7 results on '"Ben Tanfous T"'
Search Results
2. Role of affinity in plasma cell development in the germinal center light zone.
- Author
-
ElTanbouly MA, Ramos V, MacLean AJ, Chen ST, Loewe M, Steinbach S, Ben Tanfous T, Johnson B, Cipolla M, Gazumyan A, Oliveira TY, and Nussenzweig MC
- Subjects
- B-Lymphocytes, Antibodies, Antibody-Producing Cells, Plasma Cells, Germinal Center
- Abstract
Protective immune responses to many pathogens depend on the development of high-affinity antibody-producing plasma cells (PC) in germinal centers (GCs). Transgenic models suggest that there is a stringent affinity-based barrier to PC development. Whether a similar high-affinity barrier regulates PC development under physiologic circumstances and the nature of the PC fate decision has not been defined precisely. Here, we use a fate-mapping approach to examine the relationship between GC B cells selected to undergo additional rounds of affinity maturation, GC pre-PC, and PC. The data show that initial PC selection overlaps with GC B cell selection, but that the PC compartment accumulates a less diverse and higher affinity collection of antibodies over time. Thus, whereas the GC continues to diversify over time, affinity-based pre-PC selection sieves the GC to enable the accumulation of a more restricted group of high-affinity antibody-secreting PC., (© 2023 ElTanbouly et al.)
- Published
- 2024
- Full Text
- View/download PDF
3. Memory B cell responses to Omicron subvariants after SARS-CoV-2 mRNA breakthrough infection in humans.
- Author
-
Wang Z, Zhou P, Muecksch F, Cho A, Ben Tanfous T, Canis M, Witte L, Johnson B, Raspe R, Schmidt F, Bednarski E, Da Silva J, Ramos V, Zong S, Turroja M, Millard KG, Yao KH, Shimeliovich I, Dizon J, Kaczynska A, Jankovic M, Gazumyan A, Oliveira TY, Caskey M, Gaebler C, Bieniasz PD, Hatziioannou T, and Nussenzweig MC
- Subjects
- Antibodies, Neutralizing, Antibodies, Viral, Humans, Memory B Cells, RNA, Messenger genetics, Vaccines, Synthetic, mRNA Vaccines, COVID-19, SARS-CoV-2
- Abstract
Individuals who receive a third mRNA vaccine dose show enhanced protection against severe COVID-19, but little is known about the impact of breakthrough infections on memory responses. Here, we examine the memory antibodies that develop after a third or fourth antigenic exposure by Delta or Omicron BA.1 infection, respectively. A third exposure to antigen by Delta breakthrough increases the number of memory B cells that produce antibodies with comparable potency and breadth to a third mRNA vaccine dose. A fourth antigenic exposure with Omicron BA.1 infection increased variant-specific plasma antibody and memory B cell responses. However, the fourth exposure did not increase the overall frequency of memory B cells or their general potency or breadth compared to a third mRNA vaccine dose. In conclusion, a third antigenic exposure by Delta infection elicits strain-specific memory responses and increases in the overall potency and breadth of the memory B cells. In contrast, the effects of a fourth antigenic exposure with Omicron BA.1 are limited to increased strain-specific memory with little effect on the potency or breadth of memory B cell antibodies. The results suggest that the effect of strain-specific boosting on memory B cell compartment may be limited., (© 2022 Wang et al.)
- Published
- 2022
- Full Text
- View/download PDF
4. Humoral immunity to SARS-CoV-2 elicited by combination COVID-19 vaccination regimens.
- Author
-
Wang Z, Muecksch F, Muenn F, Cho A, Zong S, Raspe R, Ramos V, Johnson B, Ben Tanfous T, DaSilva J, Bednarski E, Guzman-Cardozo C, Turroja M, Millard KG, Tober-Lau P, Hillus D, Yao KH, Shimeliovich I, Dizon J, Kaczynska A, Jankovic M, Gazumyan A, Oliveira TY, Caskey M, Bieniasz PD, Hatziioannou T, Kurth F, Sander LE, Nussenzweig MC, and Gaebler C
- Subjects
- Antibodies, Neutralizing, Antibodies, Viral, COVID-19 Vaccines, Humans, Immunity, Humoral, RNA, Messenger, SARS-CoV-2, Vaccination, COVID-19 prevention & control, Viral Vaccines
- Abstract
The SARS-CoV-2 pandemic prompted a global vaccination effort and the development of numerous COVID-19 vaccines at an unprecedented scale and pace. As a result, current COVID-19 vaccination regimens comprise diverse vaccine modalities, immunogen combinations, and dosing intervals. Here, we compare vaccine-specific antibody and memory B cell responses following two-dose mRNA, single-dose Ad26.COV.2S, and two-dose ChAdOx1, or combination ChAdOx1/mRNA vaccination. Plasma-neutralizing activity, as well as the magnitude, clonal composition, and antibody maturation of the RBD-specific memory B cell compartments, showed substantial differences between the vaccination regimens. While individual monoclonal antibodies derived from memory B cells exhibited similar binding affinities and neutralizing potency against Wuhan-Hu-1 SARS-CoV-2, there were significant differences in epitope specificity and neutralizing breadth against viral variants of concern. Although the ChAdOx1 vaccine was inferior to mRNA and Ad26.COV.2S in several respects, biochemical and structural analyses revealed enrichment in a subgroup of memory B cell neutralizing antibodies with distinct RBD-binding properties resulting in remarkable potency and breadth., (© 2022 Wang et al.)
