piepke, A., Podczerwinski, J., Porzio, D., Powell, S., Preece, R. M., Pushkin, K., Qie, Y., Ratcliff, B. N., Reichenbacher, J., Reichhart, L., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rodrigues, J. P., Rodriguez, A., Rose, H. J., Rosero, R., Rossiter, P., Rushton, T., Rutherford, G., Rynders, D., Saba, J. S., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Seymour, D., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Skarpaas, K., Skulski, W., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stark, M. R., Stevens, A., Stiegler, T. M., Stifter, K., Studley, R., Suerfu, B., Sumner, T. J., Sutcliffe, P., Swanson, N., Szydagis, M., Tan, M., Taylor, D. J., Taylor, R., Taylor, W. C., Temples, D. J., Tennyson, B. P., Terman, P. A., Thomas, K. J., Tiedt, D. R., Timalsina, M., To, W. H., Tomás, A., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Tull, C. E., Turner, W., Tvrznikova, L., Utku, U., Va'vra, J., Vacheret, A., Vaitkus, A. C., Verbus, J. R., Voirin, E., Waldron, W. L., Wang, A., Wang, B., Wang, J. J., Wang, W., Wang, Y., Watson, J. R., Webb, R. C., White, A., White, D. T., White, J. T., White, R. G., Whitis, T. J., Williams, M., Wisniewski, W. J., Witherell, M. S., Wolfs, F. L. H., Wolfs, J. D., Woodford, S., Woodward, D., Worm, S. D., Wright, C. J., Xia, Q., Xiang, X., Xiao, Q., Xu, J., Yeh, M., Yin, J., Young, I., Zarzhitsky, P., Zuckerman, A., and Zweig, E. A.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60~live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c$^2$. The most stringent limit is set for spin-independent scattering at 36 GeV/c$^2$, rejecting cross sections above 9.2$\times 10^{-48}$ cm$^2$ at the 90% confidence level., Comment: 9 pages, 8 figures. See https://doi.org/10.1103/PhysRevLett.131.041002 for a data release related to this paper
- Published
- 2022
- Full Text
- View/download PDF
27. A Call to Arms Control: Synergies between Nonproliferation Applications of Neutrino Detectors and Large-Scale Fundamental Neutrino Physics Experiments
- Author
-
Akindele, T., Anderson, T., Anderssen, E., Askins, M., Bohles, M., Bacon, A. J., Bagdasarian, Z., Baldoni, A., Barna, A., Barros, N., Bartoszek, L., Bat, A., Beier, E. W., Benson, T., Bergevin, M., Bernstein, A., Birrittella, B., Blucher, E., Boissevain, J., Bonventre, R., Borusinki, J., Bourret, E., Brown, D., Callaghan, E. J., Caravaca, J., Chen, M., Cowen, D. F., Crow, B., Dalnoki-Veress, F., Danielson, D., Dazeley, S., Diwan, M., Djurcic, Z., Druetzler, A., Dye, S., Dye, S. T., Eisch, J., Elagin, A., Enqvist, T., Erlandson, Andrew, Fahrendholz, U., Fienberg, A., Fischer, V., Frankiewicz, K., Garzelli, M. V., Gooding, D., Graham, C., Grant, C., Griskevich, J., Guffanti, D., Hagner, C., Hallin, A., He, J., Hecla, J., Jackson, C. M., Jiang, R., Jovanovic, I., Kaptanoglu, T., Keenan, M., Keener, P., Kemp, E., Klein, J. R., Kolomensky, Yu. G., Kraus, C., Krennrich, F., Kroupa, T., Kunkle, P., Kutter, T., Lachenmaier, T., Land, B., Lande, K., Learned, J., Learned, J. G., Lebanowski, L., Li, V., Li, V. A., Lozza, V., Ludhova, L., Mahapatra, Rupak, Malek, M., Manecki, S., Maneira, J., Mariani, C., Maricic, J., Marino, A., Marr-Laundrie, P., Martyn, J., Mastbaum, A., Mauger, C., Mayer, M., Migenda, J., Moore, J., Moretti, F., Mullen, A., Napolitano, J., Naranjo, B., Naugle, S., Neights, E., Newcomer, M., Nieslony, M., Nikolica, A., Nishimura, K., O'Meara, B., Oberauer, L., Ochoa-Ricoux, J. P., Ogren, K., Gann, G. D. Orebi, Ouellet, J., Oxborough, L., Papatyi, A., Paulos, B., Pershing, T., Petcov, S. T., Pickard, L., Pronost, G., Rosero, R., Saba, J., Sabarots, L., Sanchez, M. C., Sawatzki, J., Schoppmann, S., Sensenig, J., Seo, S. H., Seo, S., Shebalin, V., Smiley, M., Smy, M., Song, H., Stahl, A., Steiger, H., Stock, M. R., Suekane, F., Sunej, H., Sutanto, F., Svoboda, R., Tiras, E., Trzaska, W. H., Tzanov, M., Vagins, M., Van Berg, R., Varner, G., Veeraraghavan, V., Ventura, S., Vilela, C., Vogelaar, R. B., Walsh, B., Wang, Z., Wang, J., Wang, W., Wendel, G., Westphal, D., Wetstein, M., Wilhelm, A., Wilking, M. J., Winslow, L., Wittich, P., Wolcott, S., Wonsak, B., Worcester, E., Wurm, M., Yang, G., Yeh, M., Zimmerman, E. D., Zsoldos, S., and Zuber, K.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Physics - Physics and Society - Abstract
The High Energy Physics community can benefit from a natural synergy in research activities into next-generation large-scale water and scintillator neutrino detectors, now being studied for remote reactor monitoring, discovery and exclusion applications in cooperative nonproliferation contexts. Since approximately 2010, US nonproliferation researchers, supported by the National Nuclear Security Administration (NNSA), have been studying a range of possible applications of relatively large (100 ton) to very large (hundreds of kiloton) water and scintillator neutrino detectors. In parallel, the fundamental physics community has been developing detectors at similar scales and with similar design features for a range of high-priority physics topics, primarily in fundamental neutrino physics. These topics include neutrino oscillation studies at beams and reactors, solar, and geological neutrino measurements, supernova studies, and others. Examples of ongoing synergistic work at U.S. national laboratories and universities include prototype gadolinium-doped water and water-based and opaque scintillator test-beds and demonstrators, extensive testing and industry partnerships related to large area fast position-sensitive photomultiplier tubes, and the development of concepts for a possible underground kiloton-scale water-based detector for reactor monitoring and technology demonstrations. Some opportunities for engagement between the two communities include bi-annual Applied Antineutrino Physics conferences, collaboration with U.S. National Laboratories engaging in this research, and occasional NNSA funding opportunities supporting a blend of nonproliferation and basic science R&D, directed at the U.S. academic community., Comment: contribution to Snowmass 2021
- Published
- 2022
28. Locating the CSM Emission within the Type Ia Supernova Remnant N103B
- Author
-
Guest, Benson T., Blair, William P., Borkowski, Kazimierz J., Ghavamian, Parviz, Hendrick, Sean P., Long, Knox S., Petre, Robert, Raymond, John C., Rest, Armin, Sankrit, Ravi, Seitenzahl, Ivo R., and Williams, Brian J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present results from deep Chandra observations of the young Type Ia supernova remnant (SNR) 0509-68.7, also known as N103B, located in the Large Magellanic cloud (LMC). The remnant displays an asymmetry in brightness, with the western hemisphere appearing significantly brighter than the eastern half. Previous multi-wavelength observations have attributed the difference to a density gradient and suggested circumstellar material origins, drawing similarities to Kepler's SNR. We apply a clustering technique combined with traditional imaging analysis to spatially locate various emission components within the remnant. We find that O and Mg emission is strongest along the blast wave, and coincides with Spitzer observations of dust emission and optical emission from the non-radiative shocks. The abundances of O and Mg in these regions are enhanced relative to the average LMC abundances and appear as a distinct spatial distribution compared to the ejecta products, supporting the circumstellar medium (CSM) interpretation. We also find that the spatial distribution of Cr is identical to that of Fe in the interior of the remnant, and does not coincide at all with the O and Mg emission., Comment: 23 pages, 17 Figures. Accepted for publication in ApJ
- Published
- 2022
- Full Text
- View/download PDF
29. Erratum to: The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs
- Author
-
Akerib, DS, Akerlof, CW, Akimov, D Yu, Alquahtani, A, Alsum, SK, Anderson, TJ, Angelides, N, Araújo, HM, Arbuckle, A, Armstrong, JE, Arthurs, M, Auyeung, H, Aviles, S, Bai, X, Bailey, AJ, Balajthy, J, Balashov, S, Bang, J, Barry, MJ, Bauer, D, Bauer, P, Baxter, A, Belle, J, Beltrame, P, Bensinger, J, Benson, T, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Birrittella, B, Boast, KE, Bolozdynya, AI, Boulton, EM, Boxer, B, Bramante, R, Branson, S, Brás, P, Breidenbach, M, Brew, CAJ, Buckley, JH, Bugaev, VV, Bunker, R, Burdin, S, Busenitz, JK, Cabrita, R, Campbell, JS, Carels, C, Carlsmith, DL, Carlson, B, Carmona-Benitez, MC, Cascella, M, Chan, C, Cherwinka, JJ, Chiller, AA, Chiller, C, Chott, NI, Cole, A, Coleman, J, Colling, D, Conley, RA, Cottle, A, Coughlen, R, Cox, G, Craddock, WW, Curran, D, Currie, A, Cutter, JE, da Cunha, JP, Dahl, CE, Dardin, S, Dasu, S, Davis, J, Davison, TJR, de Viveiros, L, Decheine, N, Dobi, A, Dobson, JEY, Druszkiewicz, E, Dushkin, A, Edberg, TK, Edwards, WR, Edwards, BN, Edwards, J, Elnimr, MM, Emmet, WT, Eriksen, SR, Faham, CH, Fan, A, Fayer, S, Fiorucci, S, Flaecher, H, Florang, IM Fogarty, Ford, P, Francis, VB, Fraser, ED, Froborg, F, and Fruth, T
- Subjects
Particle and High Energy Physics ,Astronomical Sciences ,Atomic ,Molecular and Optical Physics ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The reference to the article is Manuscript ID EPJC-20-06-042 from the internal review perspective. The reference to the article as published, is: (Table presented.).
