24 results on '"Bellet, T."'
Search Results
2. A human factors perspective on automated driving
- Author
-
Kyriakidis, M., primary, de Winter, J. C. F., additional, Stanton, N., additional, Bellet, T., additional, van Arem, B., additional, Brookhuis, K., additional, Martens, M. H., additional, Bengler, K., additional, Andersson, J., additional, Merat, N., additional, Reed, N., additional, Flament, M., additional, Hagenzieker, M., additional, and Happee, R., additional
- Published
- 2017
- Full Text
- View/download PDF
3. A human factors perspective on automated driving.
- Author
-
Kyriakidis, M., de Winter, J. C. F., Stanton, N., Bellet, T., van Arem, B., Brookhuis, K., Martens, M. H., Bengler, K., Andersson, J., Merat, N., Reed, N., Flament, M., Hagenzieker, M., and Happee, R.
- Subjects
AUTOMOBILE driving ,AUTOMATION ,INTERVIEWING ,MOTOR vehicle driving ,QUALITY of life ,SAFETY ,TECHNOLOGY ,TRAFFIC accidents ,PSYCHOLOGY - Abstract
Automated driving can fundamentally change road transportation and improve quality of life. However, at present, the role of humans in automated vehicles (AVs) is not clearly established. Interviews were conducted in April and May 2015 with 12 expert researchers in the field of human factors (HFs) of automated driving to identify commonalities and distinctive perspectives regarding HF challenges in the development of AVs. The experts indicated that an AV up to SAE Level 4 should inform its driver about the AV's capabilities and operational status, and ensure safety while changing between automated and manual modes. HF research should particularly address interactions between AVs, human drivers and vulnerable road users. Additionally, driver-training programmes may have to be modified to ensure that humans are capable of using AVs. Finally, a reflection on the interviews is provided, showing discordance between the interviewees' statements - which appear to be in line with a long history of HFs research - and the rapid development of automation technology. We expect our perspective to be instrumental for stakeholders involved in AV development and instructive to other parties. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
4. A human factors perspective on automated driving
- Author
-
Kyriakidis, M. (author), de Winter, J.C.F. (author), Stanton, N. (author), Bellet, T. (author), van Arem, B. (author), Brookhuis, K.A. (author), Martens, M.H. (author), Bengler, K. (author), Andersson, J. (author), Merat, N. (author), Reed, N. (author), Flament, M. (author), Hagenzieker, M.P. (author), Happee, R. (author), Kyriakidis, M. (author), de Winter, J.C.F. (author), Stanton, N. (author), Bellet, T. (author), van Arem, B. (author), Brookhuis, K.A. (author), Martens, M.H. (author), Bengler, K. (author), Andersson, J. (author), Merat, N. (author), Reed, N. (author), Flament, M. (author), Hagenzieker, M.P. (author), and Happee, R. (author)
- Abstract
Automated driving can fundamentally change road transportation and improve quality of life. However, at present, the role of humans in automated vehicles (AVs) is not clearly established. Interviews were conducted in April and May 2015 with 12 expert researchers in the field of human factors (HFs) of automated driving to identify commonalities and distinctive perspectives regarding HF challenges in the development of AVs. The experts indicated that an AV up to SAE Level 4 should inform its driver about the AV's capabilities and operational status, and ensure safety while changing between automated and manual modes. HF research should particularly address interactions between AVs, human drivers and vulnerable road users. Additionally, driver-training programmes may have to be modified to ensure that humans are capable of using AVs. Finally, a reflection on the interviews is provided, showing discordance between the interviewees’ statements – which appear to be in line with a long history of HFs research – and the rapid development of automation technology. We expect our perspective to be instrumental for stakeholders involved in AV development and instructive to other parties., Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public., Biomechatronics & Human-Machine Control, Transport and Planning, Transport and Planning, Intelligent Vehicles
- Published
- 2017
- Full Text
- View/download PDF
5. Analyse de l'activité des conducteurs âgés pour la conception d'assistance adaptée à leurs besoins en termes de sécurité et de mobilité
- Author
-
Paris, J. C., Bellet, T., Marin-Lamellet, C., Deleurence, P., Gauthier, S., Moreau, F., Bernard Claverie, COGNITIQUE, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Laboratoire d'Ergonomie et de Sciences Cognitives pour les Transports (IFSTTAR/LESCOT), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Laboratoire d'Ergonomie et de Sciences Cognitives pour les Transports (IFSTTAR/LESCOT), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1
- Subjects
monitoring ,Conducteur âgé ,[SDV.NEU.SC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Cognitive Sciences ,analyse de l'activité ,aide à la conduite ,Ingénierie Cognitive - Abstract
