Dozmorov MG, Marshall MA, Rashid NS, Grible JM, Valentine A, Olex AL, Murthy K, Chakraborty A, Reyna J, Figueroa DS, Hinojosa-Gonzalez L, Da-Inn Lee E, Baur BA, Roy S, Ay F, and Harrell JC
Changes in the three-dimensional (3D) structure of the genome are an emerging hallmark of cancer. Cancer-associated copy number variants and single nucleotide polymorphisms promote rewiring of chromatin loops, disruption of topologically associating domains (TADs), active/inactive chromatin state switching, leading to oncogene expression and silencing of tumor suppressors. However, little is known about 3D changes during cancer progression to a chemotherapy-resistant state. We integrated chromatin conformation capture (Hi-C), RNA-seq, and whole-genome sequencing obtained from triple-negative breast cancer patient-derived xenograft primary tumors (UCD52) and carboplatin-resistant samples and found increased short-range (< 2 Mb) interactions, chromatin looping, formation of TAD, chromatin state switching into a more active state, and amplification of ATP-binding cassette transporters. Transcriptome changes suggested the role of long-noncoding RNAs in carboplatin resistance. Rewiring of the 3D genome was associated with TP53, TP63, BATF, FOS-JUN family of transcription factors and led to activation of aggressiveness-, metastasis- and other cancer-related pathways. Integrative analysis highlighted increased ribosome biogenesis and oxidative phosphorylation, suggesting the role of mitochondrial energy metabolism. Our results suggest that 3D genome remodeling may be a key mechanism underlying carboplatin resistance., (© 2023. The Author(s).)