481 results on '"Bates, Nicholas R."'
Search Results
2. Ocean Observing in the North Atlantic Subtropical Gyre
- Author
-
Bates, Nicholas R. and Johnson, Rodney J.
- Published
- 2021
3. Microbial metabolites in the marine carbon cycle
- Author
-
Moran, Mary Ann, Kujawinski, Elizabeth B., Schroer, William F., Amin, Shady A., Bates, Nicholas R., Bertrand, Erin M., Braakman, Rogier, Brown, C. Titus, Covert, Markus W., Doney, Scott C., Dyhrman, Sonya T., Edison, Arthur S., Eren, A. Murat, Levine, Naomi M., Li, Liang, Ross, Avena C., Saito, Mak A., Santoro, Alyson E., Segrè, Daniel, Shade, Ashley, Sullivan, Matthew B., and Vardi, Assaf
- Published
- 2022
- Full Text
- View/download PDF
4. Adaptive carbon export response to warming in the Sargasso Sea
- Author
-
Lomas, Michael W., Bates, Nicholas R., Johnson, Rodney J., Steinberg, Deborah K., and Tanioka, Tatsuro
- Published
- 2022
- Full Text
- View/download PDF
5. Seasonal changes in seawater calcium and alkalinity in the Sargasso Sea and across the Bermuda carbonate platform
- Author
-
Griffin, Alyssa J., Anderson, Zachary, Ballard, John, Bates, Nicholas R., Garley, Rebecca, Johnson, Rod, Martz, Todd, Pacheco, Fernando, Takeshita, Yuichiro, and Andersson, Andreas J.
- Published
- 2022
- Full Text
- View/download PDF
6. Cold-water corals in the Subpolar North Atlantic Ocean exposed to aragonite undersaturation if the 2 °C global warming target is not met
- Author
-
García-Ibáñez, Maribel I., Bates, Nicholas R., Bakker, Dorothee C.E., Fontela, Marcos, and Velo, Antón
- Published
- 2021
- Full Text
- View/download PDF
7. Calcification and trophic responses of mesophotic reefs to carbonate chemistry variability
- Author
-
Noyes, Timothy J., primary, Garley, Rebecca, additional, and Bates, Nicholas R., additional
- Published
- 2024
- Full Text
- View/download PDF
8. Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance
- Author
-
Balch, William M, Bates, Nicholas R, Lam, Phoebe J, Twining, Benjamin S, Rosengard, Sarah Z, Bowler, Bruce C, Drapeau, Dave T, Garley, Rebecca, Lubelczyk, Laura C, Mitchell, Catherine, and Rauschenberg, Sara
- Subjects
Life Below Water ,Atmospheric Sciences ,Geochemistry ,Oceanography ,Meteorology & Atmospheric Sciences - Published
- 2016
9. Suboxic DOM is bioavailable to surface prokaryotes in a simulated overturn of an oxygen minimum zone, Devil’s Hole, Bermuda
- Author
-
Parsons, Rachel J., primary, Liu, Shuting, additional, Longnecker, Krista, additional, Yongblah, Kevin, additional, Johnson, Carys, additional, Bolaños, Luis M., additional, Comstock, Jacqueline, additional, Opalk, Keri, additional, Kido Soule, Melissa C., additional, Garley, Rebecca, additional, Carlson, Craig A., additional, Temperton, Ben, additional, and Bates, Nicholas R., additional
- Published
- 2023
- Full Text
- View/download PDF
10. Forty years of ocean acidification observations (1983–2023) in the Sargasso Sea at the Bermuda Atlantic Time-series Study site
- Author
-
Bates, Nicholas R., primary and Johnson, Rodney J., additional
- Published
- 2023
- Full Text
- View/download PDF
11. Global Carbon Budget 2023
- Author
-
Friedlingstein, Pierre, primary, O'Sullivan, Michael, additional, Jones, Matthew W., additional, Andrew, Robbie M., additional, Bakker, Dorothee C. E., additional, Hauck, Judith, additional, Landschützer, Peter, additional, Le Quéré, Corinne, additional, Luijkx, Ingrid T., additional, Peters, Glen P., additional, Peters, Wouter, additional, Pongratz, Julia, additional, Schwingshackl, Clemens, additional, Sitch, Stephen, additional, Canadell, Josep G., additional, Ciais, Philippe, additional, Jackson, Robert B., additional, Alin, Simone R., additional, Anthoni, Peter, additional, Barbero, Leticia, additional, Bates, Nicholas R., additional, Becker, Meike, additional, Bellouin, Nicolas, additional, Decharme, Bertrand, additional, Bopp, Laurent, additional, Brasika, Ida Bagus Mandhara, additional, Cadule, Patricia, additional, Chamberlain, Matthew A., additional, Chandra, Naveen, additional, Chau, Thi-Tuyet-Trang, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Cronin, Margot, additional, Dou, Xinyu, additional, Enyo, Kazutaka, additional, Evans, Wiley, additional, Falk, Stefanie, additional, Feely, Richard A., additional, Feng, Liang, additional, Ford, Daniel J., additional, Gasser, Thomas, additional, Ghattas, Josefine, additional, Gkritzalis, Thanos, additional, Grassi, Giacomo, additional, Gregor, Luke, additional, Gruber, Nicolas, additional, Gürses, Özgür, additional, Harris, Ian, additional, Hefner, Matthew, additional, Heinke, Jens, additional, Houghton, Richard A., additional, Hurtt, George C., additional, Iida, Yosuke, additional, Ilyina, Tatiana, additional, Jacobson, Andrew R., additional, Jain, Atul, additional, Jarníková, Tereza, additional, Jersild, Annika, additional, Jiang, Fei, additional, Jin, Zhe, additional, Joos, Fortunat, additional, Kato, Etsushi, additional, Keeling, Ralph F., additional, Kennedy, Daniel, additional, Klein Goldewijk, Kees, additional, Knauer, Jürgen, additional, Korsbakken, Jan Ivar, additional, Körtzinger, Arne, additional, Lan, Xin, additional, Lefèvre, Nathalie, additional, Li, Hongmei, additional, Liu, Junjie, additional, Liu, Zhiqiang, additional, Ma, Lei, additional, Marland, Greg, additional, Mayot, Nicolas, additional, McGuire, Patrick C., additional, McKinley, Galen A., additional, Meyer, Gesa, additional, Morgan, Eric J., additional, Munro, David R., additional, Nakaoka, Shin-Ichiro, additional, Niwa, Yosuke, additional, O'Brien, Kevin M., additional, Olsen, Are, additional, Omar, Abdirahman M., additional, Ono, Tsuneo, additional, Paulsen, Melf, additional, Pierrot, Denis, additional, Pocock, Katie, additional, Poulter, Benjamin, additional, Powis, Carter M., additional, Rehder, Gregor, additional, Resplandy, Laure, additional, Robertson, Eddy, additional, Rödenbeck, Christian, additional, Rosan, Thais M., additional, Schwinger, Jörg, additional, Séférian, Roland, additional, Smallman, T. Luke, additional, Smith, Stephen M., additional, Sospedra-Alfonso, Reinel, additional, Sun, Qing, additional, Sutton, Adrienne J., additional, Sweeney, Colm, additional, Takao, Shintaro, additional, Tans, Pieter P., additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, Tsujino, Hiroyuki, additional, Tubiello, Francesco, additional, van der Werf, Guido R., additional, van Ooijen, Erik, additional, Wanninkhof, Rik, additional, Watanabe, Michio, additional, Wimart-Rousseau, Cathy, additional, Yang, Dongxu, additional, Yang, Xiaojuan, additional, Yuan, Wenping, additional, Yue, Xu, additional, Zaehle, Sönke, additional, Zeng, Jiye, additional, and Zheng, Bo, additional
- Published
- 2023
- Full Text
- View/download PDF
12. Porewater Carbonate Chemistry Dynamics in a Temperate and a Subtropical Seagrass System
- Author
-
Kindeberg, Theodor, Bates, Nicholas R., Courtney, Travis A., Cyronak, Tyler, Griffin, Alyssa, Mackenzie, Fred T., Paulsen, May-Linn, and Andersson, Andreas J.
- Published
- 2020
- Full Text
- View/download PDF
13. A recent decline in North Atlantic subtropical mode water formation
- Author
-
Stevens, Samuel W., Johnson, Rodney J., Maze, Guillaume, and Bates, Nicholas R.
