91 results on '"Benkovič, Dominik"'
Search Results
2. Generalized derivations of current Lie algebras
- Author
-
Benkovič, Dominik, primary and Eremita, Daniel, additional
- Published
- 2024
- Full Text
- View/download PDF
3. Verjetnost
- Author
-
Benkovič, Dominik, primary
- Published
- 2022
- Full Text
- View/download PDF
4. Generalized derivations on unital algebras determined by action on zero products
- Author
-
Benkovič, Dominik and Grašič, Mateja
- Published
- 2014
- Full Text
- View/download PDF
5. Jordan derivations of unital algebras with idempotents
- Author
-
Benkovič, Dominik and Širovnik, Nejc
- Published
- 2012
- Full Text
- View/download PDF
6. A note on f-derivations of triangular algebras
- Author
-
Benkovič, Dominik
- Published
- 2015
- Full Text
- View/download PDF
7. Multiplicative Lie n-derivations of triangular rings
- Author
-
Benkovič, Dominik and Eremita, Daniel
- Published
- 2012
- Full Text
- View/download PDF
8. Jordan {g,h}-derivations of unital algebras
- Author
-
Benkovič, Dominik, primary and Grašič, Mateja, additional
- Published
- 2022
- Full Text
- View/download PDF
9. Biderivations of triangular algebras
- Author
-
Benkovič, Dominik
- Published
- 2009
- Full Text
- View/download PDF
10. Lie σ-derivations of triangular algebras.
- Author
-
Benkovič, Dominik
- Subjects
- *
ALGEBRA , *MATRICES (Mathematics) , *LINEAR operators , *LIE algebras - Abstract
Let A be a triangular algebra and σ be an automorphism of A . We consider the problem of describing the form of Lie σ-derivations of A . In particular, we give sufficient conditions that every Lie σ-derivation d of A is the sum d = Δ + γ , where Δ is a σ-derivation of A and γ is a linear mapping from A to its σ-centre that vanishes on A , A . As an application, Lie σ-derivations of (block) upper triangular matrix algebras and nest algebras are determined. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
11. Lie σ-derivations of triangular algebras
- Author
-
Benkovič, Dominik, primary
- Published
- 2020
- Full Text
- View/download PDF
12. Jordan derivations and antiderivations on triangular matrices
- Author
-
Benkovič, Dominik
- Published
- 2005
- Full Text
- View/download PDF
13. Commuting traces and commutativity preserving maps on triangular algebras
- Author
-
Benkovič, Dominik and Eremita, Daniel
- Published
- 2004
- Full Text
- View/download PDF
14. Generalized Lie n-derivations of triangular algebras
- Author
-
Benkovič, Dominik, primary
- Published
- 2019
- Full Text
- View/download PDF
15. Generalized Lie derivations of unital algebras with idempotents
- Author
-
Benkovič, Dominik, primary
- Published
- 2018
- Full Text
- View/download PDF
16. Generalized skew derivations on triangular algebras determined by action on zero products
- Author
-
Benkovič, Dominik, primary and Grašič, Mateja, additional
- Published
- 2017
- Full Text
- View/download PDF
17. A characterization of the centroid of a prime ring
- Author
-
Benkovič, Dominik, Eremita, Daniel, and Vukman, Joso
- Abstract
We characterize certain maps by their action on a fixed polynomial in noncommuting variables on algebras satisfying certain d -freeness condition. Consequently, a characterization of the centroid of a prime ring is obtained.
- Published
- 2024
- Full Text
- View/download PDF
18. Generalized skew derivations on triangular algebras determined by action on zero products.
- Author
-
Benkovič, Dominik and Grašič, Mateja
- Subjects
TRIANGULAR operator algebras ,AUTOMORPHISMS ,MATHEMATICAL mappings ,GENERALIZABILITY theory ,SKEWNESS (Probability theory) - Abstract
For a triangular algebra
풜 and an automorphismσ of풜 , we describe linear mapsF ,G :풜 →풜 satisfyingF (x )y +σ (x )G (y ) = 0 wheneverx ,y ∈풜 are such thatxy = 0. In particular, when풜 is a zero product determined triangular algebra, mapsF andG satisfying the above condition are generalized skew derivations of the formF (x ) =F (1)x +D (x ) andG (x ) =σ (x )G (1)+D (x ) for allx ∈풜 , whereD :풜 →풜 is a skew derivation. When풜 is not zero product determined, we show that there are also nonstandard solutions for mapsF andG . [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
19. Jordan σ-derivations of triangular algebras
- Author
-
Benkovič, Dominik, primary
- Published
- 2015
- Full Text
- View/download PDF
20. A note on f-derivations of triangular algebras
- Author
-
Benkovič, Dominik, primary
- Published
- 2014
- Full Text
- View/download PDF
21. Lie triple derivations of unital algebras with idempotents
- Author
-
Benkovič, Dominik, primary
- Published
- 2014
- Full Text
- View/download PDF
22. Jordan σ-derivations of triangular algebras.
- Author
-
Benkovič, Dominik
- Subjects
- *
JORDAN algebras , *COMMUTATIVE algebra , *MATHEMATICAL mappings , *PROBLEM solving , *MATRICES (Mathematics) - Abstract
We consider the problem of describing the form Jordan-derivations of a triangular algebra. The main result states that every Jordan-derivationofis of the form, whereis a-derivation ofandis a special mapping of. We search for sufficient conditions on a triangular algebra, such that. In particular, any Jordan-derivation of a nest algebrais a-derivation and any Jordan-derivation of an upper triangular matrix algebra, whereis a commutative unital algebra, is a-derivation. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
23. Lie Triple Derivations on Triangular Matrices
- Author
-
Benkovič, Dominik, primary
- Published
- 2011
- Full Text
- View/download PDF
24. Jordan generalized derivations on triangular algebras
- Author
-
Li, Yanbo, primary and Benkovič, Dominik, additional
- Published
- 2011
- Full Text
- View/download PDF
25. Generalized Lie derivations on triangular algebras
- Author
-
Benkovič, Dominik, primary
- Published
- 2011
- Full Text
- View/download PDF
26. A characterization of the centroid of a prime ring
- Author
-
Benkovič, Dominik, primary, Eremita, Daniel, additional, and Vukman, Joso, additional
