Gabriele Stengl, Andreas Pilz, Tadatsugu Taniguchi, Elisabeth Kernbauer, Thomas Decker, Sandra Westermayer, Benjamin Reutterer, Zoe Waibler, Renate Kastner, Mathias Müller, Theresa Frenz, Silvia Stockinger, Didier Soulat, Claus Vogl, Thomas Rülicke, Ulrich Kalinke, and Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University of Vienna, Vienna, Austria.
Production of type I interferons (IFN-I, mainly IFNα and IFNβ) is a hallmark of innate immune responses to all classes of pathogens. When viral infection spreads to lymphoid organs, the majority of systemic IFN-I is produced by a specialized “interferon-producing cell” (IPC) that has been shown to belong to the lineage of plasmacytoid dendritic cells (pDC). It is unclear whether production of systemic IFN-I is generally attributable to pDC irrespective of the nature of the infecting pathogen. We have addressed this question by studying infections of mice with the intracellular bacterium Listeria monocytogenes. Protective innate immunity against this pathogen is weakened by IFN-I activity. In mice infected with L. monocytogenes, systemic IFN-I was amplified via IFN-β, the IFN-I receptor (IFNAR), and transcription factor interferon regulatory factor 7 (IRF7), a molecular circuitry usually characteristic of non-pDC producers. Synthesis of serum IFN-I did not require TLR9. In contrast, in vitro–differentiated pDC infected with L. monocytogenes needed TLR9 to transcribe IFN-I mRNA. Consistent with the assumption that pDC are not the producers of systemic IFN-I, conditional ablation of the IFN-I receptor in mice showed that most systemic IFN-I is produced by myeloid cells. Furthermore, results obtained with FACS-purified splenic cell populations from infected mice confirmed the assumption that a cell type with surface antigens characteristic of macrophages and not of pDC is responsible for bulk IFN-I synthesis. The amount of IFN-I produced in the investigated mouse lines was inversely correlated to the resistance to lethal infection. Based on these data, we propose that the engagement of pDC, the mode of IFN-I mobilization, as well as the shaping of the antimicrobial innate immune response by IFN-I differ between intracellular pathogens., Author Summary Type I Interferons (IFN-I) are cytokines produced by the innate immune system immediately after intrusion of a pathogen. To produce large quantities of IFN-I once an infection is starting to spread throughout the body, the innate immune system employs a specialized “interferon-producing cell” (IPC). In the case of viral infections, IFN-I protect the host organism from rapid viral replication and spread. Conversely, organisms that cannot produce IFN-I are exquisitely sensitive to viral infections. Intriguingly, the opposite has been reported for the pathogen Listeria monocytogenes. Like virus, this bacterium replicates within cells of the host organism and stimulates IFN-I synthesis. Unlike virus, however, IFN-I sensitize the infected host to lethal pathology resulting from L. monocytogenes infection. In this article, we show that all tested molecules contributing to IFN-I production in Listeria-infected mice are responsible for a corresponding increase in mortality. We address the question of which cell type is responsible for producing vast quantities of IFN-I that can be measured in the serum of mice infected with Listeria. We show that these are not IPC, but rather macrophages, cells specialized to ingest and kill bacteria. We conclude that the engagement of cells for IFN-I production and also the effect of IFN-I on innate immunity is determined by the tropism and lifestyle of a particular pathogen.