- Published
- 2022
30. A study of MIR photoluminescence from Pr$^{3+}$ doped chalcogenide fibers pumped at near-infrared wavelengths
- Author
-
Sujecki, S., Sojka, L., Beres-Pawlik, E., Piramidowicz, R., Sakr, H., Tang, Z., Barney, E., Furniss, D., Benson, T. M., and Seddon, A. B.
- Subjects
Physics - Optics ,00A79 ,J.2 - Abstract
We perform a numerical analysis of mid-infrared photoluminescence emitted by praseodymium (III) doped chalcogenide selenide glass pumped at near-infrared wavelengths. The results obtained show that an effective inversion of level populations can be achieved using both 1480 nm and 1595 nm laser diodes. The rate of the spontaneous emission achieved when pumping at 1480 nm and 1595 nm is comparable to this achieved using the standard pumping wavelength of 2040 nm., Comment: 7 pages, 8 figures
- Published
- 2021
31. Monolithic Multigrid for Magnetohydrodynamics
- Author
-
Adler, J. H., Benson, T., Cyr, E. C., Farrell, P. E., MacLachlan, S., and Tuminaro, R.
- Subjects
Mathematics - Numerical Analysis ,65F10, 65N55, 65N22, 76W05 - Abstract
The magnetohydrodynamics (MHD) equations model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. After discretization and linearization, the resulting system of equations is generally difficult to solve due to the coupling between variables, and the heterogeneous coefficients induced by the linearization process. In this paper, we investigate multigrid preconditioners for this system based on specialized relaxation schemes that properly address the system structure and coupling. Three extensions of Vanka relaxation are proposed and applied to problems with up to 170 million degrees of freedom and fluid and magnetic Reynolds numbers up to 400 for stationary problems and up to 20,000 for time-dependent problems.
- Published
- 2020
32. The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs
- Author
-
Akerib, D. S., Akerlof, C. W., Akimov, D. Yu., Alquahtani, A., Alsum, S. K., Anderson, T. J., Angelides, N., Araújo, H. M., Arbuckle, A., Armstrong, J. E., Arthurs, M., Auyeung, H., Aviles, S., Bai, X., Bailey, A. J., Balajthy, J., Balashov, S., Bang, J., Barry, M. J., Bauer, D., Bauer, P., Baxter, A., Belle, J., Beltrame, P., Bensinger, J., Benson, T., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Birrittella, B., Boast, K. E., Bolozdynya, A. I., Boulton, E. M., Boxer, B., Bramante, R., Branson, S., Brás, P., Breidenbach, M., Brew, C. A. J., Buckley, J. H., Bugaev, V. V., Bunker, R., Burdin, S., Busenitz, J. K., Cabrita, R., Campbell, J. S., Carels, C., Carlsmith, D. L., Carlson, B., Carmona-Benitez, M. C., Cascella, M., Chan, C., Cherwinka, J. J., Chiller, A. A., Chiller, C., Chott, N. I., Cole, A., Coleman, J., Colling, D., Conley, R. A., Cottle, A., Coughlen, R., Cox, G., Craddock, W. W., Curran, D., Currie, A., Cutter, J. E., da Cunhaw, J. P., Dahl, C. E., Dardin, S., Dasu, S., Davis, J., Davison, T. J. R., de Viveiros, L., Decheine, N., Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Dushkin, A., Edberg, T. K., Edwards, W. R., Edwards, B. N., Edwards, J., Elnimr, M. M., Emmet, W. T., Eriksen, S. R., Faham, C. H., Fan, A., Fayer, S., Fiorucci, S., Flaecher, H., Florang, I. M. Fogarty, Ford, P., Francis, V. B., Fraser, E. D., Froborg, F., Fruth, T., Gaitskell, R. J., Gantos, N. J., Garcia, D., Gehman, V. M., Gelfand, R., Genovesi, J., Gerhard, R. M., Ghag, C., Gibson, E., Gilchriese, M. G. D., Gokhale, S., Gomber, B., Gonda, T. G., Greenall, A., Greenwood, S., Gregerson, G., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Hamilton, D., Hans, S., Hanzel, K., Harrington, T., Harrison, A., Harrison, J., Hasselkus, C., Haselschwardt, S. J., Hemer, D., Hertel, S. A., Heise, J., Hillbrand, S., Hitchcock, O., Hjemfelt, C., Hoff, M. D., Holbrook, B., Holtom, E., Hor, J. Y-K., Horn, M., Huang, D. Q., Hurteau, T. W., Ignarra, C. M., Irving, M. N., Jacobsen, R. G., Jahangir, O., Jeffery, S. N., Ji, W., Johnson, M., Johnson, J., Johnson, P., Jones, W. G., Kaboth, A. C., Kamaha, A., Kamdin, K., Kasey, V., Kazkaz, K., Keefner, J., Khaitan, D., Khaleeq, M., Khazov, A., Khromov, A. V., Khurana, I., Kim, Y. D., Kim, W. T., Kocher, C. D., Kodroff, D., Konovalov, A. M., Korley, L., Korolkova, E. V., Koyuncu, M., Kras, J., Kraus, H., Kravitz, S. W., Krebs, H. J., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Kumpan, A. V., Kyre, S., Lambert, A. R., Landerud, B., Larsen, N. A., Laundrie, A., Leason, E. A., Lee, H. S., Lee, J., Lee, C., Lenardo, B. G., Leonard, D. S., Leonard, R., Lesko, K. T., Levy, C., Li, J., Liu, Y., Liao, J., Liao, F. -T., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, R., Liu, X., Loniewski, C., Lopes, M. I., Lopez-Asamar, E., Paredes, B. López, Lorenzon, W., Lucero, D., Luitz, S., Lyle, J. M., Lynch, C., Majewski, P. A., Makkinje, J., Malling, D. C., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., Markley, D. J., MarrLaundrie, P., Martin, T. J., Marzioni, M. F., Maupin, C., McConnell, C. T., McKinsey, D. N., McLaughlin, J., Mei, D. -M., Meng, Y., Miller, E. H., Minaker, Z. J., Mizrachi, E., Mock, J., Molash, D., Monte, A., Monzani, M. E., Morad, J. A., Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nehrkorn, C., Nelson, H. N., Nesbit, J., Neves, F., Nikkel, J. A., Nikoleyczik, J. A., Nilima, A., O'Dell, J., Oh, H., O'Neill, F. G., O'Sullivan, K., Olcina, I., Olevitch, M. A., Oliver-Mallory, K. C., Oxborough, L., Pagac, A., Pagenkopf, D., Pal, S., Palladino, K. J., Palmaccio, V. M., Palmer, J., Pangilinan, M., Parveen, N., Patton, S. J., Pease, E. K., Penning, B. P., Pereira, G., Pereira, C., Peterson, I. B., Piepke, A., Pierson, S., Powell, S., Preece, R. M., Pushkin, K., Qie, Y., Racine, M., Ratcliff, B. N., Reichenbacher, J., Reichhart, L., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rodrigues, J. P., Rose, H. J., Rosero, R., Rossiter, P., Rucinski, R., Rutherford, G., Saba, J. S., Sabarots, L., Santone, D., Sarychev, M., Sazzad, A. B. M. R., Schnee, R. W., Schubnell, M., Scovell, P. R., Severson, M., Seymour, D., Shaw, S., Shutt, G. W., Shutt, T. A., Silk, J. J., Silva, C., Skarpaas, K., Skulski, W., Smith, A. R., Smith, R. J., Smith, R. E., So, J., Solmaz, M., Solovov, V. N., Sorensen, P., Sosnovtsev, V. V., Stancu, I., Stark, M. R., Stephenson, S., Stern, N., Stevens, A., Stiegler, T. M., Stifter, K., Studley, R., Sumner, T. J., Sundarnath, K., Sutcliffe, P., Swanson, N., Szydagis, M., Tan, M., Taylor, W. C., Taylor, R., Taylor, D. J., Temples, D., Tennyson, B. P., Terman, P. A., Thomas, K. J., Thomson, J. A., Tiedt, D. R., Timalsina, M., To, W. H., Tomás, A., Tope, T. E., Tripathi, M., Tronstad, D. R., Tull, C. E., Turner, W., Tvrznikova, L., Utes, M., Utku, U., Uvarov, S., Va'vra, J., Vacheret, A., Vaitkus, A., Verbus, J. R., Vietanen, T., Voirin, E., Vuosalo, C. O., Walcott, S., Waldron, W. L., Walker, K., Wang, J. J., Wang, R., Wang, L., Wang, W., Wang, Y., Watson, J. R., Migneault, J., Weatherly, S., Webb, R. C., Wei, W. -Z., While, M., White, R. G., White, J. T., White, D. T., Whitis, T. J., Wisniewski, W. J., Wilson, K., Witherell, M. S., Wolfs, F. L. H., Wolfs, J. D., Woodward, D., Worm, S. D., Xiang, X., Xiao, Q., Xu, J., Yeh, M., Yin, J., Young, I., Zhang, C., and Zarzhitsky, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above $1.4 \times 10^{-48}$ cm$^{2}$ for a WIMP mass of 40 GeV/c$^{2}$ and a 1000 d exposure. LZ achieves this sensitivity through a combination of a large 5.6 t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented., Comment: 45 pages (79 inc. tables), 7 figures, 9 tables
- Published
- 2020
- Full Text
- View/download PDF
33. Designing sub-20 nm self-assembled nanocarriers for small molecule delivery: Interplay among structural geometry, assembly energetics, and cargo release kinetics
- Author
-
Jung, Benson T, Lim, Marc, Jung, Katherine, Li, Michael, Dong, He, Dube, Nikhil, and Xu, Ting
- Subjects
Engineering ,Biomedical Engineering ,Nanotechnology ,Bioengineering ,Generic health relevance ,Doxorubicin ,Drug Carriers ,Hydrophobic and Hydrophilic Interactions ,Kinetics ,Micelles ,Sub-20 nm nanocarrier ,Drug delivery ,Small molecule encapsulation ,Molecular geometry ,Release kinetics ,Structural characterization ,Sub-20 nm nanocarrier ,Chemical Engineering ,Pharmacology and Pharmaceutical Sciences ,Pharmacology & Pharmacy ,Pharmacology and pharmaceutical sciences ,Biomedical engineering - Abstract
Biological constraints in diseased tissues have motivated the need for small nanocarriers (10-30 nm) to achieve sufficient vascular extravasation and pervasive tumor penetration. This particle size limit is only an order of magnitude larger than small molecules, such that cargo loading is better described by co-assembly processes rather than simple encapsulation. Understanding the structural, kinetic, and energetic contributions of carrier-cargo co-assembly is thus critical to achieve molecular-level control towards predictable in vivo behavior. These interconnected set of properties were systematically examined using sub-20 nm self-assembled nanocarriers known as three-helix micelles (3HM). Both hydrophobicity and the "geometric packing parameter" dictate small molecule compatibility with 3HM's alkyl tail core. Planar obelisk-like apomorphine and doxorubicin (DOX) molecules intercalated well within the 3HM core and near the core-shell interface, forming an integral component to the co-assembly, as corroborated by small-angle X-ray and neutron-scattering structural studies. DOX promoted crystalline alkyl tail ordering, which significantly increased (+63%) the activation energy of 3HM subunit exchange. Subsequently, 3HM-DOX displayed slow-release kinetics (t1/2 = 40 h) at physiological temperatures, with ~50× greater cargo preference for the micelle core as described by two drug partitioning coefficients (micellar core/shell Kp1 ~ 24, and shell/bulk solvent Kp2 ~ 2). The geometric and energetic insights between nanocarrier and their small molecule cargos developed here will aid in broader efforts to deconvolute the interconnected properties of carrier-drug co-assemblies. Adding this knowledge to pharmacological and immunological explorations will expand our understanding of nanomedicine behavior throughout all the physical and in vivo processes they are intended to encounter.
- Published
- 2021
34. Peers and Instructors as Sources of Distraction from a Cognitive Load Perspective
- Author
-
Frisby, Brandi N., Sexton, Benson T., Buckner, Marjorie M., Beck, Anna-Carrie, and Kaufmann, Renee
- Abstract
Framed by literature regarding classroom interactions that affect students' cognitive processing, this study provided an integrative approach to understanding distracting instructor and student communication. Participants qualitatively reported on either a distracting peer (n = 90) or instructor (n = 127). The responses were coded using anti-citizenship behaviors and instructor misbehaviors. One additional category emerged that extends the instructor misbehavior literature. Participants completed a new distraction scale and a cognitive load scale. Our results revealed differences in frequencies for each behavior, but all instructor and student behaviors were equally distracting and had similar negative influences on students' cognitive load. Implications for instructors to manage these distracting behaviors are discussed.