- Published
- 2008
- Full Text
- View/download PDF
27. Lie triple derivations of unital algebras with idempotents.
- Author
-
Benkovič, Dominik
- Subjects
- *
LIE algebras , *IDEMPOTENTS , *COMMUTATIVE rings , *MATHEMATICAL forms , *MATHEMATICAL mappings , *LINEAR algebra - Abstract
Letbe a unital algebra with a nontrivial idempotentover a unital commutative ring. We show that under suitable assumptions, every Lie triple derivationonis of the form, whereis a derivation of,is a singular Jordan derivation ofandis a linear mapping fromto its centrethat vanishes on. As an application, we characterize Lie triple derivations and Lie derivations on triangular algebras and on matrix algebras. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
28. Jordan homomorphisms on triangular matrices
- Author
-
Benkovič, Dominik, primary
- Published
- 2005
- Full Text
- View/download PDF
29. Characterizing left centralizers by their action on a polynomial
- Author
-
Benkovič, Dominik, primary and Eremita, Daniel, additional
- Published
- 2004
- Full Text
- View/download PDF
30. Lie derivations on triangular matrices.
- Author
-
Benkovič, Dominik
- Subjects
- *
MATHEMATICAL analysis , *ALGEBRA , *MATRICES (Mathematics) , *COMMUTATIVE rings , *EQUATIONS - Abstract
Let [image omitted] be the algebra of all n × n upper triangular matrices over a commutative unital ring [image omitted], and let [image omitted] be a 2-torsion free unital [image omitted]-bimodule. We show that every Lie derivation [image omitted] is a sum of a derivation and a linear map having its range in the center of [image omitted]. We also consider the question of innerness of derivations from [image omitted] into [image omitted]. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
31. Probability in elementary and secondary school
- Author
-
Gracej, Nina and Benkovič, Dominik
- Subjects
secondary technical and vocational school, grammar school ,probability ,srednja šola ,nejasnosti ,primary school ,napake ,mistakes ,ambiguities ,textbooks ,udc:519.2:37.091.214(043.2) ,gimnazija, učni načrt ,učbeniki ,osnovna šola ,syllabus ,verjetnost - Abstract
V magistrskem delu je predstavljena obravnava verjetnosti v osnovnih, srednje poklicnih in strokovnih šolah ter gimnazijah. Magistrsko delo je razdeljeno na tri dele. V prvem delu so predstavljeni osnovni pojmi in defnicije, ki se obravnavajo v osnovnih, srednje poklicnih in strokovnih šolah ter gimnazijah. V drugem delu so predstavljene vsebine, ki zajemajo področja verjetnosti in so zapisana v učnem načrtu za osnovne, srednje poklicne in strokovne šole ter gimnazije. V tretjem delu magistrskega dela smo pregledali večino osnovnošolskih, srednješolskih in gimnazijskih učbenikov in opisali, katere vsebine iz področja verjetnosti obravnavajo. Pri- kazali smo tudi morebitne nejasnosti in napake, ki se pojavijo v pregledanih učbenikih. Ob koncu smo spoznali, da so v učbenikih uporabljeni različni pristopi pri defniranju poj- mov. Opazili smo, da se največja razlika pojavi med osnovnošolskimi in gimnazijskimi učbeniki. The following master's thesis presents the treatment of probability in primary schools, secondary technical and vocational schools, and grammar schools. The master's thesis is divided into three parts. The frst part introduces the basic concepts and defnitions covered in primary schools, secondary technical and vocational and grammar schools. The second part presents the content dealing with areas of probability, which is determined by the syllabus for primary schools, secondary technical and vocational schools, and grammar schools. The third part of the master's thesis deals with an examination of most primary, secondary and grammar school textbooks, describing what content from the area of probability they are likely to address. We have also pointed to possible ambiguities and errors occurring in the reviewed textbooks. To conclude, we found that different approaches were used in the textbooks to defne the terms and that the biggest difference appears between primary and secondary school textbooks.
- Published
- 2020
32. Errors in Statistics
- Author
-
Herzog, Jana and Benkovič, Dominik
- Subjects
statistika v družbi ,udc:519.2(043.2) ,statistics ,errors in statistics ,statistical methods ,statistične metode ,statistics in society ,statistika ,napake v statistiki - Abstract
Statistika velja za eksaktno vejo znotraj matematike, ki uporablja preverjene in zanesljive metode. Kljub temu dogaja, da znotraj nje prihaja do napak, prirejanj in zlorab, ki so bodisi naključne bodisi namerne narave. Napake v statistiki niso posledica samih matematičnih/statističnih metod te so zanesljive in preverjene, ampak posameznikov, ki delajo napake iz površnosti, pomanjkljivega znanja ali pa manipulirajo vedo samo, zaradi finančnih, gospodarstvenih, političnih in osebnih razlogov z namenom koristi. Magistrsko delo se deli na dva dela, in sicer smo v prvem delu utemeljili osnovne statistične pojme, ki so nam koristili v nadaljevanju. Pregledali smo položaj statistike v družbi, jo preučili z vidika posameznika in se osredotočili na mnenja, ki ga gojijo posamezniki o vedi. Na podlagi primerov iz resničnega življenja smo razložili, zakaj prihaja do negativnega mnenja o vedi sami in se osredotočili na napake in zlorabe vede, jih utemeljili in v drugem delu tudi matematično podkrepili ter podali rešitve/napotke za kvalitetnejšo statistično raziskovanje. Statistics is a precise branch within mathematics, using established and reliable methods. However, despite all efforts, errors or misconceptions both accidental and intentional can happen. Errors in statistics are not a result of faulty mathematical or statistical methods – these are reliable and verified errors are instead a consequence of mistakes made by individuals, as a result of, for example, superficiality, lack of knowledge and manipulation due to economic, personal or political reasons. The master's thesis is divided into two parts: in the first part, we establish the basic statistical concepts that are used in the field of statistics. Furthermore, we examine the position of statistics in society, focusing on the aspects of both individual and social perspectives. Based on real life examples, we explain the origin of generally negative perceptions of statistics. We focus on mistakes/manipulation and abuse of science as well. In the second part, we provide the mathematical background of misused methods and suggest possible solutions for achieving better quality of statistical practice.