- Published
- 2020
- Full Text
- View/download PDF
14. Supplementary material to "Global Carbon Budget 2023"
- Author
-
Friedlingstein, Pierre, primary, O'Sullivan, Michael, additional, Jones, Matthew W., additional, Andrew, Robbie M., additional, Bakker, Dorothee C. E., additional, Hauck, Judith, additional, Landschützer, Peter, additional, Le Quéré, Corinne, additional, Luijkx, Ingrid T., additional, Peters, Glen P., additional, Peters, Wouter, additional, Pongratz, Julia, additional, Schwingshackl, Clemens, additional, Sitch, Stephen, additional, Canadell, Josep G., additional, Ciais, Philippe, additional, Jackson, Robert B., additional, Alin, Simone R., additional, Anthoni, Peter, additional, Barbero, Leticia, additional, Bates, Nicholas R., additional, Becker, Meike, additional, Bellouin, Nicolas, additional, Decharme, Bertrand, additional, Bopp, Laurent, additional, Brasika, Ida Bagus Mandhara, additional, Cadule, Patricia, additional, Chamberlain, Matthew A., additional, Chandra, Naveen, additional, Chau, Thi-Tuyet-Trang, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Cronin, Margot, additional, Dou, Xinyu, additional, Enyo, Kazutaka, additional, Evans, Wiley, additional, Falk, Stefanie, additional, Feely, Richard A., additional, Feng, Liang, additional, Ford, Daniel. J., additional, Gasser, Thomas, additional, Ghattas, Josefine, additional, Gkritzalis, Thanos, additional, Grassi, Giacomo, additional, Gregor, Luke, additional, Gruber, Nicolas, additional, Gürses, Özgür, additional, Harris, Ian, additional, Hefner, Matthew, additional, Heinke, Jens, additional, Houghton, Richard A., additional, Hurtt, George C., additional, Iida, Yosuke, additional, Ilyina, Tatiana, additional, Jacobson, Andrew R., additional, Jain, Atul, additional, Jarníková, Tereza, additional, Jersild, Annika, additional, Jiang, Fei, additional, Jin, Zhe, additional, Joos, Fortunat, additional, Kato, Etsushi, additional, Keeling, Ralph F., additional, Kennedy, Daniel, additional, Klein Goldewijk, Kees, additional, Knauer, Jürgen, additional, Korsbakken, Jan Ivar, additional, Körtzinger, Arne, additional, Lan, Xin, additional, Lefèvre, Nathalie, additional, Li, Hongmei, additional, Liu, Junjie, additional, Liu, Zhiqiang, additional, Ma, Lei, additional, Marland, Greg, additional, Mayot, Nicolas, additional, McGuire, Patrick C., additional, McKinley, Galen A., additional, Meyer, Gesa, additional, Morgan, Eric J., additional, Munro, David R., additional, Nakaoka, Shin-Ichiro, additional, Niwa, Yosuke, additional, O'Brien, Kevin M., additional, Olsen, Are, additional, Omar, Abdirahman M., additional, Ono, Tsuneo, additional, Paulsen, Melf E., additional, Pierrot, Denis, additional, Pocock, Katie, additional, Poulter, Benjamin, additional, Powis, Carter M., additional, Rehder, Gregor, additional, Resplandy, Laure, additional, Robertson, Eddy, additional, Rödenbeck, Christian, additional, Rosan, Thais M., additional, Schwinger, Jörg, additional, Séférian, Roland, additional, Smallman, T. Luke, additional, Smith, Stephen M., additional, Sospedra-Alfonso, Reinel, additional, Sun, Qing, additional, Sutton, Adrienne J., additional, Sweeney, Colm, additional, Takao, Shintaro, additional, Tans, Pieter P., additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, Tsujino, Hiroyuki, additional, Tubiello, Francesco, additional, van der Werf, Guido R., additional, van Ooijen, Erik, additional, Wanninkhof, Rik, additional, Watanabe, Michio, additional, Wimart-Rousseau, Cathy, additional, Yang, Dongxu, additional, Yang, Xiaojuan, additional, Yuan, Wenping, additional, Yue, Xu, additional, Zaehle, Sönke, additional, Zeng, Jiye, additional, and Zheng, Bo, additional
- Published
- 2023
- Full Text
- View/download PDF
15. The GEOTRACES Intermediate Data Product 2017
- Author
-
Schlitzer, Reiner, Anderson, Robert F., Dodas, Elena Masferrer, Lohan, Maeve, Geibert, Walter, Tagliabue, Alessandro, Bowie, Andrew, Jeandel, Catherine, Maldonado, Maria T., Landing, William M., Cockwell, Donna, Abadie, Cyril, Abouchami, Wafa, Achterberg, Eric P., Agather, Alison, Aguliar-Islas, Ana, van Aken, Hendrik M., Andersen, Morten, Archer, Corey, Auro, Maureen, de Baar, Hein J., Baars, Oliver, Baker, Alex R., Bakker, Karel, Basak, Chandranath, Baskaran, Mark, Bates, Nicholas R., Bauch, Dorothea, van Beek, Pieter, Behrens, Melanie K., Black, Erin, Bluhm, Katrin, Bopp, Laurent, Bouman, Heather, Bowman, Katlin, Bown, Johann, Boyd, Philip, Boye, Marie, Boyle, Edward A., Branellec, Pierre, Bridgestock, Luke, Brissebrat, Guillaume, Browning, Thomas, Bruland, Kenneth W., Brumsack, Hans-Jürgen, Brzezinski, Mark, Buck, Clifton S., Buck, Kristen N., Buesseler, Ken, Bull, Abby, Butler, Edward, Cai, Pinghe, Mor, Patricia Cámara, Cardinal, Damien, Carlson, Craig, Carrasco, Gonzalo, Casacuberta, Núria, Casciotti, Karen L., Castrillejo, Maxi, Chamizo, Elena, Chance, Rosie, Charette, Matthew A., Chaves, Joaquin E., Cheng, Hai, Chever, Fanny, Christl, Marcus, Church, Thomas M., Closset, Ivia, Colman, Albert, Conway, Tim M., Cossa, Daniel, Croot, Peter, Cullen, Jay T., Cutter, Gregory A., Daniels, Chris, Dehairs, Frank, Deng, Feifei, Dieu, Huong Thi, Duggan, Brian, Dulaquais, Gabriel, Dumousseaud, Cynthia, Echegoyen-Sanz, Yolanda, Edwards, R. Lawrence, Ellwood, Michael, Fahrbach, Eberhard, Fitzsimmons, Jessica N., Russell Flegal, A., Fleisher, Martin Q., van de Flierdt, Tina, Frank, Martin, Friedrich, Jana, Fripiat, Francois, Fröllje, Henning, Galer, Stephen J.G., Gamo, Toshitaka, Ganeshram, Raja S., Garcia-Orellana, Jordi, Garcia-Solsona, Ester, Gault-Ringold, Melanie, George, Ejin, Gerringa, Loes J.A., Gilbert, Melissa, Godoy, Jose M., Goldstein, Steven L., Gonzalez, Santiago R., Grissom, Karen, Hammerschmidt, Chad, Hartman, Alison, Hassler, Christel S., Hathorne, Ed C., Hatta, Mariko, Hawco, Nicholas, Hayes, Christopher T., Heimbürger, Lars-Eric, Helgoe, Josh, Heller, Maija, Henderson, Gideon M., Henderson, Paul B., van Heuven, Steven, Ho, Peng, Horner, Tristan J., Hsieh, Yu-Te, Huang, Kuo-Fang, Humphreys, Matthew P., Isshiki, Kenji, Jacquot, Jeremy E., Janssen, David J., Jenkins, William J., John, Seth, Jones, Elizabeth M., Jones, Janice L., Kadko, David C., Kayser, Rick, Kenna, Timothy C., Khondoker, Roulin, Kim, Taejin, Kipp, Lauren, Klar, Jessica K., Klunder, Maarten, Kretschmer, Sven, Kumamoto, Yuichiro, Laan, Patrick, Labatut, Marie, Lacan, Francois, Lam, Phoebe J., Lambelet, Myriam, Lamborg, Carl H., Le