10 results on '"Benjamin Doppagne"'
Search Results
2. Mapping Lamb, Stark, and Purcell Effects at a Chromophore-Picocavity Junction with Hyper-Resolved Fluorescence Microscopy
- Author
-
Anna Rosławska, Tomáš Neuman, Benjamin Doppagne, Andrei G. Borisov, Michelangelo Romeo, Fabrice Scheurer, Javier Aizpurua, and Guillaume Schull
- Subjects
Physics ,QC1-999 - Abstract
The interactions of the excited states of a single chromophore with static and dynamic electric fields spatially varying at the atomic scale are investigated in a joint experimental and theoretical effort. In this configuration, the spatial extension of the fields confined at the apex of a scanning tunneling microscope tip is smaller than that of the molecular exciton, a property used to generate fluorescence maps of the chromophore with intramolecular resolution. Theoretical simulations of the electrostatic and electrodynamic interactions occurring at the picocavity junction formed by the chromophore, the tip, and the substrate reveal the key role played by subtle variations of Purcell, Lamb, and Stark effects. They also demonstrate that hyper-resolved fluorescence maps of the line shift and linewidth of the excitonic emission can be understood as images of the static charge redistribution upon electronic excitation of the molecule and as the distribution of the dynamical charge oscillation associated with the molecular exciton, respectively.
- Published
- 2022
- Full Text
- View/download PDF
3. Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber
- Author
-
Kamel Bencheikh, Patricia Segonds, Corinne Felix, Adrien Borne, Juan Ariel Levenson, Tomotaka Katsura, Benjamin Doppagne, Benoît Boulanger, Optique et Matériaux (OPTIMA ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute for Study of the Earth's Interior, Okayama University, Institute for Study of the Earth's Interior, Optique et microscopies (POM), Laboratoire de photonique et de nanostructures (LPN), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Mode volume ,Optical fiber ,business.industry ,Single-mode optical fiber ,Phase (waves) ,Physics::Optics ,Polarization-maintaining optical fiber ,01 natural sciences ,Graded-index fiber ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,law.invention ,010309 optics ,Core (optical fiber) ,Optics ,law ,0103 physical sciences ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Dispersion-shifted fiber ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,010306 general physics ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
Several third-harmonic generation processes were performed in a single step-index germanium-doped silica optical fiber under intermodal phase-matching conditions. The nanosecond fundamental beam range between 1400 and 1600 nm. The transverse distributions of the energy were successfully modeled in the form of Ince-Gauss modes, pointing out some ellipticity of fiber core. From these experiments and theoretical calculations, we discuss the implementation of frequency degenerated triple photon generation that shares the same phase-matching condition as third-harmonic generation, which is its reverse process.
- Published
- 2016
- Full Text
- View/download PDF
4. Electrofluorochromism at the single-molecule level
- Author
-
Michael C. Chong, Guillaume Schull, Fabrice Scheurer, Hervé Bulou, Benjamin Doppagne, Alex Boeglin, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
FOS: Physical sciences ,Insulator (electricity) ,02 engineering and technology ,Electroluminescence ,01 natural sciences ,law.invention ,Oxidation state ,law ,Physics - Chemical Physics ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Molecule ,010306 general physics ,Plasmon ,ComputingMilieux_MISCELLANEOUS ,Chemical Physics (physics.chem-ph) ,[PHYS]Physics [physics] ,Multidisciplinary ,Condensed Matter - Mesoscale and Nanoscale Physics ,021001 nanoscience & nanotechnology ,Fluorescence ,3. Good health ,Radical ion ,Chemical physics ,Scanning tunneling microscope ,0210 nano-technology - Abstract
The interplay between the oxidation state and the optical properties of molecules plays a key role for applications in displays, sensors or molecular-based memories. The fundamental mechanisms occurring at the level of a single-molecule have been difficult to probe. We used a scanning tunneling microscope (STM) to characterize and control the fluorescence of a single Zn-phthalocyanine radical cation adsorbed on a NaCl-covered Au(111) sample. The neutral and oxidized states of the molecule were identified on the basis of their fluorescence spectra that revealed very different emission energies and vibronic fingerprints. The emission of the charged molecule was controlled by tuning the thickness of the insulator and the plasmons localized at the apex of the STM tip. In addition, sub-nanometric variations of the tip position were used to investigate the charging and electroluminescence mechanisms., 11 pages, 4 figures
- Published
- 2018
- Full Text
- View/download PDF
