Taylor M. Crow, Shawna J. Zimmerman, Chitra Seshadri, Stéphane Joost, Ting-Wen Chen, Andrew J. Eckert, Stéphanie Manel, Devrim Semizer-Cuming, Benoit Talbot, Department of Biology, Northern Arizona University [Flagstaff], J. F. Blumenbach Institute of Zoology and Anthropology, Georg-August-University [Göttingen], Department of Ecosystem Science and Sustainability, Colorado State University [Fort Collins] (CSU), Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Department of Ecosystem Science and Management, Pennsylvania State University (Penn State), Penn State System-Penn State System, Department of Forest Genetics and Forest Tree Breeding, Georg-August-Universität Göttingen, Center for Environmental Studies [Richmond], Virginia Commonwealth University (VCU), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Paul-Valéry - Montpellier 3 (UM3), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut de Recherche pour le Développement (IRD [France-Sud])
Population genomic analysis can be an important tool in understanding local adaptation. Identification of potential adaptive loci in such analyses is usually based on the survey of a large genomic dataset in combination with environmental variables. Phenotypic data are less commonly incorporated into such studies, although combining a genome scan analysis with a phenotypic trait analysis can greatly improve the insights obtained from each analysis individually. Here, we aimed to identify loci potentially involved in adaptation to climate in 283 Loblolly pine (Pinus taeda) samples from throughout the species’ range in the southeastern United States. We analyzed associations between phenotypic, molecular, and environmental variables from datasets of 3082 single nucleotide polymorphism (SNP) loci and 3 categories of phenotypic traits (gene expression, metabolites, and whole-plant traits). We found only 6 SNP loci that displayed potential signals of local adaptation. Five of the 6 identified SNPs are linked to gene expression traits for lignin development, and 1 is linked with whole-plant traits. We subsequently compared the 6 candidate genes with environmental variables and found a high correlation in only 3 of them (R2 > 0.2). Our study highlights the need for a combination of genotypes, phenotypes, and environmental variables, and for an appropriate sampling scheme and study design, to improve confidence in the identification of potential candidate genes.