- Published
- 2018
35. The LUX-ZEPLIN (LZ) Experiment
- Author
-
The LZ Collaboration, Akerib, D. S., Akerlof, C. W., Akimov, D. Yu., Alquahtani, A., Alsum, S. K., Anderson, T. J., Angelides, N., Araújo, H. M., Arbuckle, A., Armstrong, J. E., Arthurs, M., Auyeung, H., Bai, X., Bailey, A. J., Balajthy, J., Balashov, S., Bang, J., Barry, M. J., Barthel, J., Bauer, D., Bauer, P., Baxter, A., Belle, J., Beltrame, P., Bensinger, J., Benson, T., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birrittella, B., Boast, K. E., Bolozdynya, A. I., Boulton, E. M., Boxer, B., Bramante, R., Branson, S., Brás, P., Breidenbach, M., Buckley, J. H., Bugaev, V. V., Bunker, R., Burdin, S., Busenitz, J. K., Campbell, J. S., Carels, C., Carlsmith, D. L., Carlson, B., Carmona-Benitez, M. C., Cascella, M., Chan, C., Cherwinka, J. J., Chiller, A. A., Chiller, C., Chott, N. I., Cole, A., Coleman, J., Colling, D., Conley, R. A., Cottle, A., Coughlen, R., Craddock, W. W., Curran, D., Currie, A., Cutter, J. E., da Cunha, J. P., Dahl, C. E., Dardin, S., Dasu, S., Davis, J., Davison, T. J. R., de Viveiros, L., Decheine, N., Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Dushkin, A., Edberg, T. K., Edwards, W. R., Edwards, B. N., Edwards, J., Elnimr, M. M., Emmet, W. T., Eriksen, S. R., Faham, C. H., Fan, A., Fayer, S., Fiorucci, S., Flaecher, H., Florang, I. M. Fogarty, Ford, P., Francis, V. B., Froborg, F., Fruth, T., Gaitskell, R. J., Gantos, N. J., Garcia, D., Geffre, A., Gehman, V. M., Gelfand, R., Genovesi, J., Gerhard, R. M., Ghag, C., Gibson, E., Gilchriese, M. G. D., Gokhale, S., Gomber, B., Gonda, T. G., Greenall, A., Greenwood, S., Gregerson, G., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Hamilton, D., Hans, S., Hanzel, K., Harrington, T., Harrison, A., Hasselkus, C., Haselschwardt, S. J., Hemer, D., Hertel, S. A., Heise, J., Hillbrand, S., Hitchcock, O., Hjemfelt, C., Hoff, M. D., Holbrook, B., Holtom, E., Hor, J. Y-K., Horn, M., Huang, D. Q., Hurteau, T. W., Ignarra, C. M., Irving, M. N., Jacobsen, R. G., Jahangir, O., Jeffery, S. N., Ji, W., Johnson, M., Johnson, J., Johnson, P., Jones, W. G., Kaboth, A. C., Kamaha, A., Kamdin, K., Kasey, V., Kazkaz, K., Keefner, J., Khaitan, D., Khaleeq, M., Khazov, A., Khromov, A. V., Khurana, I., Kim, Y. D., Kim, W. T., Kocher, C. D., Konovalov, A. M., Korley, L., Korolkova, E. V., Koyuncu, M., Kras, J., Kraus, H., Kravitz, S. W., Krebs, H. J., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Kumpan, A. V., Kyre, S., Lambert, A. R., Landerud, B., Larsen, N. A., Laundrie, A., Leason, E. A., Lee, H. S., Lee, J., Lee, C., Lenardo, B. G., Leonard, D. S., Leonard, R., Lesko, K. T., Levy, C., Li, J., Liu, Y., Liao, J., Liao, F. -T., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, R., Liu, X., Loniewski, C., Lopes, M. I., Paredes, B. López, Lorenzon, W., Lucero, D., Luitz, S., Lyle, J. M., Lynch, C., Majewski, P. A., Makkinje, J., Malling, D. C., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., Markley, D. J., MarrLaundrie, P., Martin, T. J., Marzioni, M. F., Maupin, C., McConnell, C. T., McKinsey, D. N., McLaughlin, J., Mei, D. -M., Meng, Y., Miller, E. H., Minaker, Z. J., Mizrachi, E., Mock, J., Molash, D., Monte, A., Monzani, M. E., Morad, J. A., Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nehrkorn, C., Nelson, H. N., Nesbit, J., Neves, F., Nikkel, J. A., Nikoleyczik, J. A., Nilima, A., O'Dell, J., Oh, H., O'Neill, F. G., O'Sullivan, K., Olcina, I., Olevitch, M. A., Oliver-Mallory, K. C., Oxborough, L., Pagac, A., Pagenkopf, D., Pal, S., Palladino, K. J., Palmaccio, V. M., Palmer, J., Pangilinan, M., Patton, S. J., Pease, E. K., Penning, B. P., Pereira, G., Pereira, C., Peterson, I. B., Piepke, A., Pierson, S., Powell, S., Preece, R. M., Pushkin, K., Qie, Y., Racine, M., Ratcliff, B. N., Reichenbacher, J., Reichhart, L., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rodrigues, J. P., Rose, H. J., Rosero, R., Rossiter, P., Rucinski, R., Rutherford, G., Rynders, D., Saba, J. S., Sabarots, L., Santone, D., Sarychev, M., Sazzad, A. B. M. R., Schnee, R. W., Schubnell, M., Scovell, P. R., Severson, M., Seymour, D., Shaw, S., Shutt, G. W., Shutt, T. A., Silk, J. J., Silva, C., Skarpaas, K., Skulski, W., Smith, A. R., Smith, R. J., Smith, R. E., So, J., Solmaz, M., Solovov, V. N., Sorensen, P., Sosnovtsev, V. V., Stancu, I., Stark, M. R., Stephenson, S., Stern, N., Stevens, A., Stiegler, T. M., Stifter, K., Studley, R., Sumner, T. J., Sundarnath, K., Sutcliffe, P., Swanson, N., Szydagis, M., Tan, M., Taylor, W. C., Taylor, R., Taylor, D. J., Temples, D., Tennyson, B. P., Terman, P. A., Thomas, K. J., Thomson, J. A., Tiedt, D. R., Timalsina, M., To, W. H., Tomás, A., Tope, T. E., Tripathi, M., Tronstad, D. R., Tull, C. E., Turner, W., Tvrznikova, L., Utes, M., Utku, U., Uvarov, S., Va'vra, J., Vacheret, A., Vaitkus, A., Verbus, J. R., Vietanen, T., Voirin, E., Vuosalo, C. O., Walcott, S., Waldron, W. L., Walker, K., Wang, J. J., Wang, R., Wang, L., Wang, Y., Watson, J. R., Migneault, J., Weatherly, S., Webb, R. C., Wei, W. -Z., While, M., White, R. G., White, J. T., White, D. T., Whitis, T. J., Wisniewski, W. J., Wilson, K., Witherell, M. S., Wolfs, F. L. H., Wolfs, J. D., Woodward, D., Worm, S. D., Xiang, X., Xiao, Q., Xu, J., Yeh, M., Yin, J., Young, I., and Zhang, C.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Experiment - Abstract
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements.
- Published
- 2019
- Full Text
- View/download PDF
36. The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs
- Author
-
Akerib, DS, Akerlof, CW, Akimov, D Yu, Alquahtani, A, Alsum, SK, Anderson, TJ, Angelides, N, Araújo, HM, Arbuckle, A, Armstrong, JE, Arthurs, M, Auyeung, H, Aviles, S, Bai, X, Bailey, AJ, Balajthy, J, Balashov, S, Bang, J, Barry, MJ, Bauer, D, Bauer, P, Baxter, A, Belle, J, Beltrame, P, Bensinger, J, Benson, T, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Birrittella, B, Boast, KE, Bolozdynya, AI, Boulton, EM, Boxer, B, Bramante, R, Branson, S, Brás, P, Breidenbach, M, Brew, CAJ, Buckley, JH, Bugaev, VV, Bunker, R, Burdin, S, Busenitz, JK, Cabrita, R, Campbell, JS, Carels, C, Carlsmith, DL, Carlson, B, Carmona-Benitez, MC, Cascella, M, Chan, C, Cherwinka, JJ, Chiller, AA, Chiller, C, Chott, NI, Cole, A, Coleman, J, Colling, D, Conley, RA, Cottle, A, Coughlen, R, Cox, G, Craddock, WW, Curran, D, Currie, A, Cutter, JE, da Cunha, JP, Dahl, CE, Dardin, S, Dasu, S, Davis, J, Davison, TJR, de Viveiros, L, Decheine, N, Dobi, A, Dobson, JEY, Druszkiewicz, E, Dushkin, A, Edberg, TK, Edwards, WR, Edwards, BN, Edwards, J, Elnimr, MM, Emmet, WT, Eriksen, SR, Faham, CH, Fan, A, Fayer, S, Fiorucci, S, Flaecher, H, Florang, IM Fogarty, Ford, P, Francis, VB, Fraser, ED, Froborg, F, and Fruth, T
- Subjects
Nuclear and Plasma Physics ,Physical Sciences ,physics.ins-det ,hep-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above 1.4×10-48cm2 for a WIMP mass of 40GeV/c2 and a 1000days exposure. LZ achieves this sensitivity through a combination of a large 5.6t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented.