- Published
- 2019
33. Statistics in elementary and secondary school
- Author
-
Tement, Ana and Benkovič, Dominik
- Subjects
obscurities ,učni načrt ,udc:37.016:519.22(043.2) ,Statistics ,srednja šola ,curriculum ,učbenik ,primary school ,napake ,obdelava podatkov ,nejasnosti ,mistakes ,Statistika ,gimnazija ,secondary school ,textbook ,osnovna šola ,data processing - Abstract
V magistrskem delu je predstavljena obravnava statistike v osnovni šoli, srednji poklicni in strokovni šoli ter v gimnaziji. Magistrsko delo je razdeljeno na tri dele. V prvem delu so predstavljeni osnovni pojmi in definicije statistike, ki se obravnavajo v osnovni šoli, srednji poklicni in strokovni šoli in v gimnaziji. V drugem delu je predstavljena vsa vsebina, ki zajema področje statistike in je zapisana v osnovnošolskem, srednje poklicnem in strokovnem ter v gimnazijskem učnem načrtu. Prav tako so predstavljeni cilji po posameznih razredih in letnikih izobraževanja. Nazadnje smo pregledali večino osnovnošolskih, srednje poklicnih in strokovnih ter gimnazijskih učbenikov ter opisali katero snov statistike obravnavajo in česa ne. Prikazali smo tudi različne pristope ter nejasnosti in napake pri opisovanju in definiranju pojmov. Spoznali smo, da imajo učbeniki zelo različen pristop pri definiranju pojmov. Največja razlika se pojavi med osnovnošolskimi in gimnazijskimi učbeniki. Največ napak in nejasnosti smo zasledili pri vpeljavi kvartilov. Sicer so pa v večini učbeniki napisani korektno in matematično pravilno. The master's thesis presents the discussion and teaching of statistics in primary and secondary education. It is split into three parts. The first part deals with basic concepts and definitions of statistics, that are taught in primary and secondary schools. The second part consists of content regarding statistics, that can be found in the curriculum of primary and secondary schools, as well as the end goals of every grade. Lastly, we take a look at the most of primary and secondary school textbooks, and describe what statistics concepts they do and don't include. We also show some approaches, obscurities and mistakes when defining concepts. We recognized, that textbooks use a lot of varying approaches when describing concepts. The biggest difference appears when comparing primary and secondary school textbooks. We saw the most mistakes and obscurities happen when introducing the subject of quartiles. Otherwise, most of the textbooks are written concretely and mathematically correct.
- Published
- 2018
34. The compound poisson model
- Author
-
Šuligoj, Jernej and Benkovič, Dominik
- Subjects
zavarovalniˇstvo ,ensurance ,Poissonov proces ,ˇcas propada ,Pollaczeck-Khinchine formula ,Pollaczeck-Khinchinova formula ,udc:368:519.22(043.2) ,sestavljen Poissonov proces ,Poisson process ,probability of ruin ,compound Poisson process ,time to ruin ,verjetnost propada - Abstract
Kadar v vsakdanjem ˇzivljenju govorimo o povsem logiˇcnih sklepih, dostikrat uporabljamo teorijo homogenega Poissonovega procesa, ki ni niˇc drugega kot ime za teorijo ˇstetja pojavov, z doloˇcenimi lastnostmi, ki so najveˇckrat povsem oˇcitne in samoumevne za vsakega posameznika. Po drugi strani pa je za dokazovanje teh oˇcitnih lastnosti, sklepov, potrebne zelo veliko matematike, natanˇcneje teorije verjetnosti. Podobno velja za sestavljen Poissonov model, le da si ga je teˇzje predstavljati in poslediˇcno teˇzje sklepati. Sestavljen Poissonov model govori o gibanju neke vrednosti, katero linearno zvezno poveˇcujemo in hkrati diskretno zmanjˇsujemo v nekih nakljuˇcnih ˇcasih za nakljuˇcne vrednosti. V prvem delu se predstavi homogen Poissonov proces. Zaˇcne se z izrekom, ki pove, kdaj ˇstejemo dogodke, ki so porazdeljeni Poissonovo. Prvi del se nadaljuje z definiranjem lastnosti in konˇca z nazornim primerom. V drugem delu magistrskega dela se najprej navedejo predpostavke sestavljenega Poissonovega modela, ˇcemur sledi definicija. Za predstavitev uporabe sestavljenega Poissonovega modela, sta definirani tudi zelo pomembni porazdelitveni funkciji sluˇcajnih spremenljivk ”verjetnosti in ˇcasa propada”. Delo se nadaljuje z zelo pomembno formulo, s katero se raˇcuna verjetnost propada in konˇca s primeri, katerih verjetnost propada je moˇc izraˇcunati analitiˇcno. When we talk about logics we often think of theory named Homogenious Poisson process. Homogenious Poisson process is nothing more then a name of counting theory with some properties, which are at most obvious and granted for most human beings. On the other hand prooving theese obvious properties is one needs plenty of mathematical knowleadge especially probability theory. The same stands for compound Poisson model just it is harder to imagine it and conclude from it. Compound Poisson model is about a value that is continiously linearly rising and at the same time discretly falling at random times and for random values. In the first part homogenious Poisson process is defined. It starts with the theorem that indicates wheater events are Poisson distributed. It goes on defining properties and ends with ilustrating example. In the second part first the assumptions of compound Poisson model are made which are followed by a definition of a compound Poisson model. For the need of illustrating the useage of compound Poisson model two very important distributions, probability of ruin and time to ruin, are defined. Second part goes on with a very important Pollaczeck-Khinchine formula wich is used for calculating probability of ruin and ends with examples where probability of ruin can be calculated analitically.
