49 results on '"Basiliko N"'
Search Results
2. Evolution of Palsas and Peat Plateaus in the Hudson Bay Lowlands: Permafrost Degradation and the Production of Greenhouse Gases
- Author
-
Kirkwood, A., primary, Roy-Léveillée, P., additional, Packalen, M., additional, McLaughlin, J., additional, and Basiliko, N., additional
- Published
- 2019
- Full Text
- View/download PDF
3. Climate-driven shifts in sediment chemistry enhance methane production in northern lakes
- Author
-
Emilson, E. J. S., primary, Carson, M. A., additional, Yakimovich, K. M., additional, Osterholz, H., additional, Dittmar, T., additional, Gunn, J. M., additional, Mykytczuk, N. C. S., additional, Basiliko, N., additional, and Tanentzap, A. J., additional
- Published
- 2018
- Full Text
- View/download PDF
4. Evolution of Palsas and Peat Plateaus in the Hudson Bay Lowlands: Permafrost Degradation and the Production of Greenhouse Gases.
- Author
-
Kirkwood, A., Roy-Léveillée, P., Packalen, M., McLaughlin, J., and Basiliko, N.
- Abstract
Peatlands in the Hudson Bay Lowlands (HBL) extend from the sporadic to the continuous permafrost zones. They store ~30 Pg of soil carbon, ~10% of which is sequestered in permafrost. Palsa fields and peat plateaus are dominant features in the HBL of northern Ontario, but pronounced warming trends in the area are associated with accelerated degradation of these features. This research investigated greenhouse gas production potential (CO2 and CH4) from HBL peatlands near Peawanuck, ON, in the context of rapid palsa degradat ion. Active layer and permafrost samples from palsas, and samples from fens adjacent to the palsas were collected at sites exhibiting different degradation rates and patterns, identified via the sequential analysis of historical aerial photographs and recent satellite imagery. The samples were incubated anaerobically at 4°C and 14°C to assess CO2 and CH4. In general, CO2 production potential was higher than CH4, however the production of CH4 was extremely sensitive to increased temperatures. Between 4°C and 14°C CH4 production increased by factors ranging from 6 to 90, whereas CO2 production consistently increased by a factor of ~2. The production of both gases was higher from fen peat then from permafrost and active layer peat at either temperature when incubated in anaerobic conditions for 225 days. This suggests that higher production rates of CO2 and CH4 from thermokarst features compared to intact permafrost landscapes are not only the result of environmental conditions such as wetness and increased temperatures, but also likely a result of organic matter chemistry and bioavailability associated with increased sedge growth following permafrost degradation. [ABSTRACT FROM AUTHOR]
- Published
- 2019
5. Climate-driven shifts in sediment chemistry enhance methane production in northern lakes
- Author
-
Emilson, E.J.S, primary, Carson, M.A., additional, Yakimovich, K.M., additional, Gunn, J.M., additional, Mykytczuk, N.C.S, additional, Basiliko, N., additional, and Tanentzap, A.J., additional
- Published
- 2017
- Full Text
- View/download PDF
6. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?
- Author
-
Graham, E.B., Knelman, J.E., Schindlbacher, A., Siciliano, S., Breulmann, Marc, Yannarell, A., Beman, J.M., Abell, G., Philippot, L., Prosser, J., Foulquier, A., Yuste, J.C., Glanville, H.C., Jones, D., Angel, R., Salminen, J., Newton, R.J., Bürgmann, H., Ingram, L.J., Hamer, U., Siljanen, H.M., Peltoniemi, K., Potthast, K., Bañeras, L., Hartmann, M., Banerjee, S., Yu, R.-Q., Nogaro, G., Richter, A., Koranda, M., Castle, S., Goberna, M., Song, B., Chatterjee, A., Nunes, O.C., Lopes, A.R., Cao, Y., Kaisermann, A., Hallin, S., Strickland, M.S., Garcia-Pausas, J., Barba, J., Kang, H., Isobe, K., Papaspyrou, S., Pastorelli, R., Lagomarsino, A., Lindström, E., Basiliko, N., Nemergut, D.R., Graham, E.B., Knelman, J.E., Schindlbacher, A., Siciliano, S., Breulmann, Marc, Yannarell, A., Beman, J.M., Abell, G., Philippot, L., Prosser, J., Foulquier, A., Yuste, J.C., Glanville, H.C., Jones, D., Angel, R., Salminen, J., Newton, R.J., Bürgmann, H., Ingram, L.J., Hamer, U., Siljanen, H.M., Peltoniemi, K., Potthast, K., Bañeras, L., Hartmann, M., Banerjee, S., Yu, R.-Q., Nogaro, G., Richter, A., Koranda, M., Castle, S., Goberna, M., Song, B., Chatterjee, A., Nunes, O.C., Lopes, A.R., Cao, Y., Kaisermann, A., Hallin, S., Strickland, M.S., Garcia-Pausas, J., Barba, J., Kang, H., Isobe, K., Papaspyrou, S., Pastorelli, R., Lagomarsino, A., Lindström, E., Basiliko, N., and Nemergut, D.R.