Moigne, Frédéric A.C., Le Roy, Emilie, Lechtenfeld, Oliver J., Lee, Jong-Mi, Lherminier, Pascale, Little, Susan, López-Lora, Mercedes, Lu, Yanbin, Masque, Pere, Mawji, Edward, Mcclain, Charles R., Measures, Christopher, Mehic, Sanjin, Barraqueta, Jan-Lukas Menzel, van der Merwe, Pier, Middag, Rob, Mieruch, Sebastian, Milne, Angela, Minami, Tomoharu, Moffett, James W., Moncoiffe, Gwenaelle, Moore, Willard S., Morris, Paul J., Morton, Peter L., Nakaguchi, Yuzuru, Nakayama, Noriko, Niedermiller, John, Nishioka, Jun, Nishiuchi, Akira, Noble, Abigail, Obata, Hajime, Ober, Sven, Ohnemus, Daniel C., van Ooijen, Jan, O'Sullivan, Jeanette, Owens, Stephanie, Pahnke, Katharina, Paul, Maxence, Pavia, Frank, Pena, Leopoldo D., Peters, Brian, Planchon, Frederic, Planquette, Helene, Pradoux, Catherine, Puigcorbé, Viena, Quay, Paul, Queroue, Fabien, Radic, Amandine, Rauschenberg, S., Rehkämper, Mark, Rember, Robert, Remenyi, Tomas, Resing, Joseph A., Rickli, Joerg, Rigaud, Sylvain, Rijkenberg, Micha J.A., Rintoul, Stephen, Robinson, Laura F., Roca-Martí, Montserrat, Rodellas, Valenti, Roeske, Tobias, Rolison, John M., Rosenberg, Mark, Roshan, Saeed, Rutgers van der Loeff, Michiel M., Ryabenko, Evgenia, Saito, Mak A., Salt, Lesley A., Sanial, Virginie, Sarthou, Geraldine, Schallenberg, Christina, Schauer, Ursula, Scher, Howie, Schlosser, Christian, Schnetger, Bernhard, Scott, Peter, Sedwick, Peter N., Semiletov, Igor, Shelley, Rachel, Sherrell, Robert M., Shiller, Alan M., Sigman, Daniel M., Singh, Sunil Kumar, Slagter, Hans A., Slater, Emma, Smethie, William M., Snaith, Helen, Sohrin, Yoshiki, Sohst, Bettina, Sonke, Jeroen E., Speich, Sabrina, Steinfeldt, Reiner, Stewart, Gillian, Stichel, Torben, Stirling, Claudine H., Stutsman, Johnny, Swarr, Gretchen J., Swift, James H., Thomas, Alexander, Thorne, Kay, Till, Claire P., Till, Ralph, Townsend, Ashley T., Townsend, Emily, Tuerena, Robyn, Twining, Benjamin S., Vance, Derek, Velazquez, Sue, Venchiarutti, Celia, Villa-Alfageme, Maria, Vivancos, Sebastian M., Voelker, Antje H.L., Wake, Bronwyn, Warner, Mark J., Watson, Ros, van Weerlee, Evaline, Alexandra Weigand, M., Weinstein, Yishai, Weiss, Dominik, Wisotzki, Andreas, Woodward, E. Malcolm S., Wu, Jingfeng, Wu, Yingzhe, Wuttig, Kathrin, Wyatt, Neil, Xiang, Yang, Xie, Ruifang C., Xue, Zichen, Yoshikawa, Hisayuki, Zhang, Jing, Zhang, Pu, Zhao, Ye, Zheng, Linjie, Zheng, Xin-Yuan, Zieringer, Moritz, Zimmer, Louise A., Ziveri, Patrizia, Zunino, Patricia, and Zurbrick, Cheryl
- Published
- 2018
- Full Text
- View/download PDF
16. Size-fractionated distributions of suspended particle concentration and major phase composition from the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16)
- Author
-
Lam, Phoebe J., Lee, Jong-Mi, Heller, Maija I., Mehic, Sanjin, Xiang, Yang, and Bates, Nicholas R.
- Published
- 2018
- Full Text
- View/download PDF
17. Determining Net Dissolved Organic Carbon Production in the Hydrographically Complex Western Arctic Ocean
- Author
-
Hansell, Dennis A., Kadko, David, Bates, Nicholas R., and Cooper, Lee W.
- Published
- 2007
18. Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT
- Author
-
Saba, Vincent S, Friedrichs, Marjorie A. M, Carr, Mary-Elena, Antoine, David, Armstrong, Robert A, Asanuma, Ichio, Aumont, Olivier, Bates, Nicholas R, Behrenfeld, Michael J, Bennington, Val, Bopp, Laurent, Bruggeman, Jorn, Buitenhuis, Erik T, Church, Matthew J, Ciotti, Aurea M, Doney, Scott C, Dowell, Mark, Dunne, John, Dutkiewicz, Stephanie, Gregg, Watson, Hoepffner, Nicolas, Hyde, Kimberly J. W, Ishizaka, Joji, Kameda, Takahiko, Karl, David M, Lima, Ivan, Lomas, Michael W, Marra, John, McKinley, Galen A, Melin, Frederic, Moore, J. Keith, Morel, Andre, O'Reilly, John, Salihoglu, Baris, Scardi, Michele, Smyth, Tim J, Tang, Shilin, Tjiputra, Jerry, Uitz, Julia, Vichi, Marcello, Waters, Kirk, Westberry, Toby K, and Yool, Andrew
- Subjects
10.1029/2009GB003655 - Abstract
The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ 14C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-a was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-a time series were available.
- Published
- 2010
19. Degradation of Terrigenous Dissolved Organic Carbon in the Western Arctic Ocean
- Author
-
Hansell, Dennis A., Kadko, David, and Bates, Nicholas R.
- Published
- 2004
20. Calcification and trophic responses of Mesophotic reefs to carbonate chemistry variability
- Author
-
Noyes, Timothy J, primary, Garley, Rebecca, additional, and Bates, Nicholas R, additional
- Published
- 2023
- Full Text
- View/download PDF
21. Chapter 1 Impacts of the Oceans on Climate Change
- Author
-
Reid, Philip C, Fischer, Astrid C, Lewis-Brown, Emily, Meredith, Michael P, Sparrow, Mike, Andersson, Andreas J, Antia, Avan, Bates, Nicholas R, Bathmann, Ulrich, Beaugrand, Gregory, Brix, Holger, Dye, Stephen, Edwards, Martin, Furevik, Tore, Gangstø, Reidun, Hátún, Hjálmar, Hopcroft, Russell R, Kendall, Mike, Kasten, Sabine, Keeling, Ralph, Le Quéré, Corinne, Mackenzie, Fred T, Malin, Gill, Mauritzen, Cecilie, Ólafsson, Jón, Paull, Charlie, Rignot, Eric, Shimada, Koji, Vogt, Meike, Wallace, Craig, Wang, Zhaomin, and Washington, Richard
- Subjects
Biological Sciences ,Climate Action ,Life Below Water ,Air Movements ,Animals ,Antarctic Regions ,Arctic Regions ,Atmosphere ,Carbon Dioxide ,Climate Change ,Ecosystem ,Environmental Monitoring ,Oceanography ,Oceans and Seas ,Water Movements ,Marine Biology & Hydrobiology ,Biological sciences - Abstract
The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.
- Published
- 2009
22. Interannual Variability in the North Atlantic Ocean Carbon Sink
- Author
-
Gruber, Nicolas, Keeling, Charles D., and Bates, Nicholas R.
- Published
- 2002
23. Seasonal Variability of the Effect of Coral Reefs on Seawater CO 2 and Air-Sea CO 2 Exchange
- Author
-
Bates, Nicholas R.
- Published
- 2002
24. Biogeochemical and Physical Factors Influencing Seawater fCO 2 and Air-Sea CO 2 Exchange on the Bermuda Coral Reef
- Author
-
Bates, Nicholas R., Samuels, Leone, and Merlivat, Liliane
- Published
- 2001
25. Suboxic DOM is bioavailable to surface prokaryotes in a simulated overturn of an oxygen minimum zone, Devil's Hole, Bermuda.
- Author
-
Parsons, Rachel J., Shuting Liu, Longnecker, Krista, Yongblah, Kevin, Johnson, Carys, Bolaños, Luis M., Comstock, Jacqueline, Opalk, Keri, Soule, Melissa C. Kido, Garley, Rebecca, Carlson, Craig A., Temperton, Ben, and Bates, Nicholas R.