5. Fano Description of Single-Hydrocarbon Fluorescence Excited by a Scanning Tunneling Microscope
- Author
-
Jörg Kröger, Benjamin Doppagne, Fabrice Scheurer, Guillaume Schull, scheurer, fabrice, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and Technische Universität Ilmenau (TU )
- Subjects
Materials science ,polyaromatic hydrocarbon ,Exciton ,FOS: Physical sciences ,Bioengineering ,02 engineering and technology ,01 natural sciences ,Molecular physics ,law.invention ,[PHYS.PHYS.PHYS-CHEM-PH] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,law ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Fano ,Physics::Atomic and Molecular Clusters ,General Materials Science ,Physics::Chemical Physics ,010306 general physics ,STM-induced luminesence ,Plasmon ,Quantum tunnelling ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mechanical Engineering ,single-molecule fluorescence ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Single-molecule experiment ,3. Good health ,Excited state ,Light emission ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Scanning tunneling microscope ,0210 nano-technology ,Luminescence - Abstract
The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture., Comment: 24 pages, 4 figures
- Published
- 2018
- Full Text
- View/download PDF
6. Vibronic Spectroscopy with Submolecular Resolution from STM-Induced Electroluminescence
- Author
-
Fabrice Scheurer, Hervé Bulou, Alex Boeglin, Stéphane Berciaud, Michelangelo Romeo, Etienne Lorchat, Benjamin Doppagne, Michael C. Chong, Guillaume Schull, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), univOAK, Archive ouverte, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,Materials science ,Resolution (electron density) ,General Physics and Astronomy ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Electroluminescence ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,01 natural sciences ,Fluorescence ,3. Good health ,law.invention ,law ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Vibronic spectroscopy ,Molecule ,Scanning tunneling microscope ,Atomic physics ,Physics::Chemical Physics ,010306 general physics ,0210 nano-technology - Abstract
A scanning tunneling microscope is used to generate the electroluminescence of phthalocyanine molecules deposited on NaCl/Ag(111). Photon spectra reveal an intense emission line at approximate to 1.9 eV that corresponds to the fluorescence of the molecules, and a series of weaker redshifted lines. Based on a comparison with Raman spectra acquired on macroscopic molecular crystals, these spectroscopic features can be associated with the vibrational modes of the molecules and provide a detailed chemical fingerprint of the probed species. Maps of the vibronic features reveal submolecularly resolved structures whose patterns are related to the symmetry of the probed vibrational modes.
- Published
- 2017
- Full Text
- View/download PDF
7. Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber
- Author
-
Patricia Segonds, Tomotaka Katsura, Corinne Felix, Benoît Boulanger, Adrien Borne, Juan Ariel Levenson, Kamel Bencheikh, Benjamin Doppagne, Optique et Matériaux (OPTIMA), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Mitsubishi Electric Corporation, Optique et microscopies (POM), Laboratoire de photonique et de nanostructures (LPN), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mode volume ,Materials science ,Optical fiber ,business.industry ,Single-mode optical fiber ,Physics::Optics ,Nonlinear optics ,Polarization-maintaining optical fiber ,Graded-index fiber ,Atomic and Molecular Physics, and Optics ,law.invention ,Optics ,Zero-dispersion wavelength ,law ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Dispersion-shifted fiber ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
We performed an intermodal third-harmonic generation around 516 nm in a germanium-doped silica optical fiber. The analysis of the complex polarization behavior that was observed allowed us to determine the orientation symmetry group of the fiber and the relative values of the independent coefficients of the third-order electric susceptibility tensor.
- Published
- 2015
- Full Text
- View/download PDF
8. Anisotropy of phase-matched third harmonic generation in germanium-doped silica optical fiber
- Author
-
Adrien Borne, Tomotaka Katsura, Benoît Boulanger, Corinne Félix, Patricia Segonds, Benjamin Doppagne, Kamel Bencheikh, and Ariel Levenson
- Subjects
Optical fiber ,Materials science ,business.industry ,Electric susceptibility ,Physics::Optics ,chemistry.chemical_element ,Polarization-maintaining optical fiber ,Germanium ,Polarization (waves) ,law.invention ,Condensed Matter::Materials Science ,Third order ,chemistry ,law ,Optoelectronics ,Dispersion-shifted fiber ,Condensed Matter::Strongly Correlated Electrons ,Anisotropy ,business - Abstract
We performed intermodal third harmonic generation around 515 nm in a germanium-doped silica optical fiber. The complex polarization behavior that was observed is well-described by uniaxial symmetry of the third order electric susceptibility.