- Abstract
Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.
- Published
- 2016
7. Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central Ontario, Canada
- Author
-
Wang, J. M., primary, Murphy, J. G., additional, Geddes, J. A., additional, Winsborough, C. L., additional, Basiliko, N., additional, and Thomas, S. C., additional
- Published
- 2013
- Full Text
- View/download PDF
8. Supplementary material to "Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central ontario, Canada"
- Author
-
Wang, J. M., primary, Murphy, J. G., additional, Geddes, J. A., additional, Winsborough, C. L., additional, Basiliko, N., additional, and Thomas, S. C., additional
- Published
- 2012
- Full Text
- View/download PDF
9. Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central ontario, Canada
- Author
-
Wang, J. M., primary, Murphy, J. G., additional, Geddes, J. A., additional, Winsborough, C. L., additional, Basiliko, N., additional, and Thomas, S. C., additional
- Published
- 2012
- Full Text
- View/download PDF
10. Methane Biogeochemistry and Methanogen Communities in Two Northern Peatland Ecosystems, New York State
- Author
-
Basiliko, N., primary, Yavitt, J. B., additional, Dees, P. M., additional, and Merkel, S. M., additional
- Published
- 2003
- Full Text
- View/download PDF
11. Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central ontario, Canada.
- Author
-
Wang, J. M., Murphy, J. G., Geddes, J. A., Winsborough, C. L., Basiliko, N., and Thomas, S. C.
- Subjects
METHANE ,FORESTS & forestry ,SPECTROMETERS ,GREENHOUSE gases ,BIOTIC communities ,ANALYSIS of covariance ,HALIBURTON Forest & Wild Life Reserve (Ont.) - Abstract
Methane flux measurements were carried out at a temperate forest (Haliburton Forest and Wildlife Reserve) in central Ontario (45° 170' 11" N, 78° 32' 19" W) from June-October, 2011. Continuous measurements were made by an off-axis integrated cavity output spectrometer Fast Greenhouse Gas Analyzer (FGGA) from Los Gatos Research Inc. that measures methane (CH
4 ) at 10 Hz sampling rates. Fluxes were calculated from the gas measurements in conjunction with wind data collected by a 3-D sonic anemometer using the eddy covariance (EC) method. Observed methane fluxes showed net uptake of CH4 over the measurement period with an average uptake flux (± standard deviation of the mean) of -2.7±0.13 nmolm-2 s-1 . Methane fluxes showed a seasonal progression with average rates of uptake increasing from June through September and remaining high in October. This pattern was consistent with a decreasing trend in soil moisture content at the monthly time scale. On the diurnal timescale, there was evidence of increased uptake during the day, when the mid-canopy wind speed was at a maximum. These patterns suggest that substrate supply of CH4 and oxygen to methanotrophs, and in certain cases hypoxic soil conditions supporting methanogenesis in low-slope areas, drive the observed variability in fluxes. A network of soil static chambers used at the tower site showed close agreement with the eddy covariance flux measurements. This suggests that soil-level microbial processes, and not abiological leaf-level CH4 production, drive overall CH4 dynamics in temperate forest ecosystems such as Haliburton Forest. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