- Subjects
DISSOLVED organic matter ,AMMONIA-oxidizing archaebacteria ,EFFECT of human beings on climate change ,OCEAN temperature ,ORGANIC compounds ,PROKARYOTES ,ANOXIC zones ,ANAEROBIC microorganisms ,SOIL respiration - Abstract
Oxygen minimum zones (OMZs) are expanding due to increased sea surface temperatures, subsequent increased oxygen demand through respiration, reduced oxygen solubility, and thermal stratification driven in part by anthropogenic climate change. Devil's Hole, Bermuda is a model ecosystem to study OMZ microbial biogeochemistry because the formation and subsequent overturn of the suboxic zone occur annually. During thermally driven stratification, suboxic conditions develop, with organic matter and nutrients accumulating at depth. In this study, the bioavailability of the accumulated dissolved organic carbon (DOC) and the microbial community response to reoxygenation of suboxic waters was assessed using a simulated overturn experiment. The surface inoculated prokaryotic community responded to the deep (formerly suboxic) 0.2 µm filtrate with cell densities increasing 2.5-fold over 6 days while removing 5 µmol L
-1 of DOC. After 12 days, the surface community began to shift, and DOC quality became less diagenetically altered along with an increase in SAR202, a Chloroflexi that can degrade recalcitrant dissolved organic matter (DOM). Labile DOC production after 12 days coincided with an increase of Nitrosopumilales, a chemoautotrophic ammonia oxidizing archaea (AOA) that converts ammonia to nitrite based on the ammonia monooxygenase (amoA) gene copy number and nutrient data. In comparison, the inoculation of the deep anaerobic prokaryotic community into surface 0.2 µm filtrate demonstrated a die-off of 25.5% of the initial inoculum community followed by a 1.5-fold increase in cell densities over 6 days. Within 2 days, the prokaryotic community shifted from a Chlorobiales dominated assemblage to a surface-like heterotrophic community devoid of Chlorobiales. The DOM quality changed to less diagenetically altered material and coincided with an increase in the ribulose-1,5-bisphosphate carboxylase/oxygenase form I (cbbL) gene number followed by an influx of labile DOM. Upon reoxygenation, the deep DOM that accumulated under suboxic conditions is bioavailable to surface prokaryotes that utilize the accumulated DOC initially before switching to a community that can both produce labile DOM via chemoautotrophy and degrade the more recalcitrant DOM. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
26. Ocean Carbon Cycle
- Author
-
Bates, Nicholas R., primary
- Published
- 2019
- Full Text
- View/download PDF
27. Pelagic functional group modeling: Progress, challenges and prospects
- Author
-
Hood, Raleigh R, Laws, Edward A, Armstrong, Robert A, Bates, Nicholas R, Brown, Christopher W, Carlson, Craig A, Chai, Fei, Doney, Scott C, Falkowski, Paul G, Feely, Richard A, Friedrichs, Marjorie AM, Landry, Michael R, Moore, J Keith, Nelson, David M, Richardson, Tammi L, Salihoglu, Baris, Schartau, Markus, Toole, Dierdre A, and Wiggert, Jerry D
- Subjects
Life Below Water ,biogeochemical modeling ,nitrogen fixation ,denitrification ,silica production ,calcification ,dimethylsulfide production ,Geochemistry ,Oceanography ,Ecology - Abstract
In this paper, we review the state of the art and major challenges in current efforts to incorporate biogeochemical functional groups into models that can be applied on basin-wide and global scales, with an emphasis on models that might ultimately be used to predict how biogeochemical cycles in the ocean will respond to global warming. We define the term "biogeochemical functional group" to refer to groups of organisms that mediate specific chemical reactions in the ocean. Thus, according to this definition, "functional groups" have no phylogenetic meaning-these are composed of many different species with common biogeochemical functions. Substantial progress has been made in the last decade toward quantifying the rates of these various functions and understanding the factors that control them. For some of these groups, we have developed fairly sophisticated models that incorporate this understanding, e.g. for diazotrophs (e.g. Trichodesmium), silica producers (diatoms) and calcifiers (e.g. coccolithophorids and specifically Emiliania huxleyi). However, current representations of nitrogen fixation and calcification are incomplete, i.e., based primarily upon models of Trichodesmium and E. huxleyi, respectively, and many important functional groups have not yet been considered in open-ocean biogeochemical models. Progress has been made over the last decade in efforts to simulate dimethylsulfide (DMS) production and cycling (i.e., by dinoflagellates and prymnesiophytes) and denitrification, but these efforts are still in their infancy, and many significant problems remain. One obvious gap is that virtually all functional group modeling efforts have focused on autotrophic microbes, while higher trophic levels have been completely ignored. It appears that in some cases (e.g., calcification), incorporating higher trophic levels may be essential not only for representing a particular biogeochemical reaction, but also for modeling export. Another serious problem is our tendency to model the organisms for which we have the most validation data (e.g., E. huxleyi and Trichodesmium) even when they may represent only a fraction of the biogeochemical functional group we are trying to represent. When we step back and look at the paleo-oceanographic record, it suggests that oxygen concentrations have played a central role in the evolution and emergence of many of the key functional groups that influence biogeochemical cycles in the present-day ocean. However, more subtle effects are likely to be important over the next century like changes in silicate supply or turbulence that can influence the relative success of diatoms versus dinoflagellates, coccolithophorids and diazotrophs. In general, inferences drawn from the paleo-oceanographic record and theoretical work suggest that global warming will tend to favor the latter because it will give rise to increased stratification. However, decreases in pH and Fe supply could adversely impact coccolithophorids and diazotrophs in the future. It may be necessary to include explicit dynamic representations of nitrogen fixation, denitrification, silicification and calcification in our models if our goal is predicting the oceanic carbon cycle in the future, because these processes appear to play a very significant role in the carbon cycle of the present-day ocean and they are sensitive to climate change. Observations and models suggest that it may also be necessary to include the DMS cycle to predict future climate, though the effects are still highly uncertain. We have learned a tremendous amount about the distributions and biogeochemical impact of bacteria in the ocean in recent years, yet this improved understanding has not yet been incorporated into many of our models. All of these considerations lead us toward the development of increasingly complex models. However, recent quantitative model intercomparison studies suggest that continuing to add complexity and more functional groups to our ecosystem models may lead to decreases in predictive ability if the models are not properly constrained with available data. We also caution that capturing the present-day variability tells us little about how well a particular model can predict the future. If our goal is to develop models that can be used to predict how the oceans will respond to global warming, then we need to make more rigorous assessments of predictive skill using the available data. © 2006 Elsevier Ltd. All rights reserved.
- Published
- 2006
28. Influence of Changes in pH and Temperature on the Distribution of Apparent Iron Solubility in the Oceans
- Author
-
Zhu, Kechen, primary, Achterberg, Eric P., additional, Bates, Nicholas R., additional, Gerringa, Loes J. A., additional, Middag, Rob, additional, Hopwood, Mark J., additional, and Gledhill, Martha, additional
- Published
- 2023
- Full Text
- View/download PDF
29. Influence of changes in pH and temperature on the distribution of apparent iron solubility in the oceans
- Author
-
Zhu, Kechen, Achterberg, Eric Pieter, Bates, Nicholas R., Gerringa, Loes J. A., Middag, Rob, Hopwood, Mark J., Gledhill, Martha, Zhu, Kechen, Achterberg, Eric Pieter, Bates, Nicholas R., Gerringa, Loes J. A., Middag, Rob, Hopwood, Mark J., and Gledhill, Martha
- Abstract
An insufficient supply of the micronutrient iron (Fe) limits phytoplankton growth across large parts of the ocean. Ambient Fe speciation and solubility are largely dependent on seawater physico-chemical properties. We calculated the apparent Fe solubility (SFe(III)app) at equilibrium for ambient conditions, where SFe(III)app is defined as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to organic matter formed at a free Fe3+ concentration equal to the solubility of Fe hydroxide. We compared the SFe(III)app to measured dissolved Fe (dFe) in the Atlantic and Pacific Oceans. The SFe(III)app was overall ∼2 to 4-fold higher than observed dFe at depths less than 1000 m, ∼2-fold higher than the dFe between 1000-4000 m and ∼3-fold higher than dFe below 4000 m. Within the range of used parameters, our results showed that there was a similar trend in the vertical distributions of horizontally averaged SFe(III)app and dFe. Our results suggest that vertical dFe distributions are underpinned by changes in SFe(III)app which are driven by relative changes in ambient pH and temperature. Since both pH and temperature are essential parameters controlling ambient Fe speciation, these should be accounted for in investigations of changing Fe dynamics, particularly in the context of ocean acidification and warming. Key Points Apparent iron solubility is driven by ambient pH, temperature (T) and dissolved organic carbon (DOC), and showed a 6-fold variation between surface (pH= 8.05 on the total scale, DOC= 71.8 µmol L-1, T= 20.4 °C) and deep oceanic waters (pH= 7.82, DOC= 38.6 µmol L-1, T= 1.1°C). Higher values of apparent iron solubility were determined for deep Atlantic and Pacific waters, with lower values in subtropical gyres. Calculated apparent iron solubility showed a similar trend in vertical distribution to dissolved iron, highlighting the importance of considering the impact of changes in ambient physico-chemical conditions on seawater iron chemistry.