International audience; Contexte Dans les pays industrialisés, la population vieillit d'année en année. En France par exemple, on projette qu'en 2030, un habitant sur trois aura plus de 65 ans. S'impose alors la question de la préservation de l'autonomie, qui implique notamment la mobilité individuelle. La poursuite de la conduite automobile à un âge avancé est souvent un symbole fort du maintien de cette autonomie. Or conduire est une tâche complexe et exigeante, impliquant diverses facultés humaines parmi lesquelles certaines sont affectées par les effets de l'âge. D'un autre côté, les récentes innovations technologiques en matière d'assistance à la conduite, sous réserve qu'elles répondent bien aux besoins et aux caractéristiques des conducteurs âgés, sont susceptibles d'apporter un soutien bénéfique à cette population, permettant ainsi de garantir la sécurité routière et la mobilité de ce groupe d'usagers de la route. Objectifs Dans ce contexte, l'objectif de cette recherche est d'analyser l'activité de conduite de conducteurs âgés afin de déterminer et comprendre les spécificités et les difficultés potentielles de ces conducteurs. Il s'agit notamment d'observer et d'analyser les comportements de conduite en conditions naturelles afin d'évaluer les effets potentiels du vieillissement sur cette tâche complexe (difficultés rencontrées, risques d'erreurs spécifiques, mais aussi stratégies compensatoires mise en place), dans le but de spécifier de futurs dispositifs d'assistance ainsi que leur modalités d'interaction Homme-Machine, qui soient bien adaptés aux besoins réels des conducteurs âgés, en matière de sécurité routière comme de mobilité. Méthode Pour se faire, notre démarche scientifique s'inscrit dans une approche complémentaire alliant Ergonomie et Ingénierie Cognitive. D'une part, des données objectives de conduite sont collectées au moyen d'un véhicule instrumenté sur route ouverte. Ces mesures renseignent sur l'environnement du véhicule (caméras filmant les scènes avant et arrière, détection des panneaux de limitations de vitesse, dynamique des obstacles en aval du véhicule), sur sa dynamique (accélérations, vitesse, relevés sur le bus CAN), sur sa position (antenne GPS, position sur la voie) et sur les actions du conducteur (état des commandes
- Published
- 2013
6. A perception module for car drivers visual strategies modeling and visual distraction effect simulation
- Author
-
Jc Bornard, Bellet, T., Mayenobe, P., Gruyer, D., Bernard Claverie, COGNITIQUE, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Equipe Cognitique & Ingénierie Humaine - IMS (UMR 5218), Ecole Nationale Supérieure de Cognitique-Ecole Nationale Supérieure de Cognitique-Laboratoire d'Ergonomie et de Sciences Cognitives pour les Transports (IFSTTAR/LESCOT), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Laboratoire d'Ergonomie et de Sciences Cognitives pour les Transports (IFSTTAR/LESCOT), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Laboratoire sur les Interactions Véhicules-Infrastructure-Conducteurs (IFSTTAR/LIVIC), Ecole Nationale Supérieure de Cognitique-Ecole Nationale Supérieure de Cognitique, ENSC, and Troadec, Nelly
- Subjects
Visual distraction ,CONDUITE DU VEHICULE ,[SDV.NEU.SC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Cognitive Sciences ,Perception ,Visual strategies ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,[SDV.NEU.SC] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Cognitive Sciences ,Simulation ,Cognitive modeling - Abstract
International audience; The aim of this research is to develop and implement a computational model able to simulate drivers' visual strategies in dual-task conditions and to investigate visual distraction effects. The modeling approach supporting this research is based on a cognitive model of the car driver so-called COSMODRIVE, focused on mental representations simulation (i.e. situational awareness) and implemented on a virtual platform (so-called SiVIC). In this framework, a module of the visual perception is needed for model interaction with the virtual road environment. This perception module is indeed the ''entry point'' for road scene analysis and decision-making. This modeling work is based on empirical data collected among 20 human drivers. Experiments have been designed in order to study visual distraction impact of driver's visual scanning. During this experiment, participants drove a car on simulator and answered at the same time to a visual secondary task. Visual strategies were collected through video films, and have been analyzed in order to model visual distraction effect. Different visual strategies for alternative scanning of the road scene and the pictogram screen (i.e. distraction in the cockpit) have been identified among our set of drivers. These empirical results have been then used to develop a visual perception module liable to dynamically explore the road environment, according to visual distraction effects. Through these empirical data, the perception module has been developed in order to reproduce these visuals strategies of human when a visual distraction occurs. The module is primarily based on a enhancement of a pre-existing virtual camera model in SiVIC platform, now used as a model of the human eye. The movement of gaze and target tracking can be simulated with the rotation of the camera depending on the location of the object to observe/perceive/discover. This visual scanning modeling could be interfaced with other numerical models of human driver in the future, according to the modular and portable approach used for this development. The visual perception module is connected with others modules of COSMODRIVE, with the aim to support the driver's mental representation elaboration and allow the model progression into the environment. But, in addition to visual thus scanning based on mental representations; the module can also simulate visual attention allocation to an on-board screen. In it possible to use the driver model for investigating driving errors due to a visual distraction while driving.