12. Peatland Fungal Community Responses to Nutrient Enrichment: A Story Beyond Nitrogen.
- Author
-
Wang M, Lamit LJ, Lilleskov EA, Basiliko N, Moore TR, Bubier JL, Guo G, Juutinen S, and Larmola T
- Subjects
- Potassium metabolism, Potassium analysis, Wetlands, Soil Microbiology, Mycobiome, Biodiversity, Sphagnopsida microbiology, Nitrogen metabolism, Fungi physiology, Fungi metabolism, Fertilizers analysis, Phosphorus metabolism, Phosphorus analysis, Mycorrhizae physiology
- Abstract
Anthropogenically elevated inputs of nitrogen (N), phosphorus (P), and potassium (K) can affect the carbon (C) budget of nutrient-poor peatlands. Fungi are intimately tied to peatland C budgets due to their roles in organic matter decomposition and symbioses with primary producers; however, the influence of fertilization on peatland fungal composition and diversity remains unclear. Here, we examined the effect of fertilization over 10 years on fungal diversity, composition, and functional guilds along an acrotelm (10-20 cm), mesotelm (30-40 cm), and catotelm (60-70 cm) depth gradient at the Mer Bleue bog, Canada. Simultaneous N and PK additions decreased the relative abundance of ericoid mycorrhizal fungi and increased ectomycorrhizal fungi and lignocellulose-degrading fungi. Fertilization effects were not more pronounced in the acrotelm relative to the catotelm, nor was there a shift toward nitrophilic taxa after N addition. The direct effect of fertilization significantly decreased the abundance of Sphagnum-associated fungi, primarily owing to the overarching role of limiting nutrients rather than a decline in Sphagnum cover. Increased nutrient loading may threaten peatland C stocks if lignocellulose-degrading fungi become abundant and accelerate decomposition of recalcitrant organic matter. Additionally, future changes in plant communities, strong water table fluctuations, and peat subsidence after long-term nutrient loading may also influence fungal functional guilds and depth-dependencies of fungal community structure., (© 2024 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
13. Global Patterns of Metal and Other Element Enrichment in Bog and Fen Peatlands.
- Author
-
Osborne C, Gilbert-Parkes S, Spiers G, Lamit LJ, Lilleskov EA, Basiliko N, and Watmough S
- Subjects
- Wetlands, Metals, Soil, Mercury analysis, Environmental Pollutants
- Abstract
Peatlands are found on all continents, covering 3% of the global land area. However, the spatial extent and causes of metal enrichment in peatlands is understudied and no attempt has been made to evaluate global patterns of metal enrichment in bog and fen peatlands, despite that certain metals and rare earth elements (REE) arise from anthropogenic sources. We analyzed 368 peat cores sampled in 16 countries across five continents and measured metal and other element concentrations at three depths down to 70 cm as well as estimated cumulative atmospheric S deposition (1850-2009) for each site. Sites were assigned to one of three distinct broadly recognized peatland categories (bog, poor fen, and intermediate-to-moderately rich fen) that varied primarily along a pH gradient. Metal concentrations differed among peatland types, with intermediate-to-moderately rich fens demonstrating the highest concentrations of most metals. Median enrichment factors (EFs; a metric comparing natural and anthropogenic metal deposition) for individual metals were similar among bogs and fens (all groups), with metals likely to be influenced by anthropogenic sources (As, Cd, Co, Cu, Hg, Pb, and Sb) demonstrating median enrichment factors (EFs) > 1.5. Additionally, mean EFs were substantially higher than median values, and the positive correlation (< 0.40) with estimated cumulative atmospheric S deposition, confirmed some level of anthropogenic influence of all pollutant metals except for Hg that was unrelated to S deposition. Contrary to expectations, high EFs were not restricted to pollutant metals, with Mn, K and Rb all exhibiting elevated median EFs that were in the same range as pollutant metals likely due to peatland biogeochemical processes leading to enrichment of these nutrients in surface soil horizons. The global patterns of metal enrichment in bogs and fens identified in this study underscore the importance of these peatlands as environmental archives of metal deposition, but also illustrates that biogeochemical processes can enrich metals in surface peat and EFs alone do not necessarily indicate atmospheric contamination., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