- Published
- 2023
- Full Text
- View/download PDF
30. Global Carbon Budget 2023
- Author
-
Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Bakker, Dorothee C. E., Hauck, Judith, Landschützer, Peter, Le Quéré, Corinne, Luijkx, Ingrid T., Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Anthoni, Peter, Barbero, Leticia, Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Decharme, Bertrand, Bopp, Laurent, Brasika, Ida Bagus Mandhara, Cadule, Patricia, Chamberlain, Matthew A., Chandra, Naveen, Chau, Thi-Tuyet-Trang, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Dou, Xinyu, Enyo, Kazutaka, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Feng, Liang, Ford, Daniel J., Gasser, Thomas, Ghattas, Josefine, Gkritzalis, Thanos, Grassi, Giacomo, Gregor, Luke, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Heinke, Jens, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jacobson, Andrew R., Jain, Atul, Jarníková, Tereza, Jersild, Annika, Jiang, Fei, Jin, Zhe, Joos, Fortunat, Kato, Etsushi, Keeling, Ralph F., Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Körtzinger, Arne, Lan, Xin, Lefèvre, Nathalie, Li, Hongmei, Liu, Junjie, Liu, Zhiqiang, Ma, Lei, Marland, Greg, Mayot, Nicolas, McGuire, Patrick C., McKinley, Galen A., Meyer, Gesa, Morgan, Eric J., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'Brien, Kevin M., Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Paulsen, Melf, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Powis, Carter M., Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Smallman, T. Luke, Smith, Stephen M., Sospedra-Alfonso, Reinel, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, van der Werf, Guido R., van Ooijen, Erik, Wanninkhof, Rik, Watanabe, Michio, Wimart-Rousseau, Cathy, Yang, Dongxu, Yang, Xiaojuan, Yuan, Wenping, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, Zheng, Bo, Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Bakker, Dorothee C. E., Hauck, Judith, Landschützer, Peter, Le Quéré, Corinne, Luijkx, Ingrid T., Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Anthoni, Peter, Barbero, Leticia, Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Decharme, Bertrand, Bopp, Laurent, Brasika, Ida Bagus Mandhara, Cadule, Patricia, Chamberlain, Matthew A., Chandra, Naveen, Chau, Thi-Tuyet-Trang, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Dou, Xinyu, Enyo, Kazutaka, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Feng, Liang, Ford, Daniel J., Gasser, Thomas, Ghattas, Josefine, Gkritzalis, Thanos, Grassi, Giacomo, Gregor, Luke, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Heinke, Jens, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jacobson, Andrew R., Jain, Atul, Jarníková, Tereza, Jersild, Annika, Jiang, Fei, Jin, Zhe, Joos, Fortunat, Kato, Etsushi, Keeling, Ralph F., Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Körtzinger, Arne, Lan, Xin, Lefèvre, Nathalie, Li, Hongmei, Liu, Junjie, Liu, Zhiqiang, Ma, Lei, Marland, Greg, Mayot, Nicolas, McGuire, Patrick C., McKinley, Galen A., Meyer, Gesa, Morgan, Eric J., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'Brien, Kevin M., Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Paulsen, Melf, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Powis, Carter M., Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Smallman, T. Luke, Smith, Stephen M., Sospedra-Alfonso, Reinel, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, van der Werf, Guido R., van Ooijen, Erik, Wanninkhof, Rik, Watanabe, Michio, Wimart-Rousseau, Cathy, Yang, Dongxu, Yang, Xiaojuan, Yuan, Wenping, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, and Zheng, Bo
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FOS) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) is estimated with global ocean biogeochemistry models and observation-based fCO(2) products. The terrestrial CO2 sink (S-LAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the year 2022, E-FOS increased by 0.9% relative to 2021, with fossil emissions at 9.9 +/- 0.5 GtC yr(-1) (10.2 +/- 0.5 GtC yr(-1) when the cement carbonation sink is not included), and E-LUC was 1.2 +/- 0.7 GtC yr(-1), for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 +/- 0.8 GtC yr(-1) (40.7 +/- 3.2 GtCO(2) yr(-1)). Also, for 2022, G(ATM) was 4.6 +/- 0.2 GtC yr(-1) (2.18 +/- 0.1 ppm yr(-1); ppm denotes parts per million), S-OCEAN was 2.8 +/- 0.4 GtC yr(-1)
- Published
- 2023
- Full Text
- View/download PDF
31. National contributions to climate change due to historical emissions of carbon dioxide, methane and nitrous oxide
- Author
-
Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Gregor, Luke, Hauck, Judith, Le Quéré, Corinne, Luijkx, Ingrid T., Olsen, Are, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Alkama, Ramdane, Arneth, Almut, Arora, Vivek K., Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Bittig, Henry C., Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Gasser, Thomas, Gehlen, Marion, Gkritzalis, Thanos, Gloege, Lucas, Grassi, Giacomo, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jain, Atul K., Jersild, Annika, Kadono, Koji, Kato, Etsushi, Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Landschützer, Peter, Lefèvre, Nathalie, Lindsay, Keith, Liu, Junjie, Liu, Zhu, Marland, Gregg, Mayot, Nicolas, Mcgrath, Matthew J., Metzl, Nicolas, Monacci, Natalie M., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'brien, Kevin, Ono, Tsuneo, Palmer, Paul I., Pan, Naiqing, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rodriguez, Carmen, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Shutler, Jamie D., Skjelvan, Ingunn, Steinhoff, Tobias, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tanhua, Toste, Tans, Pieter P., Tian, Xiangjun, Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, Van Der Werf, Guido R., Walker, Anthony P., Wanninkhof, Rik, Whitehead, Chris, Willstrand Wranne, Anna, Wright, Rebecca, Yuan, Wenping, Yue, Chao, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, Zheng, Bo, Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Gregor, Luke, Hauck, Judith, Le Quéré, Corinne, Luijkx, Ingrid T., Olsen, Are, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Alkama, Ramdane, Arneth, Almut, Arora, Vivek K., Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Bittig, Henry C., Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Gasser, Thomas, Gehlen, Marion, Gkritzalis, Thanos, Gloege, Lucas, Grassi, Giacomo, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jain, Atul K., Jersild, Annika, Kadono, Koji, Kato, Etsushi, Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Landschützer, Peter, Lefèvre, Nathalie, Lindsay, Keith, Liu, Junjie, Liu, Zhu, Marland, Gregg, Mayot, Nicolas, Mcgrath, Matthew J., Metzl, Nicolas, Monacci, Natalie M., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'brien, Kevin, Ono, Tsuneo, Palmer, Paul I., Pan, Naiqing, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rodriguez, Carmen, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Shutler, Jamie D., Skjelvan, Ingunn, Steinhoff, Tobias, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tanhua, Toste, Tans, Pieter P., Tian, Xiangjun, Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, Van Der Werf, Guido R., Walker, Anthony P., Wanninkhof, Rik, Whitehead, Chris, Willstrand Wranne, Anna, Wright, Rebecca, Yuan, Wenping, Yue, Chao, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, and Zheng, Bo