- Published
- 2011
7. A computational model for car drivers situation awareness simulation: Cosmodrive
- Author
-
BELLET, T, Bornard, Jean-Charles, MAYENOBE, P, Saint Pierre, Guillaume, Laboratoire d'Ergonomie et de Sciences Cognitives pour les Transports (IFSTTAR/LESCOT), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), and Laboratoire sur les Interactions Véhicules-Infrastructure-Conducteurs (IFSTTAR/LIVIC)
- Subjects
PROCESSUS DE DECISION ,[SDV.NEU.PC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Psychology and behavior ,SIMULATION ,COMPORTEMENT DU CONDUCTEUR ,MODELISATION ,CONDUCTEUR - Abstract
The aim of this research program, so-called COSMODRIVE (for Cognitive Simulation Model of the DRIVEr), is to develop and implement a cognitive simulation model of the car driver able to drive a virtual car in order to dynamically interact and progress into a virtual road environment (so-called SiVIC), through a dual "Perception-Cognition-Action" regulation loop based on both automatic processes (i.e. Skill-based behaviour and decisions) that can be performed in parallel without any attentional effort, and controlled processes (rule and knowledgebased behaviour or decision), requiring cognitive resources to be performed. The central cognitive components supporting this regulation loop in COSMODRIVE are drivers' mental representations of the road environment. These mental models are formulated in working memory (from a matching process between operative knowledge - the "Driving Schemas" and the "Envelope-Zones" - and the perceptive information extracted in the road scene through perception), and they correspond to the driver's Situation Awareness at a given time. Moreover, these mental models are used for anticipation of future situational states (i.e. expectations), in order to make decision an implement driving action allowing the driver to progress on the road and to safely interact with other road users. After having presented the research objectives and the theoretical background supporting this research, we will present some empirical data collected among human drivers in order to investigate visual distraction effects on driving performances and driver's Situational Awareness. Then, the forth section will more particularly present the recent model enhancement focused on Human error simulation, in terms of erroneous SA due to visual distraction while driving. Some empirical data collected among 20 human drivers will be briefly introduced, and a typical case of human errors simulation due to visual scanning of an additional screen will be presented (crash resulting to an erroneous/ not updated SA and a too late detection of a lead car breaking). The conclusion will explore the next steps of this research.
- Published
- 2011
8. Human driver modelling and simulation into a virtual road environment
- Author
-
Bellet, T., Mayenobe, P., Paris, J. C., Gruyer, D., Bernard Claverie, and Daniellou, François
- Subjects
[SCCO.PSYC] Cognitive science/Psychology ,ComputingMilieux_MISCELLANEOUS - Published
- 2010
9. Analyzing behavioral data for refining cognitive models of operator
- Author
-
olivier georgeon, Mille, A., Bellet, T., SI LIRIS, Équipe gestionnaire des publications, IEEE Computer Society, Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2), Laboratoire Ergonomie et Sciences Cognitives pour les Transports (IFSTTAR/TS2/LESCOT), and Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université de Lyon
- Subjects
[INFO]Computer Science [cs] ,[INFO] Computer Science [cs] - Abstract
International audience; We present a methodology and a tool for analyzing the activity of an operator interacting with a complex technical device. The goal is of refining cognitive models of the operator by relating them to patterns of behavior in real situations. The activity is observed to be modeled as a trace having a graph structure. The trace is transformed according to a "use model" in order to become meaningful in the context of modeling theories. Our "Trace Based System" thus gathers both a representation of the activity and of the analyst's expertise for facilitating the discovery of knowledge in the field of cognitive psychology. The approach is illustrated by its application for car driver cognitive modeling.