14. Soil carbon pools and fluxes following the regreening of a mining and smelting degraded landscape.
- Author
-
Levasseur PA, Aherne J, Basiliko N, Emilson EJS, Preston MD, Sager EPS, and Watmough SA
- Subjects
- Soil, Carbon metabolism, Forests, Trees metabolism, Ecosystem, Pinus metabolism
- Abstract
Increasing forest cover by regreening mining and smelting degraded landscapes provides an opportunity for global carbon (C) sequestration, however, the reported effects of regreening on soil C processes are mixed. One of the world's largest regreening programs is in the City of Greater Sudbury, Canada and has been ongoing since 1978. Prior to regreening, soils in the City of Greater Sudbury area were highly eroded, acidic, rich in metals, and poor in nutrients. This study used a chronosequence approach to investigate how forest soil C pools and fluxes have changed with stand age in highly "eroded" sites with minimal soil cover (n = 6) and "stable" sites covered by soil (n = 6). Encouragingly, the relationship between stand age and soil C processes (litterfall, litter decomposition, soil respiration, fine root growth) at both stable and eroded sites were comparable to observations reported for jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Ait.) plantations that have not been subject to over a century of industrial impacts. There was a strong "home-field advantage" for local decomposers, where litter decomposition rates were higher using a site-specific pine litter compared with a common pine litter. Higher soil respiration at eroded sites was linked to higher soil temperature, likely because of a more open tree canopy. Forest floor C pools increased with stand age while mineral soil C and aggregate C concentrations decreased with stand age. This loss of soil C is small relative to the substantial increases in aboveground tree and forest floor C pools, leading to a sizeable increase in total ecosystem C pools following regreening., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Crown Copyright © 2023. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
15. Recovery of Smelter-Impacted Peat and Sphagnum Moss: a Microbial Perspective.
- Author
-
Seward J, Bräuer S, Beckett P, Roy-Léveillée P, Emilson E, Watmough S, and Basiliko N
- Subjects
- Ecosystem, Soil chemistry, Ontario, Sphagnopsida, Metals, Heavy
- Abstract
Peatlands store approximately one-half of terrestrial soil carbon and one-tenth of non-glacial freshwater. Some of these important ecosystems are located near heavy metal emitting smelters. To improve the understanding of smelter impacts and potential recovery after initial pollution controls in the 1970s (roughly 50 years of potential recovery), we sampled peatlands along a distance gradient of 134 km from a smelter in Sudbury, Ontario, Canada, an area with over a century of nickel (Ni) and copper (Cu) mining activity. This work is aimed at evaluating potential shifts in bacterial and archaeal community structures in Sphagnum moss and its underlying peat within smelter-impacted poor fens. In peat, total Ni and Cu concentrations were higher (0.062-0.067 and 0.110-0.208 mg/g, respectively) at sites close to the smelter and exponentially dropped with distance from the smelter. This exponential decrease in Ni concentrations was also observed in Sphagnum. 16S rDNA amplicon sequencing showed that peat and Sphagnum moss host distinct microbiomes with peat accommodating a more diverse community structure. The microbiomes of Sphagnum were dominated by Proteobacteria (62.5%), followed by Acidobacteria (11.9%), with no observable trends with distance from the smelter. Dominance of Acidobacteria (32.4%) and Proteobacteria (29.6%) in peat was reported across all sites. No drift in taxonomy was seen across the distance gradient or from the reference sites, suggesting a potential microbiome recovery toward that of the reference peatlands microbiomes after decades of pollution controls. These results advance the understanding of peat and Sphagnum moss microbiomes, as well as depict the sensitivities and the resilience of peatland ecosystems., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