- Published
- 2014
- Full Text
- View/download PDF
9. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy
- Author
-
Tomáš Neuman, Guillaume Schull, Michelangelo Romeo, Luis E. Parra López, Ruben Soria-Martinez, Benjamin Doppagne, Stéphane Berciaud, Javier Aizpurua, Fabrice Scheurer, Hervé Bulou, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Donostia International Physics Center (DIPC), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), schull, guillaume, European Research Council, European Commission, Agence Nationale de la Recherche (France), Université de Strasbourg, Ministerio de Economía y Competitividad (España), Eusko Jaurlaritza, Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
Molecular switch ,[PHYS]Physics [physics] ,Materials science ,Biomedical Engineering ,Molecular electronics ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Single-molecule experiment ,01 natural sciences ,Tautomer ,Atomic and Molecular Physics, and Optics ,Fluorescence spectroscopy ,Spectral line ,0104 chemical sciences ,[PHYS] Physics [physics] ,Chemical physics ,Excited state ,Molecule ,General Materials Science ,Electrical and Electronic Engineering ,0210 nano-technology - Abstract
Tautomerization, the interconversion between two constitutional molecular isomers, is ubiquitous in nature, plays a major role in chemistry and is perceived as an ideal switch function for emerging molecular-scale devices. Within free-base porphyrin, porphycene or phthalocyanine, this process involves the concerted or sequential hopping of the two inner hydrogen atoms between equivalent nitrogen sites of the molecular cavity. Electronic and vibronic changes that result from this NH tautomerization, as well as details of the switching mechanism, were extensively studied with optical spectroscopies, even with single-molecule sensitivity. The influence of atomic-scale variations of the molecular environment and submolecular spatial resolution of the tautomerization could only be investigated using scanning probe microscopes, at the expense of detailed information provided by optical spectroscopies. Here, we combine these two approaches, scanning tunnelling microscopy (STM) and fluorescence spectroscopy, to study the tautomerization within individual free-base phthalocyanine (HPc) molecules deposited on a NaCl-covered Ag(111) single-crystal surface. STM-induced fluorescence (STM-F) spectra exhibit duplicate features that we assign to the emission of the two molecular tautomers. We support this interpretation by comparing hyper-resolved fluorescence maps(HRFMs) of the different spectral contributions with simulations that account for the interaction between molecular excitons and picocavity plasmons. We identify the orientation of the molecular optical dipoles, determine the vibronic fingerprint of the tautomers and probe the influence of minute changes in their atomic-scale environment. Time-correlated fluorescence measurements allow us to monitor the tautomerization events and to associate the proton dynamics to a switching two-level system. Finally, optical spectra acquired with the tip located at a nanometre-scale distance from the molecule show that the tautomerization reaction occurs even when the tunnelling current does not pass through the molecule. Together with other observations, this remote excitation indicates that the excited state of the molecule is involved in the tautomerization reaction path., The authors thank V. Speisser for technical support and A. Boeglin and Andrei Borissov for fruitful discussions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 771850). The Agence National de la Recherche (project SMALL’LED no. ANR-14-CE26-0016-01), the Labex NIE (Contract no. ANR-11- LABX-0058_NIE) and the International Center for Frontier Research in Chemistry (FRC) are acknowledged for financial support. R.S.-M. and H.B. acknowledge GENCICINES (Project no. A0060907459) and the Pôle HPC and Equipex Equip@Meso at the University of Strasbourg. T.N. and J.A. acknowledge the project FIS2016-80174-P from the Spanish Ministry of Science, and project ELKARTEK KK-2018/00001 from the Basque Government, as well as grant IT1164-19 from the Basque Government for consolidated groups at the university
- Full Text
- View/download PDF
10. Energy funnelling within multichromophore architectures monitored with subnanometre resolution
- Author
-
Michel Féron, Benjamin Doppagne, Fabrice Scheurer, Hervé Bulou, Anna Rosławska, Guillaume Schull, Shuiyan Cao, Michelangelo Romeo, Frédéric Chérioux, Nanjing University of Aeronautics and Astronautics (Nanjing University of Aeronautics and Astronautics), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Femto-st, MN2S, Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
- Subjects
Resonant inductive coupling ,Light ,General Chemical Engineering ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,FOS: Physical sciences ,Trimer ,[SPI.MAT] Engineering Sciences [physics]/Materials ,Isoindoles ,010402 general chemistry ,01 natural sciences ,Fluorescence ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Biomimetics ,Microscopy, Scanning Tunneling ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Organometallic Compounds ,Molecule ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Quantum tunnelling ,ComputingMilieux_MISCELLANEOUS ,Fluorescent Dyes ,Physics ,[PHYS]Physics [physics] ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Condensed Matter - Mesoscale and Nanoscale Physics ,010405 organic chemistry ,General Chemistry ,Chromophore ,Acceptor ,0104 chemical sciences ,Energy Transfer ,Chemical physics ,Zinc Compounds ,Luminescence ,Energy (signal processing) - Abstract
In natural and artificial light-harvesting complexes (LHC) the resonant energy transfer (RET) between chromophores enables an efficient and directional transport of solar energy between collection and reaction centers. The detailed mechanisms involved in this energy funneling are intensely debated, essentially because they rely on a succession of individual RET steps that can hardly be addressed separately. Here, we developed a scanning tunnelling microscopy-induced luminescence (STML) approach allowing visualizing, addressing and manipulating energy funneling within multi-chromophoric structures with sub-molecular precision. We first rationalize the efficiency of the RET process at the level of chromophore dimers. We then use highly resolved fluorescence microscopy (HRFM) maps to follow energy transfer paths along an artificial trimer of descending excitonic energies which reveals a cascaded RET from high- to low-energy gap molecules. Mimicking strategies developed by photosynthetic systems, this experiment demonstrates that intermediate gap molecules can be used as efficient ancillary units to convey energy between distant donor and acceptor chromophores. Eventually, we demonstrate that the RET between donors and acceptors is enhanced by the insertion of passive molecules acting as non-covalent RET bridges. This mechanism, that occurs in experiments performed in inhomogeneous media and which plays a decisive role in fastening RET in photosynthetic systems, is reported at the level of individual chromophores with atomic-scale resolution. As it relies on organic chromophores as elementary components, our approach constitutes a powerful model to address fundamental physical processes at play in natural LHC.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.