- Published
- 2006
10. Modélisation et simulation cognitive de l'opérateur humain : une application à la conduite automobile
- Author
-
BELLET, T
- Subjects
CHARGE MENTALE ,ERGONOMIE ,THESE ,SIMULATION ,COGNITION ,PSYCHOLOGIE ,CONDUCTEUR - Abstract
Cette thèse est centrée sur la modélisation cognitive et la simulation informatique des activités mentales du conducteur automobile. Après une rapide revue des questions épistémologiques inhérentes à la démarche de modélisation et de simulation cognitive (chapitres 1 et 2), nous nous focalisons sur les travaux réalisés dans le cadre particulier de la conduite automobile (chapitre 3). Le recueil de données empiriques (chapitre 4) issues d'observations et d'expérimentations - nous permet, dans un second temps, de discuter et d'affiner les modèles disponibles dans la littérature et, partant, de proposer notre propre modèle de simulation cognitive du conducteur (chapitre 5) dont l'implémentation informatique est en cours. Nous concluons ce travail (chapitre 6) en évoquant les applications potentielles de notre modèle en matière de technologie d'assistance à la conduite (système de copilotage intelligent). DEA de psychologie cognitive: ergonomie cognitive. Mots clés libres :ergonomie ;science cognitive ;conduite automobile ;simulation cognitive, modèle informatique, représentation des connaissances ; assistance à l'activité ;copilotage.
- Published
- 1998
11. Risk awareness and criticality assessment of driving situations: a comparative study between motorcyclists and car drivers
- Author
-
Banet, A., primary and Bellet, T., additional
- Published
- 2008
- Full Text
- View/download PDF
12. Designing a Topological Modeler Kernel: A Rule-Based Approach.
- Author
-
Bellet, T., Poudret, M., Arnould, A., Fuchs, L., and Le Gall, P.
- Published
- 2010
- Full Text
- View/download PDF
13. Analyzing Behaviorial Data for Refining Cognitive Models of Operator.
- Author
-
Georgeonu, O., Mille, A., and Bellet, T.
- Published
- 2006
- Full Text
- View/download PDF
14. Active perception tasks driven by a cognitive simulation model.
- Author
-
Mayenobe, P., Blanc, C., Trassoudaine, L., Bellet, T., and Tattegrain-Veste, H.
- Published
- 2003
- Full Text
- View/download PDF
15. Evaluation of a Voice Interface Management System
- Author
-
Tattegrain-Veste, H., primary, Bruyas, M.P., additional, Bellet, T., additional, Pachiaudi, G., additional, Forzy, J.F., additional, Martini, D., additional, Baligand, B., additional, Simoes, A., additional, Carvalhais, J., additional, Lockwood, P., additional, Boudy, J., additional, Damiani, S., additional, and Opitz, M., additional
- Published
- 2001
- Full Text
- View/download PDF
16. A real time platform for estimating the driver-vehicle-environment state in aide integrated project
- Author
-
Amditis, A., Pagle, K., Tsogas, M., Evangelos Bekiaris, Panou, M., Veste, H. T., Bellet, T., Boverie, S., Kutila, M., and Markkula, G.
17. Evaluation of a voice interface management system
- Author
-
Tattegrain-Veste, H., Bruyas, M. P., Bellet, T., Pachiaudi, G., Forzy, J. F., Martini, D., Baligand, B., Simoes, A., José Carvalhais, Lockwood, P., Boudy, J., Damiani, S., and Opitz, M.
18. Cognitive simulation of driver and cooperative driving assistance
- Author
-
Mayenobe, P., primary, Trassoudaine, L., additional, Bellet, T., additional, and Tattegrain-Veste, H., additional
- Full Text
- View/download PDF
19. Active perception tasks driven by a cognitive simulation model
- Author
-
Mayenobe, P., primary, Blanc, C., additional, Trassoudaine, L., additional, Bellet, T., additional, and Tattegrain-Veste, H., additional
- Full Text
- View/download PDF
20. Analyzing Behaviorial Data for Refining Cognitive Models of Operator
- Author
-
Georgeon, O., primary, Mille, A., additional, and Bellet, T., additional
- Full Text
- View/download PDF
21. Cognitive simulation of driver and cooperative driving assistance.
- Author
-
Mayenobe, P., Trassoudaine, L., Bellet, T., and Tattegrain-Veste, H.