16. How arsenic contamination influences downslope wetland plant and microbial community structure and function.
- Author
-
Munford KE, Gilbert-Parkes S, Mykytczuk NCS, Basiliko N, Yakimovich KM, Poulain A, and Watmough SA
- Subjects
- Wetlands, Soil chemistry, Water, Carbon, Arsenic, Microbiota
- Abstract
Mine tailings are prevalent worldwide and can adversely impact adjacent ecosystems, including wetlands. This study investigated the impact of gold (Au) mine tailings contamination on peatland soil and pore water geochemistry, vegetation and microbial communities, and microbial carbon (C) cycling. Maximum arsenic (As) concentrations in peat and pore water reached 20,137 mg kg
-1 and 16,730 μg L-1 , respectively, but decreased by two orders of magnitude along a 128 m gradient extending from the tailings into the wetland. Carbon and other macronutrient (N, P, K) concentrations in peat and pore water significantly increased with distance from contamination. Relative percent cover and species richness of vascular and non-vascular plants significantly increased with distance into the wetland, with higher non-vascular richness being found at intermediate distances before transitioning to a vascular plant dominated community. Bacterial and archaeal community composition exhibited a decreased proportion of members of the phylum Acidobacteria (notably of the order Acidobacteriales) and increased diversity and richness of methanogens across a larger range of orders farther from the tailings source, an indication of microbial C-cycling potential. Consistent with changes in microbial communities, in vitro microbial CH4 production potential significantly increased with distance from the contaminant source. This study demonstrates both the profound negative impact that metalliferous tailings contamination can have on above and belowground communities in peatlands, and the value of wetland preservation and restoration., Competing Interests: Declaration of competing interest Editorial Board of Science of the Total Environment - Shaun Watmough, (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
17. Variation in carbon and nitrogen concentrations among peatland categories at the global scale.
- Author
-
Watmough S, Gilbert-Parkes S, Basiliko N, Lamit LJ, Lilleskov EA, Andersen R, Del Aguila-Pasquel J, Artz RE, Benscoter BW, Borken W, Bragazza L, Brandt SM, Bräuer SL, Carson MA, Chen X, Chimner RA, Clarkson BR, Cobb AR, Enriquez AS, Farmer J, Grover SP, Harvey CF, Harris LI, Hazard C, Hoyt AM, Hribljan J, Jauhiainen J, Juutinen S, Kane ES, Knorr KH, Kolka R, Könönen M, Laine AM, Larmola T, Levasseur PA, McCalley CK, McLaughlin J, Moore TR, Mykytczuk N, Normand AE, Rich V, Robinson B, Rupp DL, Rutherford J, Schadt CW, Smith DS, Spiers G, Tedersoo L, Thu PQ, Trettin CC, Tuittila ES, Turetsky M, Urbanová Z, Varner RK, Waldrop MP, Wang M, Wang Z, Warren M, Wiedermann MM, Williams ST, Yavitt JB, Yu ZG, and Zahn G
- Subjects
- Wetlands, Nitrogen, Carbon chemistry, Soil chemistry
- Abstract
Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks., Competing Interests: There are no competing interests, (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.)
- Published
- 2022
- Full Text
- View/download PDF
18. Viruses direct carbon cycling in lake sediments under global change.
- Author
-
Braga LPP, Orland C, Emilson EJS, Fitch AA, Osterholz H, Dittmar T, Basiliko N, Mykytczuk NCS, and Tanentzap AJ
- Subjects
- Amino Sugars metabolism, Bacteria genetics, Bacteria metabolism, Carbon metabolism, Carbon Cycle, Lakes microbiology, Water metabolism, Greenhouse Gases metabolism, Viruses genetics, Viruses metabolism
- Abstract
Global change is altering the vast amount of carbon cycled by microbes between land and freshwater, but how viruses mediate this process is poorly understood. Here, we show that viruses direct carbon cycling in lake sediments, and these impacts intensify with future changes in water clarity and terrestrial organic matter (tOM) inputs. Using experimental tOM gradients within sediments of a clear and a dark boreal lake, we identified 156 viral operational taxonomic units (vOTUs), of which 21% strongly increased with abundances of key bacteria and archaea, identified via metagenome-assembled genomes (MAGs). MAGs included the most abundant prokaryotes, which were themselves associated with dissolved organic matter (DOM) composition and greenhouse gas (GHG) concentrations. Increased abundances of virus-like particles were separately associated with reduced bacterial metabolism and with shifts in DOM toward amino sugars, likely released by cell lysis rather than higher molecular mass compounds accumulating from reduced tOM degradation. An additional 9.6% of vOTUs harbored auxiliary metabolic genes associated with DOM and GHGs. Taken together, these different effects on host dynamics and metabolism can explain why abundances of vOTUs rather than MAGs were better overall predictors of carbon cycling. Future increases in tOM quantity, but not quality, will change viral composition and function with consequences for DOM pools. Given their importance, viruses must now be explicitly considered in efforts to understand and predict the freshwater carbon cycle and its future under global environmental change.