- Published
- 2018
35. Discriminant analysis
- Author
-
Nikolić, Dragana and Benkovič, Dominik
- Subjects
multivariatna analiza variance ,Normal Distribution, Analysis of Variance ,normalna porazdelitev, analiza variance ,diskriminantna analiza ,diskriminantna funkcija ,Discriminant Function ,Discriminant Analysis ,statistical tests ,statistični testi ,Multivariate Analysis of Variance ,udc:519.237(043.2) - Abstract
V magistrskem delu so predstavljene osnove diskriminantne analize. Magistrsko delo je razdeljeno v štiri dele. V prvem delu so predstavljeni osnovni pojmi statistike, potrebni za obrazložitev diskriminantne analize. V drugem delu sta obrazložena postopka analize variance (ANOVA) in multivariatne analize variance (MANOVA). Tretji del je namenjen obrazložitvi diskriminantne analize. Podrobno sta obrazloženi diskriminantna analiza za dve skupini kot tudi diskriminantna analiza za več skupin. V zadnjem delu smo na podatkih, pridobljenih iz aplikacije mOIDom, opravili diskriminantno analizo. The master thesis presents basics of discriminant analysis. It is divided into four parts. The first part presents basic notions of statistics that we need to explain the discriminant analysis. The second part describes the process of analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The third part presents discriminant analysis where discriminant analysis for two or more groups is explained. In the fourth part, the discriminant analysis based on data from mOIDom application is made.
- Published
- 2017
36. Automorphisms of triangular matrix algebras
- Author
-
Lopert, Bogdan and Benkovič, Dominik
- Subjects
zgornje trikotna matrična algebra ,automorphism ,antiavtomorfizem ,Algebra ,avtomorfizem ,jordanski avtomorfizem ,Lie automorphism ,upper triangular matrix algebra ,antiautomorphism ,udc:512.55(043.2) ,Liejev avtomorfizem ,Jordan automorphism - Abstract
V magistrskem delu so na algebri zgornje trikotnih matrik obravnavani in karakterizirani avtomorfizmi, jordanski izomorfizmi in Liejevi avtomorfizmi. V delu dokažemo,da je vsak avtomorfizem na algebri zgornje trikotnih matrik Tn(K), kjer je K komutativen kolobar z enoto, notranji. Vsak jordanski izomorfizem ki slika iz algebre Tn(K) v poljubno algebro A, je bodisi izomorfizem bodisi antiizomorfizem natanko tedaj, ko je kolobar K povezan. Vsak Liejev avtomorfizem na algebri Tn(F), kjer je F polje, se lahko zapiše kot vsota avtomorfizma in linearne preslikave, ki slika v center algebre Tn(F) in uniči komutatorje ali pa kot vsota negativnega antiavtomorfizma in linearne preslikave, ki slika v center algebre Tn(F) in uniči komutatorje. In the master`s thesis, automorphisms, Jordan isomorphisms and Lie automorphisms of the upper triangular matrix algebra are discussed and characterized. We prove that every automorphism on the upper triangular matrix algebra Tn(K), where K is a commutative ring with unity, is an inner automorphism. Each Jordan isomorphism, which maps from algebra Tn(K) into an algebra A, is either an isomorphism or an antiisomorphism precisely when the ring K is connected. Each Lie automorphism on algebra Tn(F), where F is a field, can be written as a sum of an automorphism and linear mapping which maps into the centre of algebra Tn(F) and vanishes on all commutators of algebra Tn(F) or a sum of an negative antiautomorphism and linear mapping which maps into the centre of algebra Tn(F) and vanishes on all commutators of algebra Tn(F).
- Published
- 2016
37. M-penrose matrix inverse
- Author
-
Koznicov, Karmen and Benkovič, Dominik
- Subjects
Gauss-Jordanova eliminacijska metoda ,matrika ,Gauss-Jordan elimination method ,udc:512.643:519.17(043.2) ,Moore-Penroseov inverz ,rang matrike ,inverzna matrika ,the rank of a matrix ,matrix ,Moore-Penrose inverse ,inversion matrix - Abstract
V uvodu predstavimo posamezna poglavja diplomskega dela. V drugem poglavju podamo deÖnicije in opiöemo vrste matrik ter operacije, ki jih opravljamo na matrikah. DeÖniramo rang matrike, transponiranje in Gauss-Jordanovo eliminacijsko metodo, ki jo bomo potrebovali pri izraµcunu Moore-Penroseovega inverza. V tretjem poglavju predstavimo Moore-Penroseov inverz poljubne matrike in zapiöemo njegove lastnosti. Zadnje poglavje je namenjeno izraµcunu Moore-Penroseovega inverza. Predstavimo tri algoritme, s katerimi lahko izraµcunamo Moore-Penroseov inverz. Opiöemo njihovo raµcunsko zahtevnost in jih predstavimo na primeru. In the introduction each chapter of the graduation thesis is presented. In the second chapter we give deÖnitions and descriptions of the types of matrices and operations that are performed with them. We deÖne the rank of a matrix, the transpose of a matrix, and the Gauss-Jordan elimination method, which will be needed in the calculation of the Moore-Penrose inverse. In the third chapter we present the Moore-Penrose inverse of a matrix and its characteristics. The last chapter deals with the calculation of the Moore-Penrose inverse. We present three algorithms, which can be used to calculate the Moore-Penrose inverse. We describe their computational complexity and present them through examples.