- Published
- 2020
37. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
- Author
-
Akerib, DS, Akerlof, CW, Alsum, SK, Araújo, HM, Arthurs, M, Bai, X, Bailey, AJ, Balajthy, J, Balashov, S, Bauer, D, Belle, J, Beltrame, P, Benson, T, Bernard, EP, Biesiadzinski, TP, Boast, KE, Boxer, B, Brás, P, Buckley, JH, Bugaev, VV, Burdin, S, Busenitz, JK, Carels, C, Carlsmith, DL, Carlson, B, Carmona-Benitez, MC, Chan, C, Cherwinka, JJ, Cole, A, Cottle, A, Craddock, WW, Currie, A, Cutter, JE, Dahl, CE, de Viveiros, L, Dobi, A, Dobson, JEY, Druszkiewicz, E, Edberg, TK, Edwards, WR, Fan, A, Fayer, S, Fiorucci, S, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gilchriese, MGD, van der Grinten, MGD, Hall, CR, Hans, S, Hanzel, K, Haselschwardt, SJ, Hertel, SA, Hillbrand, S, Hjemfelt, C, Hoff, MD, Hor, JY-K, Huang, DQ, Ignarra, CM, Ji, W, Kaboth, AC, Kamdin, K, Keefner, J, Khaitan, D, Khazov, A, Kim, YD, Kocher, CD, Korolkova, EV, Kraus, H, Krebs, HJ, Kreczko, L, Krikler, B, Kudryavtsev, VA, Kyre, S, Lee, J, Lenardo, BG, Leonard, DS, Lesko, KT, Levy, C, Li, J, Liao, J, Liao, F-T, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, Paredes, B López, Lorenzon, W, Luitz, S, Lyle, JM, Majewski, P, Manalaysay, A, Mannino, RL, Maupin, C, McKinsey, DN, Meng, Y, and Miller, EH
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,astro-ph.IM ,astro-ph.CO ,hep-ex ,physics.ins-det - Abstract
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4×10-48 cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3×10-43 cm2 (7.1×10-42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020.
- Published
- 2020
38. The LUX-ZEPLIN (LZ) experiment
- Author
-
Akerib, DS, Akerlof, CW, Akimov, DY, Alquahtani, A, Alsum, SK, Anderson, TJ, Angelides, N, Araújo, HM, Arbuckle, A, Armstrong, JE, Arthurs, M, Auyeung, H, Bai, X, Bailey, AJ, Balajthy, J, Balashov, S, Bang, J, Barry, MJ, Barthel, J, Bauer, D, Bauer, P, Baxter, A, Belle, J, Beltrame, P, Bensinger, J, Benson, T, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birrittella, B, Boast, KE, Bolozdynya, AI, Boulton, EM, Boxer, B, Bramante, R, Branson, S, Brás, P, Breidenbach, M, Buckley, JH, Bugaev, VV, Bunker, R, Burdin, S, Busenitz, JK, Campbell, JS, Carels, C, Carlsmith, DL, Carlson, B, Carmona-Benitez, MC, Cascella, M, Chan, C, Cherwinka, JJ, Chiller, AA, Chiller, C, Chott, NI, Cole, A, Coleman, J, Colling, D, Conley, RA, Cottle, A, Coughlen, R, Craddock, WW, Curran, D, Currie, A, Cutter, JE, da Cunha, JP, Dahl, CE, Dardin, S, Dasu, S, Davis, J, Davison, TJR, de Viveiros, L, Decheine, N, Dobi, A, Dobson, JEY, Druszkiewicz, E, Dushkin, A, Edberg, TK, Edwards, WR, Edwards, BN, Edwards, J, Elnimr, MM, Emmet, WT, Eriksen, SR, Faham, CH, Fan, A, Fayer, S, Fiorucci, S, Flaecher, H, Fogarty Florang, IM, Ford, P, Francis, VB, Froborg, F, Fruth, T, Gaitskell, RJ, Gantos, NJ, Garcia, D, Geffre, A, and Gehman, VM
- Subjects
Dark matter detector ,Liquid xenon ,Time projection chamber ,Underground ,physics.ins-det ,astro-ph.IM ,hep-ex ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Other Physical Sciences - Abstract
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850’ level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements.
- Published
- 2020
39. Modelling fine scale route choice of upstream migrating fish as they approach an instream structure
- Author
-
Kerr, J.R., Tummers, J.S., Benson, T., Lucas, M.C., and Kemp, P.S.
- Published
- 2023
- Full Text
- View/download PDF
40. Mitochondrial Transfusion Improves Mitochondrial Function Through Up-regulation of Mitochondrial Complex II Protein Subunit SDHB in the Hippocampus of Aged Mice
- Author
-
Adlimoghaddam, A., Benson, T., and Albensi, B. C.
- Published
- 2022
- Full Text
- View/download PDF
41. IRIS-A New Distributed Research Infrastructure on Applied Superconductivity
- Author
-
Rossi, L, Arpaia, P, Attanasio, C, Avallone, G, Avitabile, F, Balconi, L, Bellingeri, E, Beneduce, E, Benson, T, Bernini, C, Bersani, A, Bianchi, A, Broggi, F, Burioli, S, Campana, P, Cannavó, M, Canonica, L, Cialone, M, Cirillo, C, Mario, C, Domenico, D, Mario Del, F, Marta Della, T, Ernesto De, M, Salvatore De, P, Beniamino Di, G, Antonio, E, Stefania, F, Giuliana, F, Umberto, G, Raffaele, G, Gianfrancesco, G, Angelo, L, Enrico, L, Stefano Maffezzoli, F, Andrea, M, Samuele, M, Daniele, M, Giuseppe, M, Fabio, M, Anna Grazia, M, Riccardo, M, Luigi, P, Danilo, P, Marco, P, Marina, P, Silvia, R, Lucia, S, Aniello, S, Carlo, S, Ettore, S, Andrea, S, Claudio, S, Fabio, S, Massimo, S, Stefano, S, Marco, S, Andrea, T, Riccardo, V, and Alessandro, V, Rossi L, Arpaia P, Attanasio C, Avallone G, Avitabile F, Balconi L, Bellingeri E, Beneduce E, Benson T, Bernini C, Bersani A, Bianchi A, Broggi F, Burioli S, Campana P, Cannavó M, Canonica L, Cialone M, Cirillo C, Mario Cuoco, Domenico D’Agostino, Mario Del Franco, Marta Della Torre, Ernesto De Matteis, Salvatore De Pasquale, Beniamino Di Girolamo, Antonio Esposito, Stefania Farinon, Giuliana Fiorillo, Umberto Gambardella, Raffaele Gargiulo, Gianfrancesco Grauso, Angelo Leo, Enrico Leo, Stefano Maffezzoli Felis, Andrea Malagoli, Samuele Mariotto, Daniele Marré, Giuseppe Maruccio, Fabio Miletto, Anna Grazia Monteduro, Riccardo Musenich, Luigi Parodi, Danilo Pedrini, Marco Prioli, Marina Putti, Silvia Rizzato, Lucia Sabbatini, Aniello Saggese, Carlo Santini, Ettore Sarnelli, Andrea Selce, Claudio Severino, Fabio Severino, Massimo Sorbi, Stefano Sorti, Marco Statera, Andrea Traverso, Riccardo Valente, and Alessandro Vannozzi, Rossi, L, Arpaia, P, Attanasio, C, Avallone, G, Avitabile, F, Balconi, L, Bellingeri, E, Beneduce, E, Benson, T, Bernini, C, Bersani, A, Bianchi, A, Broggi, F, Burioli, S, Campana, P, Cannavó, M, Canonica, L, Cialone, M, Cirillo, C, Mario, C, Domenico, D, Mario Del, F, Marta Della, T, Ernesto De, M, Salvatore De, P, Beniamino Di, G, Antonio, E, Stefania, F, Giuliana, F, Umberto, G, Raffaele, G, Gianfrancesco, G, Angelo, L, Enrico, L, Stefano Maffezzoli, F, Andrea, M, Samuele, M, Daniele, M, Giuseppe, M, Fabio, M, Anna Grazia, M, Riccardo, M, Luigi, P, Danilo, P, Marco, P, Marina, P, Silvia, R, Lucia, S, Aniello, S, Carlo, S, Ettore, S, Andrea, S, Claudio, S, Fabio, S, Massimo, S, Stefano, S, Marco, S, Andrea, T, Riccardo, V, and Alessandro, V, Rossi L, Arpaia P, Attanasio C, Avallone G, Avitabile F, Balconi L, Bellingeri E, Beneduce E, Benson T, Bernini C, Bersani A, Bianchi A, Broggi F, Burioli S, Campana P, Cannavó M, Canonica L, Cialone M, Cirillo C, Mario Cuoco, Domenico D’Agostino, Mario Del Franco, Marta Della Torre, Ernesto De Matteis, Salvatore De Pasquale, Beniamino Di Girolamo, Antonio Esposito, Stefania Farinon, Giuliana Fiorillo, Umberto Gambardella, Raffaele Gargiulo, Gianfrancesco Grauso, Angelo Leo, Enrico Leo, Stefano Maffezzoli Felis, Andrea Malagoli, Samuele Mariotto, Daniele Marré, Giuseppe Maruccio, Fabio Miletto, Anna Grazia Monteduro, Riccardo Musenich, Luigi Parodi, Danilo Pedrini, Marco Prioli, Marina Putti, Silvia Rizzato, Lucia Sabbatini, Aniello Saggese, Carlo Santini, Ettore Sarnelli, Andrea Selce, Claudio Severino, Fabio Severino, Massimo Sorbi, Stefano Sorti, Marco Statera, Andrea Traverso, Riccardo Valente, and and Alessandro Vannozzi