- Published
- 2022
- Full Text
- View/download PDF
19. Dark stress for improved lipid quantity and quality in bioprospected acid-tolerant green microalgae.
- Author
-
Desjardins SM, Laamanen CA, Basiliko N, Senhorinho GNA, and Scott JA
- Subjects
- Biofuels, Biomass, Carbon Dioxide chemistry, Gases chemistry, Lipids, Microalgae
- Abstract
The cost of microalgae cultivation is one of the largest limitations to achieving sustainable, large-scale microalgae production of commercially desirable lipids. Utilizing CO2 as a 'free' carbon source from waste industrial flue gas emissions can offer wide-ranging cost savings. However, these gas streams typically create acidic environments, in which most microalgae cannot survive due to the concentration of CO2 and the presence of other acidic gasses such as NO2 and SO2. To address this situation, we investigated growth of a mixed acid-tolerant green microalgal culture (91% dominated by a single Coccomyxa sp. taxon) bioprospected at pH 2.8 from an acid mine drainage impacted water body. The culture was grown at pH 2.5 and fed with a simulated flue gas containing 6% CO2 and 94% N2. On reaching the end of the exponential growth phase, the culture was exposed to either continued light-dark cycle conditions or continual dark conditions. After three days in the dark, the biomass consisted of 28% of lipids, which was 42% higher than at the end of the exponential phase and 55% higher than the maximum lipid content achieved under light/dark conditions. The stress caused by being continually in the dark also favoured the production of omega-3 and omega-6 polyunsaturated fatty acids (PUFAs; 19.47% and 21.04%, respectively, after 7 days) compared to 7-days of light-dark treatment (1.94% and 9.53%, respectively) and showed an increase in nitrogen content (C:N ratio of 6.4) compared to light-dark treatment (C:N ratio of 11.9). The results of the research indicate that use of acid tolerant microalgae overcomes issues using flue gasses that will create an acidic environment and that applying dark stress is a low-cost stressor stimulates production of desirable dietary lipids., (© The Author(s) 2022. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2022
- Full Text
- View/download PDF
20. Forest soil biotic communities show few responses to wood ash applications at multiple sites across Canada.
- Author
-
Smenderovac E, Emilson C, Porter T, Morris D, Hazlett P, Diochon A, Basiliko N, Bélanger N, Markham J, Rutherford PM, van Rees K, Jones T, and Venier L
- Subjects
- Biota, Forestry, Forests, Soil chemistry, Soil Pollutants analysis
- Abstract
There is interest in utilizing wood ash as an amendment in forestry operations as a mechanism to return nutrients to soils that are removed during harvesting, with the added benefit of diverting this bioenergy waste material from landfill sites. Existing studies have not arrived at a consensus on what the effects of wood ash amendments are on soil biota. We collected forest soil samples from studies in managed forests across Canada that were amended with wood ash to evaluate the effects on arthropod, bacterial and fungal communities using metabarcoding of F230, 16S, 18S and ITS2 sequences as well as enzyme analyses to assess its effects on soil biotic function. Ash amendment did not result in consistent effects across sites, and those effects that were detected were small. Overall, this study suggests that ash amendment applied to managed forest systems in amounts (up to 20 Mg ha
-1 ) applied across the 8 study sties had little to no detectable effects on soil biotic community structure or function. When effects were detected, they were small, and site-specific. These non-results support the application of wood ash to harvested forest sites to replace macronutrients (e.g., calcium) removed by logging operations, thereby diverting it from landfill sites, and potentially increasing stand productivity., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
21. Methane production potential of pulp mill sludges: microbial community and substrate constraints.
- Author
-
Chan-Yam K, Meyer T, Scott JA, and Basiliko N
- Subjects
- Anaerobiosis, Bioreactors microbiology, Methane, RNA, Ribosomal, 16S genetics, Microbiota genetics, Sewage microbiology
- Abstract
Sludges from pulp and paper mills represent a major ecological and environmental cost, and anaerobic digestion represents a method of waste reduction and energy recovery for these mills. This study compared methane production potential and microbial communities across 11 primary- and biosludges from five pulp and paper mills using various mill processes. We measured methane production from sludges in anaerobic batch reactor experiments over 64 days. Sludges were incubated with and without added substrate to test for organic substrate limitation versus inhibition of methanogens. Initial microbial communities and changes to community composition were determined using Illumina MiSeq for metabarcoding of bacterial and archaeal 16S rRNA genes. Mean methane production potential varied greatly between sludges (0.002-79 mL CH4 g-1 TS). Among primary sludges, kraft mill sludge produced more methane than other mill types. For these other mills, biosludge produced more methane than primary sludge, which had evidence of methanogen inhibition. Microbial communities and diversity were influenced by the initial community composition, and high methane production was only seen in sludges with high diversity. A number of sludges innately produced substantial methane and may be targets for further modelling and larger scale testing of anaerobic digestion., (© The Author(s) 2022. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2022