- Published
- 2016
38. CP - rang of completely positive matrix
- Author
-
Jevšnik, Nejc and Benkovič, Dominik
- Subjects
completely positive matrix ,udc:512.643.843(043.2) ,cp-rank ,convex cones ,diagonally dominant matrix ,comparison matrix ,diagonalno dominantna matrika ,cp-rang matrike ,positive semidefinite matrix ,konveksni stožec ,pozitivno semidefinitna matrika ,rang matrike ,primerjalna matrika ,matrix rank ,popolnoma pozitivna matrika - Abstract
V magistrskem delu je obravnavan problem določitve cp-ranga dane popolnoma pozitivne matrike. Uvodoma so opisane osnovne lastnosti pozitivno semidefinitnih matrik in predstavljeni so konveksni stožci evklidskega prostora V. V osrednjem delu se osredotočimo na popolnoma pozitivne matrike. Matrika A je popolnoma pozitivna, če jo lahko zapišemo kot A=BB^{T} za neko nenegativno matriko B. Dokažemo osnovne lastnosti popolnoma pozitivnih matrik ter definiramo diagonalno dominantne in primerjalne matrike. Delo zaključimo z obravnavo problema določitve cp-ranga popolnoma pozitivne matrike. Obravnavamo primer za matrike manjše velikosti ter določimo zgornjo mejo za cp-rang matrike danega ranga in matrike dane velikosti. In the master thesis the problem of determining the cp-rank of a given completely positive matrix is discussed. In the introduction the basic properties of positive semidefinite matrices are described and convex cones in euclidean space V are presented. In the main part we focus on completely positive matrices. Matrix A is completely positive if it can be decomposed as A=BB^{T}, where B is a nonnegative matrix. We prove the basic properties of totally positive matrices and define diagonally dominant and comparative matrix. The thesis is concluded with a discussion of a problem of determining the cp-rank of a completely positive matrix. We consider a case of a matrix of a smaller size and set an upper bound for cp-rank matrix of a given rank and a matrix of a given order.
- Published
- 2016
39. Kroneckerjevi grafi
- Author
-
Balan, Vesna and Benkovič, Dominik
- Subjects
Kronecker product of matrices ,stochastic Kronecker graphs ,udc:51(043.2) ,Kronecker graphs ,Kroneckerjevi grafi ,direct product of graphs ,network graphs ,Kroneckerjev produkt matrik ,stohastični Kroneckerjevi grafi ,direktni produkt grafov ,diplomska dela ,grafi omrežij - Abstract
Diplomsko delo se osredotoča na preučevanje Kroneckerjevih grafov. Najprej je predstavljena motivacija za vpeljavo in študij Kroneckerjevih grafov. V nadaljevanju je definiran Kroneckerjev ali tenzorski produkt matrik ter Kroneckerjev produkt grafov in njune osnovne lastnosti. V naslednjih poglavjih se pozornost nameni lastnostim Kroneckerjevih in stohastičnih Kroneckerjevih grafov. Predstavljen je porazdelitveni zakon stopnje posameznih vozlišč teh grafov. Dokazana sta zgostitveni potenčni zakon med številom vozlišč in številom povezav ter ohranjanje efektivnega premera glede na začetni graf. Pri stohastičnih Kroneckerjevih grafih so podani potrebni in zadostni pogoji za povezanost ter obstoj velike povezane komponente tega grafa. Dokazano je tudi, če je graf povezan, je premer v tem grafu konstanten. Na koncu so prikazani primeri praktične uporabe teorije, predstavljene skozi vso diplomsko nalogo. This graduation thesis focuses on the study of Kronecker graphs. First the motivation for introduction and investigation of Kronecker graphs is presented. Next are the definitions of the Kronecker or tensor product of matrices and the Kronecker product of graphs, introduced together with their basic properties. In the following chapters the focus is oriented to the study of the properties of Kronecker and stochastic Kronecker graphs. One of the important properties is the behaviour of the degree distribution. This result is folowed by the proof of the densification power law between the number of edges and the number of nodes and the proof of the conservation of the size of the effective diameter regarding the initiator graph. Next, necessary and sufficient conditions are proven for the connectivity and the existance of a giant component in the stochastic Kronecker graphs. From this follows that: under the parameters that the graph is connected, it also has a constant diameter. For conclusion examples for practical use of the theory presented throughout the thesis are given.
- Published
- 2015
40. Completely positive matrices
- Author
-
Lešnik, Tina and Benkovič, Dominik
- Subjects
completely positive matrix ,Kroneckerjev produkt ,Hadamard product ,Kronecker product ,udc:512.64(043.2) ,Hadamardov produkt ,convex cone ,diagonally dominant matrix ,diagonalno dominantna matrika ,positive semidefinite matrix ,comparison matrix ,konveksni stožec ,pozitivno semidefinitna matrika ,primerjalna matrika ,popolnoma pozitivna matrika - Abstract
Glavna tema magistrske naloge so popolnoma pozitivne matrike, ki so posebni primer pozitivno semidefinitnih matrik. Vsaka realna pozitivno semidefinitna matrika A se lahko zapiše kot A=BB^T, kjer je B realna matrika. V primeru, da je B nenegativna matrika, je matrika A popolnoma pozitivna. Na začetku predstavimo osnovne pojme in definicije realnih matrik, s poudarkom na pozitivno semidefinitnih matrikah. Podamo nekaj primerov in dokažemo osnovne lastnosti teh matrik. V nadaljevanju obravnavamo popolnoma pozitivne matrike. Definiramo Hadamardov in Kroneckerjev produkt ter dokažemo, da sta oba produkta popolnoma pozitivnih matrik popolnoma pozitivni matriki. Spoznamo eno izmed metod, s katero pokažemo, da je dvojno nenegativna matrika popolnoma pozitivna. Definiramo pojem konveksni stožec ter dokažemo, da je množica popolnoma pozitivnih matrik zaprt konveksni stožec. Na algebraični in geometrijski način dokažemo, da so t.i. majhne matrike popolnoma pozitivna. Nazadnje obravnavamo diagonalno dominantne matrike ter dokažemo, da so nenegativne simetrične diagonalno dominantne matrike popolnoma pozitivne. Prav tako definiramo primerjalno matriko in dokažemo, da je matrika A popolnoma pozitivna, če je simetrična nenegativna matrika ter je njena primerjalna matrika pozitivno semidefinitna. The main topic of the master thesis are completely positive matrices, which are the special case of a positive semidefinite matrix. Every real positive semidefinite matrix A can be written in the form A=BB^T, where B is a real matrix. In the case of a nonnegative matrix B the matrix A is completely positive. The first chapter includes some basic terms and definitions of specific real matrices with an emphasis on positive semidefinite matrices. We present some examples and prove the basic properties of these matrices. In the next chapter we consider completely positive matrices. We define Hadamard and Kronecker product and show that both of these products of completely positive matrices are completely positive. We introduce one method which enables us to verify whether the doubly nonnegative matrix is completely positive. We define the concept of a convex cone and show that the set of all completely positive matrices is a closed convex cone. With algebraic and geometric approach we show that small matrices are completely positive. At the end of the thesis we treat diagonally dominant matrices and show that nonnegative symmetric diagonally dominant matrices are completely positive. We also define a comparison matrix and show that the matrix A is completely positive if it is a symmetric nonnegative matrix and if its comparison matrix is positive semidefinite.