- Abstract
In the frame of the Next Generation Europe program, the EU program to boost after-COVID recovery, the Italian Minister of University and Research has funded a project called Innovative Research Infrastructure for applied Superconductivity (IRIS). New laboratories will be built or upgraded in six poles: Milan (hub of the infrastructure), Genoa, Frascati, Naples, Salerno, and Lecce, to carry out basic research on magnetism and superconducting materials, test of wires, tapes, and large current cables, superconducting magnets construction with advanced instrumentation, power tests of magnets, and a special facility for high current-high voltage superconducting lines. The program will be executed over three years and then will operate for at least 10 years. It includes two first demonstrators: one HTS magnet to be operated at 10-20 K and a superconducting line of 1 GW (40 kA-25 kV) about 140 m long. The demonstrators anticipate the main scope of the investment in the IRIS infrastructure: to support the use of superconductivity for improving sustainability by decreasing the energy consumption without compromising performance. This article describes the global IRIS project.
- Published
- 2024
42. Early Experience with a Novel Treatment for Menière’s Disease: A Long Acting Dexamethasone Formulation for Precise Delivery to the Round Window Membrane
- Author
-
Kuthubutheen, Jafri, primary, Sharon, Jeffrey D., additional, Jung, Benson T., additional, Sepahdari, Ali R., additional, Ng, Jia Hui, additional, Erickson, Signe, additional, Peris, Hugo, additional, De Juan, Eugene, additional, and Limb, Charles J., additional
- Published
- 2024
- Full Text
- View/download PDF
43. Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment
- Author
-
Akerib, D. S., Akerlof, C. W., Alsum, S. K., Araújo, H. M., Arthurs, M., Bai, X., Bailey, A. J., Balajthy, J., Balashov, S., Bauer, D., Belle, J., Beltrame, P., Benson, T., Bernard, E. P., Biesiadzinski, T. P., Boast, K. E., Boxer, B., Brás, P., Buckley, J. H., Bugaev, V. V., Burdin, S., Busenitz, J. K., Carels, C., Carlsmith, D. L., Carlson, B., Carmona-Benitez, M. C., Chan, C., Cherwinka, J. J., Cole, A., Cottle, A., Craddock, W. W., Currie, A., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Edberg, T. K., Edwards, W. R., Fan, A., Fayer, S., Fiorucci, S., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gilchriese, M. G. D., van der Grinten, M. G. D., Hall, C. R., Hans, S., Hanzel, K., Haselschwardt, S. J., Hertel, S. A., Hillbrand, S., Hjemfelt, C., Hoff, M. D., Hor, J. Y-K., Huang, D. Q., Ignarra, C. M., Ji, W., Kaboth, A. C., Kamdin, K., Keefner, J., Khaitan, D., Khazov, A., Kim, Y. D., Kocher, C. D., Korolkova, E. V., Kraus, H., Krebs, H. J., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Kyre, S., Lee, J., Lenardo, B. G., Leonard, D. S., Lesko, K. T., Levy, C., Li, J., Liao, J., Liao, F. -T., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Paredes, B. López, Lorenzon, W., Luitz, S., Lyle, J. M., Majewski, P., Manalaysay, A., Mannino, R. L., Maupin, C., McKinsey, D. N., Meng, Y., Miller, E. H., Mock, J., Monzani, M. E., Morad, J. A., Morrison, E., Mount, B. J., Murphy, A. St. J., Nelson, H. N., Neves, F., Nikoleyczik, J., O'Sullivan, K., Olcina, I., Olevitch, M. A., Oliver-Mallory, K. C., Palladino, K. J., Patton, S. J., Pease, E. K., Penning, B., Piepke, A., Powell, S., Preece, R. M., Pushkin, K., Ratcliff, B. N., Reichenbacher, J., Rhyne, C. A., Richards, A., Rodrigues, J. P., Rosero, R., Rossiter, P., Saba, J. S., Sarychev, M., Schnee, R. W., Schubnell, M., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Skarpaas, K., Skulski, W., Solmaz, M., Solovov, V. N., Sorensen, P., Stancu, I., Stark, M. R., Stiegler, T. M., Stifter, K., Szydagis, M., Taylor, W. C., Taylor, R., Taylor, D. J., Temples, D., Terman, P. A., Thomas, K. J., Timalsina, M., To, W. H., Tomás, A., Tope, T. E., Tripathi, M., Tull, C. E., Tvrznikova, L., Utku, U., Va'vra, J., Vacheret, A., Verbus, J. R., Voirin, E., Waldron, W. L., Watson, J. R., Webb, R. C., White, D. T., Whitis, T. J., Wisniewski, W. J., Witherell, M. S., Wolfs, F. L. H., Woodward, D., Worm, S. D., Yeh, M., Yin, J., and Young, I.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
LUX-ZEPLIN (LZ) is a next generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7~tonnes, LZ will search primarily for low-energy interactions with Weakly Interacting Massive Particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000~live day run using a 5.6~tonne fiducial mass, LZ is projected to exclude at 90\% confidence level spin-independent WIMP-nucleon cross sections above $1.4 \times 10^{-48}$~cm$^{2}$ for a 40~$\mathrm{GeV}/c^{2}$ mass WIMP. Additionally, a $5\sigma$ discovery potential is projected reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of $2.3 \times 10^{-43}$~cm$^{2}$ ($7.1 \times 10^{-42}$~cm$^{2}$) for a 40~$\mathrm{GeV}/c^{2}$ mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020., Comment: 14 pages, 11 figures
- Published
- 2018
- Full Text
- View/download PDF
44. LUX-ZEPLIN (LZ) Technical Design Report
- Author
-
