1. Out-of-plane bond order phase, superconductivity, and their competition in the $t$-$J_\parallel$-$J_\perp$ model for pressurized nickelates
- Author
-
Bejas, Matías, Wu, Xianxin, Chakraborty, Debmalya, Schnyder, Andreas P., and Greco, Andrés
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Strongly Correlated Electrons - Abstract
Almost four decades of intense research have been invested to study the physics of high-T$_c$ cuprate superconductors. The recent discovery of high-T$_c$ superconductivity in pressurized bilayer nickelates and its potential similarities with cuprate superconductors may open a new window to understand this long standing problem. Motivated by this we have assumed that nickelates belong to the category of strongly correlated systems, and considered the bilayer $t$-$J_\parallel$-$J_\perp$ model as a minimal model, where $J_\parallel$ and $J_\perp$ are the in-plane and out-of-plane magnetic exchange, respectively. We have studied the $t$-$J_\parallel$-$J_\perp$ model in a large-$N$ approach on the basis of the path integral representation for Hubbard operators, which allows to obtain results at mean-field and beyond mean-field level. We find that $J_\perp$ is a promising candidate for triggering high superconducting $T_c$ values at quarter filling (hole doping $\delta=0.5$) of the $d_{x^2-y^2}$ orbitals. Beyond mean-field level, we remarkably find a new phase, an out-of-plane bond-order phase (z-BOP), triggered also by $J_\perp$. z-BOP develops below a critical temperature which decreases with increasing doping and vanishes at a quantum critical point below quarter filling. The occurrence of this phase and its competition with superconductivity leads to a superconducting dome shaped behavior as a function of doping and as a function of $J_\perp$. Comparisons with the physics of cuprates and the recent literature on the new pressurized nickelates are given along the paper., Comment: 7 pages (main text) + 8 pages (references + appendices), 7 figures
- Published
- 2024