- Published
- 2014
41. Basics of the theory of extreme values
- Author
-
Herga, Sabina and Benkovič, Dominik
- Subjects
block maxima model ,udc:519.2(043.2) ,peak over threshold ,model maksimumov skupin podatkov ,Teorija ekstremnih vrednosti ,the theory of extreme values ,model preseganja mejnih vrednosti - Abstract
V magistrskem delu so predstavljene osnove teorije ekstremnih vrednosti. Na začetku dela so povzeti osnovni pojmi iz verjetnosti in statistike, ki so potrebni za razumevanje snovi. Osrednji del magistrskega dela je namenjen opisu glavnih dveh pristopov, ki se uporabljata v teoriji ekstremnih vrednosti. Kot prvi pristop je to model maksimumov skupin podatkov in kot drugi je to model preseganja mejnih vrednosti. Pri vsakem pristopu je zapisana teoretična izpeljava in podan še praktičen zgled, za lažje razumevanje. Na zgledih so tako obravnavani nekateri ekstremni dogodki v naravi, kot so količina dnevnih padavin, letne maksimalne morske gladine ... In this master thesis the basics of the theory of extreme values are presented. At the beginning of the thesis we summarize some basic concepts of probability and statistics. The central part of the master thesis is devoted to the description of the two main approaches, which are used in the theory of extreme values. The fi rst approach is called block maxima model and the second one is called peak over threshold model. For each approach we give a theoretical derivation and for a better understanding also a practical example. Through examples we consider some extreme events in nature such as daily rainfall levels, annual maximum sea-levels...
- Published
- 2014
42. Numerical range
- Author
-
Gajšek, Magdalena and Benkovič, Dominik
- Subjects
numerični zaklad ,bounded linear operator ,Hilbertov prostor ,matrika ,Hilbert space ,udc:512.64(043.2) ,numerical range ,spekter ,numerični radij ,numerical radius ,matrix ,omejen linearni operator ,spectrum - Abstract
V prvem poglavju zapišemo uvod magistrskega dela. V drugem poglavju so opisani osnovni pojmi iz teorije normiranih prostorov, linearnih preslikav in matrik. V glavnem delu formuliramo Toeplitz-Hausdorffov izrek, ki pravi, da je numerični zaklad konveksna množica. Zapišemo tudi izrek o spektralni inkluziji, ki pove, da spekter operatorja leži v numeričnem zakladu. Dokažemo lastnosti numeričnega zaklada povezanih s sebiadjungiranimi in normalnimi operatorji. Nato definiramo numerični radij, podamo njegov primer in osnovne rezultate. Posebej obravnavamo numerični zaklad operatorjev (matrik) na končno dimenzionalnih vektorskih prostorih in določimo množice, ki vsebujejo numerični zaklad. Zatem so izpeljane ocene numeričnih radijev 0-1 matrik. Na koncu zapišemo posplošitve numeričnega zaklada. In the first chapter is written an introduction of master thesis. The second chapter describes basic concepts from the theory of normed spaces, linear mapping and matrices. In main part is formulated Toeplitz-Hausdorff theorem, which says that the numerical range is convex set. We written also theorem about spectral inclusion, which says that the spectrum of operator lies in the numerical range. We prove properties of numerical range connected with selfadjoint and normal operators. Then is defined numerical radius, his example and basic results. Specially we treat numerical range operators on finite dimensions vector spaces and we determine sets containing numerical range. After that are derived numerical radius estimates of 0-1 matrices. At the end are written generalization of numerical range.
- Published
- 2014
43. The paradox of nontransitive dice
- Author
-
Primožič, Janja and Benkovič, Dominik
- Subjects
netranzitivna dominantnost ,nontransitive dominance ,udc:51(043.2) ,Miwinova kocka ,netranzitivna kocka ,uravnovešena kocka ,nontransitive die ,Miwin's die ,Efron's die ,balanced die ,Efronova kocka - Abstract
Diplomsko delo obravnava paradoks netranzitivnih kock. V uvodnem delu sta predstavljena sam izvor in definicija netranzitivnih kock, ki sta podkrepljena tudi s primeri. V naslednjem poglavju se omejimo na Efronove in Miwinove netranzitivne kocke. Sledita poglavji, ki povzemata konstrukcijo netranzitivnih kock ter paradoks netranzitivnih kock bolj na široko. Na koncu sta poglavji, kjer se v prvem osredotočimo na uravnovešene netranzitivne kocke in v drugem na netranzitivne kocke, ki so čimbolj podobne standardni kocki. The graduation thesis presents the paradox of nontransitive dice. The introductory chapter presents the origin and definition of nontransitive dice which are also illustrated by examples. In the next chapter we limit ourselves to Efron's and Miwin's nontransitive dice. Followed by chapters that summarizes the construction of nontransitive dice and the paradox of nontransitive dice more widely. At the end we can find chapters where we focus on the balanced nontransitive dice and on the nontransitive dice which are highly similar to the standard die.