- Abstract
A complete description of the dataset is given by Jones et al. (2023). Key information is provided below. A dataset describing the global warming response to national emissions CO2, CH4 and N2O from fossil and land use sources during 1851-2021. National CO2 emissions data are collated from the Global Carbon Project (Andrew and Peters, 2022; Friedlingstein et al., 2022). National CH4 and N2O emissions data are collated from PRIMAP-hist (HISTTP) (Gütschow et al., 2022). We construct a time series of cumulative CO2-equivalent emissions for each country, gas, and emissions source (fossil or land use). Emissions of CH4 and N2O emissions are related to cumulative CO2-equivalent emissions using the Global Warming Potential (GWP*) approach, with best-estimates of the coefficients taken from the IPCC AR6 (Forster et al., 2021). Warming in response to cumulative CO2-equivalent emissions is estimated using the transient climate response to cumulative carbon emissions (TCRE) approach, with best-estimate value of TCRE taken from the IPCC AR6 (Forster et al., 2021, Canadell et al., 2021). 'Warming' is specifically the change in global mean surface temperature (GMST). The data files provide emissions, cumulative emissions and the GMST response by country, gas (CO2, CH4, N2O or 3-GHG total) and source (fossil emissions, land use emissions or the total)., A complete description of the dataset is given by Jones et al. (2023). Key information is provided below. Background A dataset describing the global warming response to national emissions CO2, CH4 and N2O from fossil and land use sources during 1851-2021. National CO2 emissions data are collated from the Global Carbon Project (Andrew and Peters, 2022; Friedlingstein et al., 2022). National CH4 and N2O emissions data are collated from PRIMAP-hist (HISTTP) (Gütschow et al., 2022). We construct a time series of cumulative CO2-equivalent emissions for each country, gas, and emissions source (fossil or land use). Emissions of CH4 and N2O emissions are related to cumulative CO2-equivalent emissions using the Global Warming Potential (GWP*) approach, with best-estimates of the coefficients taken from the IPCC AR6 (Forster et al., 2021). Warming in response to cumulative CO2-equivalent emissions is estimated using the transient climate response to cumulative carbon emissions (TCRE) approach, with best-estimate value of TCRE taken from the IPCC AR6 (Forster et al., 2021, Canadell et al., 2021). 'Warming' is specifically the change in global mean surface temperature (GMST). The data files provide emissions, cumulative emissions and the GMST response by country, gas (CO2, CH4, N2O or 3-GHG total) and source (fossil emissions, land use emissions or the total). Data records: overview The data records include three comma separated values (.csv) files as described below. All files are in ‘long’ format with one value provided in the Data column for each combination of the categorical variables Year, Country Name, Country ISO3 code, Gas, and Component columns. Component specifies fossil emissions, LULUCF emissions or total emissions of the gas. Gas specifies CO2, CH4, N
- Published
- 2023
32. Perspectives and Integration in SOLAS Science
- Author
-
Garçon, Véronique C., Bell, Thomas G., Wallace, Douglas, Arnold, Steve R., Baker, Alex, Bakker, Dorothee C. E., Bange, Hermann W., Bates, Nicholas R., Bopp, Laurent, Boutin, Jacqueline, Boyd, Philip W., Bracher, Astrid, Burrows, John P., Carpenter, Lucy J., de Leeuw, Gerrit, Fennel, Katja, Font, Jordi, Friedrich, Tobias, Garbe, Christoph S., Gruber, Nicolas, Jaeglé, Lyatt, Lana, Arancha, Lee, James D., Liss, Peter S., Miller, Lisa A., Olgun, Nazli, Olsen, Are, Pfeil, Benjamin, Quack, Birgit, Read, Katie A., Reul, Nicolas, Rödenbeck, Christian, Rohekar, Shital S., Saiz-Lopez, Alfonso, Saltzman, Eric S., Schneising, Oliver, Schuster, Ute, Seferian, Roland, Steinhoff, Tobias, Traon, Pierre-Yves Le, Ziska, Franziska, Liss, Peter S., editor, and Johnson, Martin T., editor
- Published
- 2014
- Full Text
- View/download PDF
33. Carbon Biogeochemistry of the Western Arctic: Primary Production, Carbon Export and the Controls on Ocean Acidification
- Author
-
Mathis, Jeremy T., Grebmeier, Jacqueline M., Hansell, Dennis A., Hopcroft, Russell R., Kirchman, David L., Lee, Sang H., Moran, S. Bradley, Bates, Nicholas R., VanLaningham, Sam, Cross, Jessica N., Cai, Wei-Jun, Grebmeier, Jacqueline M., editor, and Maslowski, Wieslaw, editor
- Published
- 2014
- Full Text
- View/download PDF
34. Carbon Fluxes Across Boundaries in the Pacific Arctic Region in a Changing Environment
- Author
-
Cai, Wei-Jun, Bates, Nicholas R., Guo, Laodong, Anderson, Leif G., Mathis, Jeremy T., Wanninkhof, Rik, Hansell, Dennis A., Chen, Liqi, Semiletov, Igor P., Grebmeier, Jacqueline M., editor, and Maslowski, Wieslaw, editor
- Published
- 2014
- Full Text
- View/download PDF
35. Analysis of global surface ocean alkalinity to determine controlling processes
- Author
-
Fry, Claudia H., Tyrrell, Toby, Hain, Mathis P., Bates, Nicholas R., and Achterberg, Eric P.
- Published
- 2015
- Full Text
- View/download PDF
36. Advancing best practices for assessing trends of ocean acidification time series
- Author
-
Sutton, Adrienne J., primary, Battisti, Roman, additional, Carter, Brendan, additional, Evans, Wiley, additional, Newton, Jan, additional, Alin, Simone, additional, Bates, Nicholas R., additional, Cai, Wei-Jun, additional, Currie, Kim, additional, Feely, Richard A., additional, Sabine, Christopher, additional, Tanhua, Toste, additional, Tilbrook, Bronte, additional, and Wanninkhof, Rik, additional
- Published
- 2022
- Full Text
- View/download PDF
37. Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity
- Author
-
Yeakel, Kiley L., Andersson, Andreas J., Bates, Nicholas R., Noyes, Timothy J., Collins, Andrew, and Garley, Rebecca
- Published
- 2015
38. Assessing Ocean Acidification Variability in the Pacific-Arctic Region as Part of the Russian-American Long-term Census of the Arctic
- Author
-
Bates, Nicholas R.
- Published
- 2015
39. Threats to Coral Reefs of Bermuda
- Author
-
Smith, Struan R., Sarkis, Samia, Murdoch, Thad J. T., Weil, Ernesto, Croquer, Aldo, Bates, Nicholas R., Johnson, Rodney J., de Putron, Samantha, Andersson, Andreas J., and Sheppard, Charles R.C., editor
- Published
- 2013
- Full Text
- View/download PDF
40. Publisher Correction: A recent decline in North Atlantic subtropical mode water formation
- Author
-
Stevens, Samuel W., Johnson, Rodney J., Maze, Guillaume, and Bates, Nicholas R.