- Published
- 2022
- Full Text
- View/download PDF
5. Antibody evolution to SARS-CoV-2 after single-dose Ad26.COV2.S vaccine in humans.
- Author
-
Cho A, Muecksch F, Wang Z, Ben Tanfous T, DaSilva J, Raspe R, Johnson B, Bednarski E, Ramos V, Schaefer-Babajew D, Shimeliovich I, Dizon JP, Yao KH, Schmidt F, Millard KG, Turroja M, Jankovic M, Oliveira TY, Gazumyan A, Gaebler C, Caskey M, Hatziioannou T, Bieniasz PD, and Nussenzweig MC
- Subjects
- Ad26COVS1, Antibodies, Neutralizing, Humans, SARS-CoV-2, mRNA Vaccines, COVID-19 prevention & control, Vaccines
- Abstract
The single-dose Ad.26.COV.2 (Janssen) vaccine elicits lower levels of neutralizing antibodies and shows more limited efficacy in protection against infection than either of the two available mRNA vaccines. In addition, Ad.26.COV.2 has been less effective in protection against severe disease during the Omicron surge. Here, we examined the memory B cell response to single-dose Ad.26.COV.2 vaccination. Compared with mRNA vaccines, Ad.26.COV.2 recipients had significantly lower numbers of RBD-specific memory B cells 1.5 or 6 mo after vaccination. Despite the lower numbers, the overall quality of the memory B cell responses appears to be similar, such that memory antibodies elicited by both vaccine types show comparable neutralizing potency against SARS-CoV-2 Wuhan-Hu-1, Delta, and Omicron BA.1 variants. The data help explain why boosting Ad.26.COV.2 vaccine recipients with mRNA vaccines is effective and why the Ad26.COV2.S vaccine can maintain some protective efficacy against severe disease during the Omicron surge., (© 2022 Cho et al.)
- Published
- 2022
- Full Text
- View/download PDF
6. Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost.
- Author
-
Muecksch F, Wang Z, Cho A, Gaebler C, Ben Tanfous T, DaSilva J, Bednarski E, Ramos V, Zong S, Johnson B, Raspe R, Schaefer-Babajew D, Shimeliovich I, Daga M, Yao KH, Schmidt F, Millard KG, Turroja M, Jankovic M, Oliveira TY, Gazumyan A, Caskey M, Hatziioannou T, Bieniasz PD, and Nussenzweig MC
- Subjects
- Antibodies, Neutralizing immunology, Antibodies, Viral immunology, Humans, RNA, Messenger genetics, COVID-19 immunology, COVID-19 prevention & control, COVID-19 virology, COVID-19 Vaccines administration & dosage, COVID-19 Vaccines immunology, Immunization, Secondary, Memory B Cells immunology, SARS-CoV-2 genetics, SARS-CoV-2 immunology, mRNA Vaccines administration & dosage, mRNA Vaccines immunology
- Abstract
The Omicron variant of SARS-CoV-2 infected many vaccinated and convalescent individuals
1-3 . Despite the reduced protection from infection, individuals who received three doses of an mRNA vaccine were highly protected from more serious consequences of infection4 . Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving three mRNA vaccine doses5,6 . We find that the third dose is accompanied by an increase in, and evolution of, receptor-binding domain (RBD)-specific memory B cells. The increase is due to expansion of memory B cell clones that were present after the second dose as well as the emergence of new clones. The antibodies encoded by these cells showed significantly increased potency and breadth when compared with antibodies obtained after the second dose. Notably, the increase in potency was especially evident among newly developing clones of memory cells, which differed from persisting clones in targeting more conserved regions of the RBD. Overall, more than 50% of the analysed neutralizing antibodies in the memory compartment after the third mRNA vaccine dose neutralized the Omicron variant. Thus, individuals receiving three doses of an mRNA vaccine have a diverse memory B cell repertoire that can respond rapidly and produce antibodies capable of clearing even diversified variants such as Omicron. These data help to explain why a third dose of a vaccine that was not specifically designed to protect against variants is effective against variant-induced serious disease., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
7. Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins.
- Author
-
Wang Z, Muecksch F, Cho A, Gaebler C, Hoffmann HH, Ramos V, Zong S, Cipolla M, Johnson B, Schmidt F, DaSilva J, Bednarski E, Ben Tanfous T, Raspe R, Yao K, Lee YE, Chen T, Turroja M, Milard KG, Dizon J, Kaczynska A, Gazumyan A, Oliveira TY, Rice CM, Caskey M, Bieniasz PD, Hatziioannou T, Barnes CO, and Nussenzweig MC
- Subjects
- Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Epitopes, Humans, Memory B Cells, SARS-CoV-2, COVID-19, Spike Glycoprotein, Coronavirus
- Abstract
SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor-binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for antibodies. Here, we use NTD-specific probes to capture anti-NTD memory B cells in a longitudinal cohort of infected individuals, some of whom were vaccinated. We found 6 complementation groups of neutralizing antibodies. 58% targeted epitopes outside the NTD supersite, 58% neutralized either Gamma or Omicron, and 14% were broad neutralizers that also neutralized Omicron. Structural characterization revealed that broadly active antibodies targeted three epitopes outside the NTD supersite including a class that recognized both the NTD and SD2 domain. Rapid recruitment of memory B cells producing these antibodies into the plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants, including Omicron., Competing Interests: Declaration of interests The Rockefeller University has filed a provisional patent application in connection with this work on which M.C.N. and Z.W. are inventors (US patent 17/575,246)., (Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.