- Published
- 2013
44. JORDAN-HÖLDER THEOREM
- Author
-
Skok, Ana and Benkovič, Dominik
- Subjects
Jordan - Hölderjev izrek ,chain condition ,modul ,udc:51(043.2) ,composition series ,the Jordan - Hölder theorem ,eksaktno zaporedje ,module ,kompozicijska vrsta ,verižni pogoj ,ring ,kolobar ,exact sequence - Abstract
V diplomskem delu je predstavljen Jordan - Hölderjev izrek na strukturi modulov. Na začetku so na kratko predstavljeni osnovni pojmi kolobarjev, idealov in modulov. Nato se seznanimo še z verižnimi pogoji, eksaktnimi zaporedji in kompozicijskimi vrstami, ki so potrebni za razumevanje celotnega diplomskega dela. Na koncu je predstavljen Jordan - Hölderjev izrek, ki ga dokažemo na dva različna načina. Pri prvem načinu si pomagamo s pomočjo pojma dolžina modula, medtem ko se pri drugem načinu dokazovanja opremo na Schreierjev izrek. In graduation thesis the Jordan - Hölders theorem on modules is presented. At the begining we introduce the basics of rings, modules and ideals. Next we consider the chain conditions, exact sequence and composition series, which are nessesery to understand the hole thesis. In the end part of the thesis we present the Jordan - Hölders theorem, which we can prove on two different ways. In the first way we help ourselves with the defi nition of length, and in the second way we depend on Schreiers theorem.
- Published
- 2012
45. COMPUTATIONAL SOLUTIONS OF SOME PROBABILITY PROBLEMS
- Author
-
Malogorski, Nina and Benkovič, Dominik
- Subjects
simulacija Monte Carlo ,udc:51(043.2) ,probability ,verjetnost ,Monte Carlo simulation - Abstract
V diplomskem delu je predstavljena uporaba simulacije Monte Carlo pri ree- vanju nekaterih praktiµcnih problemov iz verjetnosti: verjetnost sreµcanja, problem vzporednega parkiranja, radovedna igra mata kovancev, zadrega z deµznikom in problem manjkajoµcih senatorjev. Uvodoma so razloµzeni osnovni pojmi iz teorije verjetnosti in markovskih verig, ki so potrebni za razumevanje teoretiµcnih reitev predstavljenih problemov. V nadaljevanju je podrobneje opisana simulacija Monte Carlo, ki pomaga pri razumevanju praktiµcnih reitev problemov. V osrednjem delu so obravnavani problemi podrobneje opisani, podane so njihove teoretiµcne in prak- tiµcne reitve. Pri vseh primerih so ugotovitve predstavljene v primerjalnih tabelah. Graduation thesis introduces the use of Monte Carlo simulation in relation to solving some practical probability problems. In order to understand theoretical solutions of the problems, basic terms of prob- ability theory and Markov chains are explained. Furthermore, Monte Carlo simula- tion is described, which is helpful for understanding practical solutions. In the last part of diploma problems mentioned above are described and each is solved from theoretical and practical point of wiev. Findings of all problems are compared in spreadsheets.
- Published
- 2012
46. CHINESE REMAINDER THEOREM
- Author
-
Plavčak, Nataša and Benkovič, Dominik
- Subjects
kitajski izrek o ostankih ,homomorfizem ,homomorphism ,udc:51(043.2) ,direct product ,subdirect product ,direktni produkt ,ideal ,Chinese remainder theorem ,subdirektni produkt ,ring ,kolobar - Abstract
V diplomskem delu je predstavljen kitajski izrek o ostankih najprej v teoriji števil in nato v splošnih kolobarjih. Na začetku je na kratko predstavljena zgodovina kitajskega izreka o ostankih. Sledi kitajski izrek o ostankih v teoriji števil in primer. V nadaljevanju je podrobneje opisana struktura kolobarjev. Predstavljeni so tudi ideali in homomorfizmi kolobarjev ter izreki o izomorfizmih. Vse to je potrebno za razumevanje osrednjega dela diplome - kitajskega izreka o ostankih v splošnih kolobarjih. Na koncu je predstavljen subdirektni produkt kolobarjev, kjer imata pomembno vlogo prakolobar in polprakolobar. In this graduation thesis the Chinese remainder theorem is considered. First in the number theory and then in the ring theory. At the beginning we present the history of the Chinese remainder theorem. Then Chinese remainder theorem in the number theory is studied. Next, we turn our attention to the structure of rings. We also study ideals and homomorphisms of rings and we present theorems on isomorphisms. The main part of the thesis is devoted to the Chinese remainder theorem in the ring theory. At the end we introduce subdirect product of rings, where prime rings and semiprime rings have an important role.
- Published
- 2011
47. GENERATING RANDOM VARIABLES
- Author
-
Ančev, Aneta and Benkovič, Dominik
- Subjects
random variable ,Poissonov proces ,udc:51(043.2) ,naključno število ,random number ,polarna metoda ,naključna spremenljivka ,the polar method ,Poisson process ,metoda inverzne transformacije ,metoda zavrnitve ,the inverse transform method ,the rejection method - Abstract
Diplomsko delo obravnava generiranje naključnih spremenljivk. V uvodnem poglavju so naštete definicije in porazdelitve iz teorije verjetnosti, ki jih potrebujemo v nadaljevanju diplomskega dela. Predstavljeno je generiranje psevdo-naključnih števil, ki je osnova za generiranje naključnih spremenljivk. Psevdo-naključna števila so vrednosti enakomerno porazdeljene naključne spremenljivke na intervalu (0,1). Metode generiranja so obravnavne ločeno glede na to ali je spremenljivka diskretno ali zvezno porazdeljena. Spoznamo metodo inverzne transformacije. Navedena sta tudi algoritma za generiranje binomsko porazdeljene naključne spremenljivke in spremenljivke porazdeljene po Poissonovem zakonu. Predstavljena je tudi metoda zavrnitve. V nadaljevanju sta predstavljeni že navedeni metodi za generiranje zveznih naključnih spremenljivk in tudi polarna metoda za generiranje normalno porazdeljenih naključnih spremenljivk. Na koncu obravnavamo še generiranje Poissonovega procesa. The graduation thesis focuses on generating random variables. In the introduction chapter we introduce some definitions and imporant distributions of probability theory which are needed in the following chapters of the graduation thesis. Generating of pseudo-random numbers is described, which are the base for generating random variables. A pseudo-random number is the value of a uniformly distributed random variable on the interval (0,1). The generating methods are described separately, according to the variable, which can be distributed discete or continuous. We also get familiar with the inverse transform method. The algorithm for generating binomically distributed random variables as well as the variables distributed according to the Poisson law is introduced. In addition, the rejection method is also presented. The following chapters descibe the methods of generating continuous random variables and also the polar method for generating normal random variables. Finally, generating of the Poisson process is discussed.