- Published
- 2020
- Full Text
- View/download PDF
41. Global Carbon Budget 2022
- Author
-
Friedlingstein, Pierre, primary, O'Sullivan, Michael, additional, Jones, Matthew W., additional, Andrew, Robbie M., additional, Gregor, Luke, additional, Hauck, Judith, additional, Le Quéré, Corinne, additional, Luijkx, Ingrid T., additional, Olsen, Are, additional, Peters, Glen P., additional, Peters, Wouter, additional, Pongratz, Julia, additional, Schwingshackl, Clemens, additional, Sitch, Stephen, additional, Canadell, Josep G., additional, Ciais, Philippe, additional, Jackson, Robert B., additional, Alin, Simone R., additional, Alkama, Ramdane, additional, Arneth, Almut, additional, Arora, Vivek K., additional, Bates, Nicholas R., additional, Becker, Meike, additional, Bellouin, Nicolas, additional, Bittig, Henry C., additional, Bopp, Laurent, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Cronin, Margot, additional, Evans, Wiley, additional, Falk, Stefanie, additional, Feely, Richard A., additional, Gasser, Thomas, additional, Gehlen, Marion, additional, Gkritzalis, Thanos, additional, Gloege, Lucas, additional, Grassi, Giacomo, additional, Gruber, Nicolas, additional, Gürses, Özgür, additional, Harris, Ian, additional, Hefner, Matthew, additional, Houghton, Richard A., additional, Hurtt, George C., additional, Iida, Yosuke, additional, Ilyina, Tatiana, additional, Jain, Atul K., additional, Jersild, Annika, additional, Kadono, Koji, additional, Kato, Etsushi, additional, Kennedy, Daniel, additional, Klein Goldewijk, Kees, additional, Knauer, Jürgen, additional, Korsbakken, Jan Ivar, additional, Landschützer, Peter, additional, Lefèvre, Nathalie, additional, Lindsay, Keith, additional, Liu, Junjie, additional, Liu, Zhu, additional, Marland, Gregg, additional, Mayot, Nicolas, additional, McGrath, Matthew J., additional, Metzl, Nicolas, additional, Monacci, Natalie M., additional, Munro, David R., additional, Nakaoka, Shin-Ichiro, additional, Niwa, Yosuke, additional, O'Brien, Kevin, additional, Ono, Tsuneo, additional, Palmer, Paul I., additional, Pan, Naiqing, additional, Pierrot, Denis, additional, Pocock, Katie, additional, Poulter, Benjamin, additional, Resplandy, Laure, additional, Robertson, Eddy, additional, Rödenbeck, Christian, additional, Rodriguez, Carmen, additional, Rosan, Thais M., additional, Schwinger, Jörg, additional, Séférian, Roland, additional, Shutler, Jamie D., additional, Skjelvan, Ingunn, additional, Steinhoff, Tobias, additional, Sun, Qing, additional, Sutton, Adrienne J., additional, Sweeney, Colm, additional, Takao, Shintaro, additional, Tanhua, Toste, additional, Tans, Pieter P., additional, Tian, Xiangjun, additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, Tsujino, Hiroyuki, additional, Tubiello, Francesco, additional, van der Werf, Guido R., additional, Walker, Anthony P., additional, Wanninkhof, Rik, additional, Whitehead, Chris, additional, Willstrand Wranne, Anna, additional, Wright, Rebecca, additional, Yuan, Wenping, additional, Yue, Chao, additional, Yue, Xu, additional, Zaehle, Sönke, additional, Zeng, Jiye, additional, and Zheng, Bo, additional
- Published
- 2022
- Full Text
- View/download PDF
42. Supplementary material to "Global Carbon Budget 2022"
- Author
-
Friedlingstein, Pierre, primary, O'Sullivan, Michael, additional, Jones, Matthew W., additional, Andrew, Robbie M., additional, Gregor, Luke, additional, Hauck, Judith, additional, Le Quéré, Corinne, additional, Luijkx, Ingrid T., additional, Olsen, Are, additional, Peters, Glen P., additional, Peters, Wouter, additional, Pongratz, Julia, additional, Schwingshackl, Clemens, additional, Sitch, Stephen, additional, Canadell, Josep G., additional, Ciais, Philippe, additional, Jackson, Robert B., additional, Alin, Simone R., additional, Alkama, Ramdane, additional, Arneth, Almut, additional, Arora, Vivek K., additional, Bates, Nicholas R., additional, Becker, Meike, additional, Bellouin, Nicolas, additional, Bittig, Henry C., additional, Bopp, Laurent, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Cronin, Margot, additional, Evans, Wiley, additional, Falk, Stefanie, additional, Feely, Richard A., additional, Gasser, Thomas, additional, Gehlen, Marion, additional, Gkritzalis, Thanos, additional, Gloege, Lucas, additional, Grassi, Giacomo, additional, Gruber, Nicolas, additional, Gürses, Özgür, additional, Harris, Ian, additional, Hefner, Matthew, additional, Houghton, Richard A., additional, Hurtt, George C., additional, Iida, Yosuke, additional, Ilyina, Tatiana, additional, Jain, Atul K., additional, Jersild, Annika, additional, Kadono, Koji, additional, Kato, Etsushi, additional, Kennedy, Daniel, additional, Klein Goldewijk, Kees, additional, Knauer, Jürgen, additional, Korsbakken, Jan Ivar, additional, Landschützer, Peter, additional, Lefèvre, Nathalie, additional, Lindsay, Keith, additional, Liu, Junjie, additional, Liu, Zhu, additional, Marland, Gregg, additional, Mayot, Nicolas, additional, McGrath, Matthew J., additional, Metzl, Nicolas, additional, Monacci, Natalie M., additional, Munro, David R., additional, Nakaoka, Shin-Ichiro, additional, Niwa, Yosuke, additional, O'Brien, Kevin, additional, Ono, Tsuneo, additional, Palmer, Paul I., additional, Pan, Naiqing, additional, Pierrot, Denis, additional, Pocock, Katie, additional, Poulter, Benjamin, additional, Resplandy, Laure, additional, Robertson, Eddy, additional, Rödenbeck, Christian, additional, Rodriguez, Carmen, additional, Rosan, Thais M., additional, Schwinger, Jörg, additional, Séférian, Roland, additional, Shutler, Jamie D., additional, Skjelvan, Ingunn, additional, Steinhoff, Tobias, additional, Sun, Qing, additional, Sutton, Adrienne J., additional, Sweeney, Colm, additional, Takao, Shintaro, additional, Tanhua, Toste, additional, Tans, Pieter P., additional, Tian, Xiangjun, additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, Tsujino, Hiroyuki, additional, Tubiello, Francesco, additional, van der Werf, Guido, additional, Walker, Anthony P., additional, Wanninkhof, Rik, additional, Whitehead, Chris, additional, Willstrand Wranne, Anna, additional, Wright, Rebecca, additional, Yuan, Wenping, additional, Yue, Chao, additional, Yue, Xu, additional, Zaehle, Sönke, additional, Zeng, Jiye, additional, and Zheng, Bo, additional
- Published
- 2022
- Full Text
- View/download PDF
43. A Time-Series View of Changing Surface Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO₂ and Ocean Acidification
- Author
-
BATES, NICHOLAS R., ASTOR, YRENE M., CHURCH, MATTHEW J., CURRIE, KIM, DORE, JOHN E., GONZÁLEZ-DÁVILA, MELCHOR, LORENZONI, LAURA, MULLER-KARGER, FRANK, OLAFSSON, JON, and SANTANA-CASIANO, J. MAGDALENA
- Published
- 2014
44. Changing Hydrographic, Biogeochemical, and Acidification Properties in the Gulf of Maine as Measured by the Gulf of Maine North Atlantic Time Series, GNATS, Between 1998 and 2018
- Author
-
Balch, William M., primary, Drapeau, David T., additional, Bowler, Bruce C., additional, Record, Nicholas R., additional, Bates, Nicholas R., additional, Pinkham, Sunny, additional, Garley, Rebecca, additional, and Mitchell, Catherine, additional
- Published
- 2022
- Full Text
- View/download PDF
45. Conservative and non-conservative variations of total alkalinity on the southeastern Bering Sea shelf
- Author
-
Cross, Jessica N., Mathis, Jeremy T., Bates, Nicholas R., and Byrne, Robert H.
- Published
- 2013
- Full Text
- View/download PDF
46. Dissolved organic nitrogen dynamics in the Arctic Ocean
- Author
-
Letscher, Robert T., Hansell, Dennis A., Kadko, David, and Bates, Nicholas R.
- Published
- 2013
- Full Text
- View/download PDF
47. Temporal Studies of Biogeochemical Processes Determined from Ocean Time-Series Observations During the JGOFS Era
- Author
-
Karl, David M., Bates, Nicholas R., Emerson, Steven, Harrison, Paul J., Jeandel, Catherine, Llinâs, Octavio, Liu, Kon-Kee, Marty, Jean-Claude, Michaels, Anthony F., Miquel, Jean C., Neuer, Susanne, Nojiri, Y., Wong, Chi Shing, and Fasham, Michael J. R., editor
- Published
- 2003
- Full Text
- View/download PDF
48. Global Carbon Budget 2021
- Author
-
Friedlingstein, Pierre, Jones, Matthew W., O'Sullivan, Michael, Andrew, Robbie M., Bakker, Dorothee C.E., Hauck, Judith, Le Quéré, Corinne, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Rob B., Alin, Simone R., Anthoni, Peter, Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Bopp, Laurent, Chau, Thi Tuyet Trang, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Currie, Kim I., Decharme, Bertrand, Djeutchouang, Laique M., Dou, Xinyu, Evans, Wiley, Feely, Richard A., Feng, Liang, Gasser, Thomas, Gilfillan, Dennis, Gkritzalis, Thanos, Grassi, Giacomo, Gregor, Luke, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Luijkx, Ingrid T., Jain, Atul, Jones, Steve D., Kato, Etsushi, Kennedy, Daniel, Goldewijk, Kees Klein, Knauer, Jürgen, Korsbakken, Jan Ivar, Körtzinger, Arne, Landschützer, Peter, Lauvset, Siv K., Lefèvre, Nathalie, Lienert, Sebastian, Liu, Junjie, Marland, Gregg, McGuire, Patrick C., Melton, Joe R., Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin Ichiro, Niwa, Yosuke, Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rosan, Thais M., Schwinger, Jörg, Schwingshackl, Clemens, Séférian, Roland, Sutton, Adrienne J., Sweeney, Colm, Tanhua, Toste, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco, Van Der Werf, Guido R., Vuichard, Nicolas, Wada, Chisato, Wanninkhof, Rik, Watson, Andrew J., Willis, David, Wiltshire, Andrew J., Yuan, Wenping, Yue, Chao, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, Integr. Assessm. Global Environm. Change, and Environmental Sciences
- Subjects
Earth and Planetary Sciences(all) - Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the first time, an approach is shown to reconcile the difference in our ELUC estimate with the one from national greenhouse gas inventories, supporting the assessment of collective countries' climate progress. For the year 2020, EFOS declined by 5.4% relative to 2019, with fossil emissions at 9.5±0.5GtCyr-1 (9.3±0.5GtCyr-1 when the cement carbonation sink is included), and ELUC was 0.9±0.7GtCyr-1, for a total anthropogenic CO2 emission of 10.2±0.8GtCyr-1 (37.4±2.9GtCO2). Also, for 2020, GATM was 5.0±0.2GtCyr-1 (2.4±0.1ppmyr-1), SOCEAN was 3.0±0.4GtCyr-1, and SLAND was 2.9±1GtCyr-1, with a BIM of -0.8GtCyr-1. The global atmospheric CO2 concentration averaged over 2020 reached 412.45±0.1ppm. Preliminary data for 2021 suggest a rebound in EFOS relative to 2020 of +4.8% (4.2% to 5.4%) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959-2020, but discrepancies of up to 1GtCyr-1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at 10.18160/gcp-2021 (Friedlingstein et al., 2021).