Mount, B. J., Hans, S., Rosero, R., Yeh, M., Chan, C., Gaitskell, R. J., Huang, D. Q., Makkinje, J., Malling, D. C., Pangilinan, M., Rhyne, C. A., Taylor, W. C., Verbus, J. R., Kim, Y. D., Lee, H. S., Lee, J., Leonard, D. S., Li, J., Belle, J., Cottle, A., Lippincott, W. H., Markley, D. J., Martin, T. J., Sarychev, M., Tope, T. E., Utes, M., Wang, R., Young, I., Araújo, H. M., Bailey, A. J., Bauer, D., Colling, D., Currie, A., Fayer, S., Froborg, F., Greenwood, S., Jones, W. G., Kasey, V., Khaleeq, M., Olcina, I., Paredes, B. López, Richards, A., Sumner, T. J., Tomás, A., Vacheret, A., Brás, P., Lindote, A., Lopes, M. I., Neves, F., Rodrigues, J. P., Silva, C., Solovov, V. N., Barry, M. J., Cole, A., Dobi, A., Edwards, W. R., Faham, C. H., Fiorucci, S., Gantos, N. J., Gehman, V. M., Gilchriese, M. G. D., Hanzel, K., Hoff, M. D., Kamdin, K., Lesko, K. T., McConnell, C. T., O'Sullivan, K., Oliver-Mallory, K. C., Patton, S. J., Saba, J. S., Sorensen, P., Thomas, K. J., Tull, C. E., Waldron, W. L., Witherell, M. S., Bernstein, A., Kazkaz, K., Xu, J., Akimov, D. Yu., Bolozdynya, A. I., Khromov, A. V., Konovalov, A. M., Kumpan, A. V., Sosnovtsev, V. V., Dahl, C. E., Temples, D., Carmona-Benitez, M. C., de Viveiros, L., Akerib, D. S., Auyeung, H., Biesiadzinski, T. P., Breidenbach, M., Bramante, R., Conley, R., Craddock, W. W., Fan, A., Hau, A., Ignarra, C. M., Ji, W., Krebs, H. J., Linehan, R., Lee, C., Luitz, S., Mizrachi, E., Monzani, M. E., O'Neill, F. G., Pierson, S., Racine, M., Ratcliff, B. N., Shutt, G. W., Shutt, T. A., Skarpaas, K., Stifter, K., To, W. H., Va'vra, J., Whitis, T. J., Wisniewski, W. J., Bai, X., Bunker, R., Coughlen, R., Hjemfelt, C., Leonard, R., Miller, E. H., Morrison, E., Reichenbacher, J., Schnee, R. W., Stark, M. R., Sundarnath, K., Tiedt, D. R., Timalsina, M., Bauer, P., Carlson, B., Horn, M., Johnson, M., Keefner, J., Maupin, C., Taylor, D. J., Balashov, S., Ford, P., Francis, V., Holtom, E., Khazov, A., Kaboth, A., Majewski, P., Nikkel, J. A., O'Dell, J., Preece, R. M., van der Grinten, M. G. D., Worm, S. D., Mannino, R. L., Stiegler, T. M., Terman, P. A., Webb, R. C., Levy, C., Mock, J., Szydagis, M., Busenitz, J. K., Elnimr, M., Hor, J. Y-K., Meng, Y., Piepke, A., Stancu, I., Kreczko, L., Krikler, B., Penning, B., Bernard, E. P., Jacobsen, R. G., McKinsey, D. N., Watson, R., Cutter, J. E., El-Jurf, S., Gerhard, R. M., Hemer, D., Hillbrand, S., Holbrook, B., Lenardo, B. G., Manalaysay, A. G., Morad, J. A., Stephenson, S., Thomson, J. A., Tripathi, M., Uvarov, S., Haselschwardt, S. J., Kyre, S., Nehrkorn, C., Nelson, H. N., Solmaz, M., White, D. T., Cascella, M., Dobson, J. E. Y., Ghag, C., Liu, X., Manenti, L., Reichhart, L., Shaw, S., Utku, U., Beltrame, P., Davison, T. J. R., Marzioni, M. F., Murphy, A. St. J., Nilima, A., Boxer, B., Burdin, S., Greenall, A., Powell, S., Rose, H. J., Sutcliffe, P., Balajthy, J., Edberg, T. K., Hall, C. R., Silk, J. S., Hertel, S., Akerlof, C. W., Arthurs, M., Lorenzon, W., Pushkin, K., Schubnell, M., Boast, K. E., Carels, C., Fruth, T., Kraus, H., Liao, F. -T., Lin, J., Scovell, P. R., Druszkiewicz, E., Khaitan, D., Koyuncu, M., Skulski, W., Wolfs, F. L. H., Yin, J., Korolkova, E. V., Kudryavtsev, V. A., Rossiter, P., Woodward, D., Chiller, A. A., Chiller, C., Mei, D. -M., Wang, L., Wei, W. -Z., While, M., Zhang, C., Alsum, S. K., Benson, T., Carlsmith, D. L., Cherwinka, J. J., Dasu, S., Gregerson, G., Gomber, B., Pagac, A., Palladino, K. J., Vuosalo, C. O., Xiao, Q., Buckley, J. H., Bugaev, V. V., Olevitch, M. A., Boulton, E. M., Emmet, W. T., Hurteau, T. W., Larsen, N. A., Pease, E. K., Tennyson, B. P., and Tvrznikova, L.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Experiment - Abstract
In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters., Comment: 392 pages. Submitted to the Department of Energy as part of the documentation for the Critical Decision Numbers Two and Three (CD-2 and CD-3) management processes. Report also available by chapter at this URL
- Published
- 2017
45. Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches
- Author
-
Akerib, D. S., Akerlof, C. W., Akimov, D. Yu., Alsum, S. K., Araújo, H. M., Arnquist, I. J., Arthurs, M., Bai, X., Bailey, A. J., Balajthy, J., Balashov, S., Barry, M. J., Belle, J., Beltrame, P., Benson, T., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boast, K. E., Bolozdynya, A., Boxer, B., Bramante, R., Brás, P., Buckley, J. H., Bugaev, V. V., Bunker, R., Burdin, S., Busenitz, J. K., Carels, C., Carlsmith, D. L., Carlson, B., Carmona-Benitez, M. C., Chan, C., Cherwinka, J. J., Chiller, A. A., Chiller, C., Cottle, A., Coughlen, R., Craddock, W. W., Currie, A., Dahl, C. E., Davison, T. J. R., Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Edberg, T. K., Edwards, W. R., Emmet, W. T., Faham, C. H., Fiorucci, S., Fruth, T., Gaitskell, R. J., Gantos, N. J., Gehman, V. M., Gerhard, R. M., Ghag, C., Gilchriese, M. G. D., Gomber, B., Hall, C. R., Hans, S., Hanzel, K., Haselschwardt, S. J., Hertel, S. A., Hillbrand, S., Hjemfelt, C., Hoff, M. D., Holbrook, B., Holtom, E., Hoppe, E. W., Hor, J. Y-K., Horn, M., Huang, D. Q., Hurteau, T. W., Ignarra, C. M., Jacobsen, R. G., Ji, W., Kaboth, A., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khromov, A. V., Konovalov, A. M., Korolkova, E. V., Koyuncu, M., Kraus, H., Krebs, H. J., Kudryavtsev, V. A., Kumpan, A. V., Kyre, S., Lee, C., Lee, H. S., Lee, J., Leonard, D. S., Leonard, R., Lesko, K. T., Levy, C., Liao, F. -T., Lin, J., Lindote, A., Linehan, R. E., Lippincott, W. H., Liu, X., Lopes, M. I., Paredes, B. Lopez, Lorenzon, W., Luitz, S., Majewski, P., Manalaysay, A., Manenti, L., Mannino, R. L., Markley, D. J., Martin, T. J., Marzioni, M. F., McConnell, C. T., McKinsey, D. N., Mei, D. -M., Meng, Y., Miller, E. H., Mizrachi, E., Mock, J., Monzani, M. E., Morad, J. A., Mount, B. J., Murphy, A. St. J., Nehrkorn, C., Nelson, H. N., Neves, F., Nikkel, J. A., O'Dell, J., O'Sullivan, K., Olcina, I., Olevitch, M. A., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Piepke, A., Powell, S., Preece, R. M., Pushkin, K., Ratcliff, B. N., Reichenbacher, J., Reichhart, L., Rhyne, C. A., Richards, A., Rodrigues, J. P., Rose, H. J., Rosero, R., Rossiter, P., Saba, J. S., Sarychev, M., Schnee, R. W., Schubnell, M., Scovell, P. R., Shaw, S., Shutt, T. A., Silva, C., Skarpaas, K., Skulski, W., Solmaz, M., Solovov, V. N., Sorensen, P., Sosnovtsev, V. V., Stancu, I., Stark, M. R., Stephenson, S., Stiegler, T. M., Stifter, K., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, W. C., Temples, D., Terman, P. A., Thomas, K. J., Thomson, J. A., Tiedt, D. R., Timalsina, M., To, W. H., Tomás, A., Tope, T. E., Tripathi, M., Tvrznikova, L., Va'vra, J., Vacheret, A., van der Grinten, M. G. D., Verbus, J. R., Vuosalo, C. O., Waldron, W. L., Wang, R., Watson, R., Webb, R. C., Wei, W. -Z., While, M., White, D. T., Whitis, T. J., Wisniewski, W. J., Witherell, M. S., Wolfs, F. L. H., Woodward, D., Worm, S., Xu, J., Yeh, M., Yin, J., and Zhang, C.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of $^{238}$U$_{e}$~$<$1.6~mBq/kg, $^{238}$U$_{l}$~$<$0.09~mBq/kg, $^{232}$Th$_{e}$~$=0.28\pm 0.03$~mBq/kg, $^{232}$Th$_{l}$~$=0.25\pm 0.02$~mBq/kg, $^{40}$K~$<$0.54~mBq/kg, and $^{60}$Co~$<$0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $0.160\pm0.001$(stat)$\pm0.030$(sys) counts., Comment: 13 pages, 3 figures, accepted for publication in Astroparticle Physics
- Published
- 2017
- Full Text
- View/download PDF
46. Pregnenolone 16-Alpha Carbonitrile, an Agonist of Rodent Pregnane X Receptor, Regulates Testosterone Biosynthesis in Rodent Leydig Cells.
