1. Shell structure of $^{43}$S and collapse of the $N=28$ shell closure
- Author
-
Momiyama, S., Wimmer, K., Bazin, D., Belarge, J., Bender, P., Elman, B., Gade, A., Kemper, K. W., Kitamura, N., Longfellow, B., Lunderberg, E., Niikura, M., Ota, S., Schrock, P., Tostevin, J. A., and Weisshaar, D.
- Subjects
Nuclear Experiment - Abstract
The single-particle structure of the $N=27$ isotones provides insights into the shell evolution of neutron-rich nuclei from the doubly-magic $^{48}$Ca toward the drip line. $^{43}$S was studied employing the one-neutron knockout reaction from a radioactive $^{44}$S beam. Using a combination of prompt and delayed $\gamma$-ray spectroscopy the level structure of $^{43}$S was clarified. Momentum distributions were analyzed and allowed for spin and parity assignments. The deduced spectroscopic factors show that the $^{44}$S ground-state configuration has a strong intruder component. The results were confronted with shell model calculations using two effective interactions. General agreement was found between the calculations, but strong population of states originating from the removal of neutrons from the $2p_{3/2}$ orbital in the experiment indicates that the breakdown of the $N=28$ magic number is more rapid than the theoretical calculations suggest., Comment: accepted for publication, Physical Review C
- Published
- 2020
- Full Text
- View/download PDF