- Published
- 2022
49. Supplemental data of Global Carbon Project 2022
- Author
-
Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Gregor, Luke, Hauck, Judith, Le Quéré, Corinne, Luijkx, Ingrid T., Olsen, Are, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Alkama, Ramdane, Arneth, Almut, Arora, Vivek K., Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Bittig, Henry C., Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Gasser, Thomas, Gehlen, Marion, Gkritzalis, Thanos, Gloege, Lucas, Grassi, Giacomo, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jain, Atul K., Jersild, Annika, Kadono, Koji, Kato, Etsushi, Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Landschützer, Peter, Lefèvre, Nathalie, Lindsay, Keith, Liu, Junjie, Liu, Zhu, Marland, Gregg, Mayot, Nicolas, Mcgrath, Matthew J., Metzl, Nicolas, Monacci, Natalie M., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'brien, Kevin, Ono, Tsuneo, Palmer, Paul I., Pan, Naiqing, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rodriguez, Carmen, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Shutler, Jamie D., Skjelvan, Ingunn, Steinhoff, Tobias, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tanhua, Toste, Tans, Pieter P., Tian, Xiangjun, Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, Van Der Werf, Guido R., Walker, Anthony P., Wanninkhof, Rik, Whitehead, Chris, Willstrand Wranne, Anna, Wright, Rebecca, Yuan, Wenping, Yue, Chao, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, Zheng, Bo, Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Gregor, Luke, Hauck, Judith, Le Quéré, Corinne, Luijkx, Ingrid T., Olsen, Are, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Alkama, Ramdane, Arneth, Almut, Arora, Vivek K., Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Bittig, Henry C., Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Gasser, Thomas, Gehlen, Marion, Gkritzalis, Thanos, Gloege, Lucas, Grassi, Giacomo, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jain, Atul K., Jersild, Annika, Kadono, Koji, Kato, Etsushi, Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Landschützer, Peter, Lefèvre, Nathalie, Lindsay, Keith, Liu, Junjie, Liu, Zhu, Marland, Gregg, Mayot, Nicolas, Mcgrath, Matthew J., Metzl, Nicolas, Monacci, Natalie M., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'brien, Kevin, Ono, Tsuneo, Palmer, Paul I., Pan, Naiqing, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rodriguez, Carmen, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Shutler, Jamie D., Skjelvan, Ingunn, Steinhoff, Tobias, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tanhua, Toste, Tans, Pieter P., Tian, Xiangjun, Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, Van Der Werf, Guido R., Walker, Anthony P., Wanninkhof, Rik, Whitehead, Chris, Willstrand Wranne, Anna, Wright, Rebecca, Yuan, Wenping, Yue, Chao, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, and Zheng, Bo
- Abstract
Supplement containing data related to the 2022 Global Carbon Budget from the Global Carbon Project. The original article is Friedlingstein et al: Global Carbon Budget 2022, Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022. Further information is available on: http://www.globalcarbonproject.org/carbonbudget, Supplement containing data related to the 2022 Global Carbon Budget from the Global Carbon Project. The original article is Friedlingstein et al: Global Carbon Budget 2022, Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022. Further information is available on: http://www.globalcarbonproject.org/carbonbudget. File Global_Carbon_Budget_2022v1.0.xlsx includes the following: 1. Summary 2. Global Carbon Budget 3. Fossil fuel emissions by Fuel Type 4. Land-use change emissions 5. Ocean Sink 6. Terrestrial sink 7. Historical Budget. File National_Carbon_Emissions_2022v1.0.xlsx includes the following: 1. Summary 2. Territorial emissions 3. Consumption emissions 4. Emissions transfers 5. Country definitions 6. Disaggregation 7. Aggregation
- Published
- 2022
50. Global Carbon Budget 2021
- Author
-
Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, Pierre, Jones, Matthew W., O'Sullivan, Michael, Andrew, Robbie M., Bakker, Dorothee C.E., Hauck, Judith, Le Quéré, Corinne, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Rob B., Alin, Simone R., Anthoni, Peter, Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Bopp, Laurent, Chau, Thi Tuyet Trang, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Currie, Kim I., Decharme, Bertrand, Djeutchouang, Laique M., Dou, Xinyu, Evans, Wiley, Feely, Richard A., Feng, Liang, Gasser, Thomas, Gilfillan, Dennis, Gkritzalis, Thanos, Grassi, Giacomo, Gregor, Luke, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Luijkx, Ingrid T., Jain, Atul, Jones, Steve D., Kato, Etsushi, Kennedy, Daniel, Goldewijk, Kees Klein, Knauer, Jürgen, Korsbakken, Jan Ivar, Körtzinger, Arne, Landschützer, Peter, Lauvset, Siv K., Lefèvre, Nathalie, Lienert, Sebastian, Liu, Junjie, Marland, Gregg, McGuire, Patrick C., Melton, Joe R., Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin Ichiro, Niwa, Yosuke, Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rosan, Thais M., Schwinger, Jörg, Schwingshackl, Clemens, Séférian, Roland, Sutton, Adrienne J., Sweeney, Colm, Tanhua, Toste, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco, Van Der Werf, Guido R., Vuichard, Nicolas, Wada, Chisato, Wanninkhof, Rik, Watson, Andrew J., Willis, David, Wiltshire, Andrew J., Yuan, Wenping, Yue, Chao, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, Pierre, Jones, Matthew W., O'Sullivan, Michael, Andrew, Robbie M., Bakker, Dorothee C.E., Hauck, Judith, Le Quéré, Corinne, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Rob B., Alin, Simone R., Anthoni, Peter, Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Bopp, Laurent, Chau, Thi Tuyet Trang, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Currie, Kim I., Decharme, Bertrand, Djeutchouang, Laique M., Dou, Xinyu, Evans, Wiley, Feely, Richard A., Feng, Liang, Gasser, Thomas, Gilfillan, Dennis, Gkritzalis, Thanos, Grassi, Giacomo, Gregor, Luke, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Luijkx, Ingrid T., Jain, Atul, Jones, Steve D., Kato, Etsushi, Kennedy, Daniel, Goldewijk, Kees Klein, Knauer, Jürgen, Korsbakken, Jan Ivar, Körtzinger, Arne, Landschützer, Peter, Lauvset, Siv K., Lefèvre, Nathalie, Lienert, Sebastian, Liu, Junjie, Marland, Gregg, McGuire, Patrick C., Melton, Joe R., Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin Ichiro, Niwa, Yosuke, Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rosan, Thais M., Schwinger, Jörg, Schwingshackl, Clemens, Séférian, Roland, Sutton, Adrienne J., Sweeney, Colm, Tanhua, Toste, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco, Van Der Werf, Guido R., Vuichard, Nicolas, Wada, Chisato, Wanninkhof, Rik, Watson, Andrew J., Willis, David, Wiltshire, Andrew J., Yuan, Wenping, Yue, Chao, Yue, Xu, Zaehle, Sönke, and Zeng, Jiye
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.