1. Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
- Author
-
Jan Novak, Niloufar Zarinabad, Heather Rose, Theodoros Arvanitis, Lesley MacPherson, Benjamin Pinkey, Adam Oates, Patrick Hales, Richard Grundy, Dorothee Auer, Daniel Rodriguez Gutierrez, Tim Jaspan, Shivaram Avula, Laurence Abernethy, Ramneek Kaur, Darren Hargrave, Dipayan Mitra, Simon Bailey, Nigel Davies, Christopher Clark, and Andrew Peet
- Subjects
Medicine ,Science - Abstract
Abstract To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P
- Published
- 2021
- Full Text
- View/download PDF