- Published
- 2011
48. LINEAR GROUPS
- Author
-
Černevšek, Jasna and Benkovič, Dominik
- Subjects
ortogonal representation ,enostavne grupe ,udc:51(043.2) ,linearne grupe ,Lie algebra ,oneparametric groups ,ortogonalna upodobitev ,simple group ,Liejeva algebra ,enoparametrične grupe ,linear groups - Abstract
Diploma je sestavljena iz devetih poglavij. Začetek diplomskega dela vsebuje osnovne pojme in lastnosti matrik, vektorskih prostorov in osnovne lastnosti grup. V naslednjem poglavju je bolj podrobno predstavljena posebna unitarna grupa, kjer opišemo zemljepisne širine, zemljepisne dolžine ter severni in južni pol grupe. Pokažemo tudi, da so konjugirani razredi v unitarni grupi dvodimenzionalne sfere. V poglavju Ortogonalna upodobitev unitarne grupe vpeljemo orbite in pojem vlakna. Tu pokažemo, da je unitarne grupe dvojno pokritje grupe ortogonalne grupe. V nadaljevanju si pogledamo primer nekompaktne grupe. Nato sledi poglavje Enoparametričnih grup, ki so homomorfizmi, ki slikajo iz aditivne grupe v linearno grupo odvedljivih funkcij spremenljivke t ∈ ℝ. Tu omenimo pojem parcialnega odvoda in izrek o inverznih funkcijah. V nadaljevanju se ukvarjamo z Liejevo algebro, ki je prostor vektorjev tangent na G pri identiteti I. S pomočjo pojma gradient in verižnega ulomka podamo potrebne pogoje, da vektor postane tangenta za realno algebrsko množico S. V tem poglavju so definirani pojmi infinitizimalna tangenta, vektor tangent in prostor tangent. Ukvarjamo se z izračunom infinitizimalne spremembe posebne linearne grupe in ortogonalne grupe. Za konec tega poglavja zapišemo definicijo Liejeve algebre bolj abstraktno s pomočjo uporabe operacije komutator. V zadnjem poglavju z naslovom Primeri enostavnih grup navedemo nekaj primerov teh grup ter dokažemo pomemben izrek. The thesis consists from nine chapters. Begining of thesis contains the concepts and properties of matrices, vector spaces and the basic properties of groups, which are often used in thesis. In the next chapter we focus on special unitary group where we present latitude and longitude of unitary group. In this section we show that conjugate classes in unitary groups are two-dimensional spheres. In chapter The ortogonal representation of unitary group are introduced concepts of orbits and fiber. Here we show that unitary group is double covering of ortogonal group. In the continuation we meet special ortogonal group, which is example of noncompact group. Then follows chapter of Oneparametric groups, where is shown that oneparametric groups are homomorphisms from the additive group of real numbers to the general linear group, which are differentiable functions of the variable t ∈ ℝ. Here we mention concept of partial derivatives and the inverse function theorem, which is shown on ortogonal group and special linear group. In the continuation we speak about Lie algebra. Using the concepts of gradient and the chain rule we give necessary conditions for a vector to be tangent to a real algebraic set S. In this chapter we define concepts like infinitizimal tangent, vector tangent and tangent space. We are also dealing with computation of infinitizimal change of and ortogonal groups. In conclusion of this chapter we write the definition od Lie algebra more abstract, where we use the operation bracket. The final chapter, Examples of simple groups, contains some examples of these groups and we prove important theorem.
- Published
- 2011
49. THE FIRST DIGIT PROBLEM
- Author
-
Gajšek, Tatjana and Benkovič, Dominik
- Subjects
uniform distribution ,random variable ,udc:51(043.2) ,the first digit problem ,convolution ,naključna spremenljivka ,konvolucija ,enakomerna porazdelitev ,problem prve števke - Abstract
V diplomskem delu je predstavljen problem prve števke oziroma Benfordov zakon. V uvodu je predstavljena zgodovina tega problema. Sledita poglavji, v katerih so povzete osnovne verjetnosti in osnove Fourierove analize, ki sta potrebni za nadaljno razumevanje in razlago tega zakona. V nadaljevanju je opisana statistična razlaga in geometrijska podlaga zakona. Za tem sledi matematična formulacija samega zakona, dokazanega z uporabo Fourierove analize, predstavljene že v tretjem poglavju. The graduation thesis presents the first digit problem or Benford's law. At the beginning is represented history of this problem. After introduction chapter followed two chapters about basic facts from probability and Fourier analysis. This facts are important to understand the thesis and further explanation of the law. Next is described statistical derivation and geometric basis of the law. Finally is given a mathematical formulation of the law and it is explained with basic facts from Fourier analysis.
- Published
- 2011
50. PRINCIPAL COMPONENT ANALYSIS
- Author
-
Dobravc, Barbara and Benkovič, Dominik
- Subjects
covariance matrix ,udc:51(043.2) ,glavna komponenta ,principal components analysis ,principal component ,kovariančna matrika ,analiza glavnih komponent - Abstract
V diplomskem delu je predstavljena multivariantna statistična metoda imeno- vana analiza glavnih komponent. V začetnem delu so zajeti osnovni pojmi linearne algebre. Nato so predstavljeni osnovni pojmi statistike, ki so potrebni pri vpeljavi analize glavnih komponent. Poleg tega so podane tudi predstavitve večrazsežnih podatkov. V osrednjem delu je predstavljena sama analiza glavnih komponent, ki je ena izmed pomembnejših multivariantnih statističnih metod. Teoretični del je podkrepljen s primeri in dodani so tudi gra fični prikazi. In this thesis the multivariant statistic method called principal component analy- sis is presented. Basic terms of linear algebra are presented in the rst part. After- wards, we present basic statistical notions that are required in order to introduce principal component analysis. We also give presentations of various data. Princi- pal component analysis, which is one of the most important multivariant statistic method, is presented in the central part of the thesis. Teoretical part is supported with examples and graphical demonstrations.
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.