- Author
-
Salamat, Julia M., Ayala, Elizabeth M., Huang, Chen-Che J., Wilbanks, Frank S., Knight, Rachel C., Akingbemi, Benson T., and Pondugula, Satyanarayana R.
- Subjects
PREGNANE X receptor ,LEYDIG cells ,SEX hormones ,XENOBIOTICS ,GENE expression - Abstract
Leydig cells (LCs) in the testes produce the male sex hormone testosterone (T). Several xenobiotics, including clinical drugs, supplements, and environmental chemicals, are known to disrupt T homeostasis. Notably, some of these xenobiotics are known to activate the pregnane X receptor (PXR), a ligand-dependent nuclear receptor. However, it is currently unknown whether PXR is expressed in LCs and whether PXR activation alters T synthesis in rodent LCs. Therefore, in this study, we sought to determine whether PXR is expressed in rodent LCs and whether pregnenolone 16-alpha carbonitrile (PCN), the prototype agonist of rodent PXR, regulates T biosynthesis in rodent LCs. Hormonal as well as protein and gene expression analyses were conducted in rat primary LCs and MA-10 mouse Leydig cells. Results showed that PXR was expressed at the mRNA and protein level in both rat primary LCs and MA-10 cells. Incubation of rat primary LCs with PCN resulted in a significant decrease in T secretion. This PCN-induced decrease in T secretion was associated with decreased protein expression of key steroidogenic enzymes such as 3β-HSD and CYP17A1. RNA-seq results from MA-10 cells showed that PCN down-regulated the transcripts of steroidogenic enzymes and proteins involved in the T synthesis pathway. Together, these results suggest that PCN, an agonist of rodent PXR, can regulate T biosynthesis in rodent LCs by down-regulating the expression of the steroidogenic enzymes involved in T biosynthesis. Our results are significant as they provide a potential novel mechanism for disruption of testosterone homeostasis by a variety of xenobiotics. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
47. Development of a Preliminary Question Prompt List as a Communication Tool for Adults With Achalasia: A Modified Delphi Study
- Author
-
Zhuo, Justin, Triadafilopoulos, George, Bredenoord, Albert J., Clarke, John O., Fass, Ronnie, Gyawali, Chandra P., Hawn, Mary, Hwang, Joo Ha, Kahrilas, Peter J., Katzka, David A., Low, Donald, Massey, Benson T., Patel, Dhyanesh, Penagini, Roberto, Roman, Sabine, Savarino, Edoardo, Smout, André J., Swanstrom, Lee, Tatum, Roger, Vela, Marcelo F., Zaninotto, Giovanni, and Kamal, Afrin N.
- Published
- 2023
- Full Text
- View/download PDF
48. Identification of radiopure titanium for the LZ dark matter experiment and future rare event searches
- Author
-
Akerib, DS, Akerlof, CW, Akimov, DY, Alsum, SK, Araújo, HM, Arnquist, IJ, Arthurs, M, Bai, X, Bailey, AJ, Balajthy, J, Balashov, S, Barry, MJ, Belle, J, Beltrame, P, Benson, T, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boast, KE, Bolozdynya, A, Boxer, B, Bramante, R, Brás, P, Buckley, JH, Bugaev, VV, Bunker, R, Burdin, S, Busenitz, JK, Carels, C, Carlsmith, DL, Carlson, B, Carmona-Benitez, MC, Chan, C, Cherwinka, JJ, Chiller, AA, Chiller, C, Cottle, A, Coughlen, R, Craddock, WW, Currie, A, Dahl, CE, Davison, TJR, Dobi, A, Dobson, JEY, Druszkiewicz, E, Edberg, TK, Edwards, WR, Emmet, WT, Faham, CH, Fiorucci, S, Fruth, T, Gaitskell, RJ, Gantos, NJ, Gehman, VM, Gerhard, RM, Ghag, C, Gilchriese, MGD, Gomber, B, Hall, CR, Hans, S, Hanzel, K, Haselschwardt, SJ, Hertel, SA, Hillbrand, S, Hjemfelt, C, Hoff, MD, Holbrook, B, Holtom, E, Hoppe, EW, Hor, JYK, Horn, M, Huang, DQ, Hurteau, TW, Ignarra, CM, Jacobsen, RG, Ji, W, Kaboth, A, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khromov, AV, Konovalov, AM, Korolkova, EV, Koyuncu, M, Kraus, H, Krebs, HJ, Kudryavtsev, VA, Kumpan, AV, Kyre, S, Lee, C, Lee, HS, Lee, J, Leonard, DS, Leonard, R, Lesko, KT, Levy, C, Liao, FT, Lin, J, and Lindote, A
- Subjects
physics.ins-det ,hep-ex ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238Ue < 1.6 mBq/kg, 238Ul < 0.09 mBq/kg, 232The=0.28±0.03 mBq/kg, 232Thl=0.25±0.02 mBq/kg, 40K < 0.54 mBq/kg, and 60Co < 0.02 mBq/kg (68% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160 ± 0.001(stat) ± 0.030(sys) counts.
- Published
- 2017
49. Designing sub-20 nm self-assembled nanocarriers for small molecule delivery: Interplay among structural geometry, assembly energetics, and cargo release kinetics
- Author
-
Jung, Benson T., Lim, Marc, Jung, Katherine, Li, Michael, Dong, He, Dube, Nikhil, and Xu, Ting
- Published
- 2021
- Full Text
- View/download PDF
50. Toxidromes for Working Dogs
- Author
-
Maureen A. McMichael, Melissa Singletary, and Benson T. Akingbemi
- Subjects
K9 ,canine ,opioid ,search and rescue ,military working dog ,naloxone ,Veterinary medicine ,SF600-1100 - Abstract
Terrorist attacks with biological and chemical warfare agents are increasing in frequency worldwide. Additionally, hazardous chemical accidents, illicit drug laboratories and intentional poisonings are potential sites for exposure to working dogs. Working dogs play a crucial role in law enforcement, military and search and rescue teams. Their intelligence, agility and strength make them ideal partners to be deployed to these natural disaster sites, terrorist attacks and industrial accidents. This, unfortunately, leads to increasing exposure to chemical and biological weapons and other hazardous substances. First responders have little to no training in emergency care of working dogs and veterinarians have very little training on recognition of the clinical signs of many of these agents. In order to ensure a rapid medical response at the scene first responders and veterinarians need a primer on these agents. Identifying a specific agent amidst the chaos of a mass casualty event is challenging. Toxidromes are a constellation of clinical and/or laboratory findings that allow for rapid identification of the clinical signs associated with a class of toxin and have been helpful in human medical triage. Focusing on a class of agents rather than on each individual toxin, allows for more expedient administration of antidotes and appropriate supportive care. This article reviews toxidromes for the most common chemical weapons with a special emphasis on clinical signs that are specific (and different) for canines as well as appropriate antidotes for working canines. To our knowledge, there are no publications describing toxidromes for working dogs.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.