- Published
- 2002
- Full Text
- View/download PDF
22. Effects of non-driving related postures on takeover performance during conditionally automated driving.
- Author
-
Zhao M, Bellet T, Richard B, Giralt A, Beurier G, and Wang X
- Subjects
- Humans, Male, Female, Adult, Computer Simulation, Middle Aged, Young Adult, Task Performance and Analysis, Automobile Driving, Posture, Reaction Time, Automation
- Abstract
In spite of the advancement in driving automation, driver's ability to resume manual control from a conditionally automated vehicle appears as a safety concern. Understanding the impact of various non-driving related tasks (NDRT) on takeover performance is crucial for the development of advanced driver assistance systems. The aim of this study was to investigate how the takeover performance was impacted by non-driving related postures when engaging in different NDRTs. A same takeover scenario with SAE automation level 3 requiring emergency braking was deployed for all test conditions on a static driving simulator under different time budgets. Reaction times, pedal movement and takeover quality were collected from 54 drivers (mean age 34.5 years, 27 females) taking over from two reference postures and 21 non-driving related postures. Results showed that drivers reacted faster given a shorter time budget. Non-driving related postures were found to prolong the takeover time and deteriorate the takeover quality. In particular, the postures with abnormal right foot positions, big trunk deviations and both hands occupation much lowered motoric readiness. Results also revealed that when driver's upper body was engaged in abnormal postures, driver's lower body would react slower, and vice versa. In addition, drivers' takeover performance was affected by their individual reaction capacity, which demonstrated a range of variation. Theoretical and practical implications of the findings are discussed., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
23. Interaction between pedestrians and automated vehicles: Perceived safety of yielding behaviors and benefits of an external human-machine interface for elderly people.
- Author
-
Bellet T, Laurent S, Bornard JC, Hoang I, and Richard B
- Abstract
This study focuses on Automated Vehicles (AVs) interactions with pedestrians during road crossing situations. A dual-phase experiment was designed: one from the pedestrian's perspective and the other one from the AV passenger's point of view. Eight AV behaviors to yield were investigated. Participants' task was to assess the safety of each one of these yielding behaviors. Moreover, an external HMI (eHMI) was designed to support them in these interactions. 40 participants were involved in this experiment (50% females, 20 young versus 20 elderly). Results obtained show significant differences between old and young participants: elderly people have not the same way to perceive and assess the safety of the yielding behaviors from "the inside" and from "the outside" of the car. Conversely, young participants assessed AV behaviors similarly whether as pedestrians or as AV passengers. When considering benefits introduced by the eHMI, it significantly reduces differences between old and young participants and tends to harmonize their safety assessments: with to the eHMI, elderly people are more able to adequately perceive and assess the safety/dangerousness of the AV braking manoeuvers, and their safety judgments become at last quite similar to those of young participants. Moreover, the eHMI increases participants' Acceptance of AV and reduces their concerns about their future interactions with AV as a pedestrian, especially for elderly people., Competing Interests: J-CB is employed by the company ESI Group. The remaining authors declare that the research was conducted in the absence of any financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Bellet, Laurent, Bornard, Hoang and Richard.)
- Published
- 2022
- Full Text
- View/download PDF
24. Towards a conceptual model of motorcyclists' Risk Awareness: a comparative study of riding experience effect on hazard detection and situational criticality assessment.
- Author
-
Bellet T and Banet A
- Subjects
- Accidents, Traffic prevention & control, Adolescent, Adult, Humans, Judgment, Learning Curve, Male, Reaction Time, Risk, Self Efficacy, Task Performance and Analysis, Video Recording, Visual Perception, Young Adult, Accidents, Traffic psychology, Automobile Driving psychology, Awareness, Models, Psychological, Motorcycles, Safety
- Abstract
This research investigates risk awareness abilities among different populations of motorcyclists. Risk awareness is defined here as an extension of the Situational Awareness theory applied to critical driving situations. This study is more particularly focused on two main cognitive abilities supporting risk awareness: hazard detection, corresponding to riders' skill to perceive critical event occurring in the road environment and to identify it as a threat, and situational criticality assessment, corresponding to a subjective assessment of the accident risk. From this theoretical framework, the aim is to compare motorcyclists' performances in risk awareness according to their experience in motorcycling. Four populations of motorcyclists are investigated: Professional (Policemen), Experienced riders, Novices, and Beginners. Method implemented is based of a set of 25 video sequences of driving situations presenting a risk of collision. Participants' task was firstly to stop the video film if they detect a hazard. Then, at the end of each sequence, they have also to assess the criticality of the driving situation as a whole, with a Likert scale (from 0 to 100% of criticality). Results obtained show that cognitive abilities in both (i) hazard detection and (ii) situational criticality assessment depend of the riding experience, and are learnt from two different timing. On one side, Professional and Experienced riders obtained better results than Novices and Beginners for hazard perception (i.e. shortest reaction time). In terms of situational criticality assessment, Beginners underestimate the situational risk and seem overconfident in their abilities to manage the situational risk, against Novices, Professional and Experienced riders, who have better competences in criticality assessment. From these empirical results, a conceptual model of motorcyclists' Risk Awareness is proposed., (Copyright © 2011 Elsevier Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.