- Full Text
- View/download PDF
22. Native plants facilitate vegetation succession on amended and unamended mine tailings.
- Author
-
Munford KE, Asemaninejad A, Basiliko N, Mykytczuk NCS, Glasauer S, McGarry S, and Watmough SA
- Subjects
- Biodegradation, Environmental, Metals, Nitrogen, Plants, Retrospective Studies, Soil, Soil Pollutants analysis
- Abstract
Facilitating the establishment of native pioneer plant species on mine tailings with inherent metal and/or acid tolerance is important to speed up natural succession at minimal cost, especially in remote areas where phytoremediation can be labor intensive. We investigated vegetation community dynamics after ∼48 years of succession along two legacy Ni-Cu mine tailings and waste rock deposits in the Sudbury Basin, Ontario, Canada with and without various site amendments (i.e. liming and fertilization) and planting. Metal/acid tolerant pioneer plants ( Betula papyrifera, Populus tremuloides, Pohlia nutans ) appeared to facilitate the establishment of less tolerant species. Conifers and nitrogen-fixers less tolerant to site conditions were planted at the fully amended (limed, fertilized, planted) mine tailings site in the 1970s, but conifers were not propagating at the site or facilitating understory succession. The planted nitrogen-fixing leguminous species Lotus corniculatus was, however, associated with increased diversity. These findings have implications for long-term reclamation strategies in acidic mine waste deposits utilizing native species, as primary colonizing tree species are only recently emerging as candidates for phytoremediation. Novelty statement The potential for native species to act as facilitators for vegetation colonization has rarely been investigated on tailings, despite wide use in remediation of less toxic sites. This study provides a retrospective of over 40 years of plant growth following initial treatment of toxic tailings. We observed that regardless of tailings geochemical conditions, acid/metal tolerant pioneer plants were facilitating ecological succession on acidic Ni-Cu mine tailings sites.
- Published
- 2022
- Full Text
- View/download PDF
23. Beyond the usual suspects: methanogenic communities in eastern North American peatlands are also influenced by nickel and copper concentrations.
- Author
-
Bear SE, Seward JD, Lamit LJ, Basiliko N, Moore T, Lilleskov E, Yavitt JB, Schadt CW, Smith DS, Mclaughlin J, Siljanen H, Mykytczuk N, Williams S, Roulet N, Harris L, Carson MA, Watmough S, and Bräuer SL
- Subjects
- Carbon, Ecosystem, Methane metabolism, North America, Phylogeny, Soil chemistry, Soil Microbiology, Archaea classification, Archaea genetics, Archaea metabolism, Copper toxicity, Microbiota drug effects, Nickel toxicity
- Abstract
Peatlands both accumulate carbon and release methane, but their broad range in environmental conditions means that the diversity of microorganisms responsible for carbon cycling is still uncertain. Here, we describe a community analysis of methanogenic archaea responsible for methane production in 17 peatlands from 36 to 53 N latitude across the eastern half of North America, including three metal-contaminated sites. Methanogenic community structure was analysed through Illumina amplicon sequencing of the mcrA gene. Whether metal-contaminated sites were included or not, metal concentrations in peat were a primary driver of methanogenic community composition, particularly nickel, a trace element required in the F430 cofactor in methyl-coenzyme M reductase that is also toxic at high concentrations. Copper was also a strong predictor, likely due to inhibition at toxic levels and/or to cooccurrence with nickel, since copper enzymes are not known to be present in anaerobic archaea. The methanogenic groups Methanocellales and Methanosarcinales were prevalent in peatlands with low nickel concentrations, while Methanomicrobiales and Methanomassiliicoccales were abundant in peatlands with higher nickel concentrations. Results suggest that peat-associated trace metals are predictors of methanogenic communities in peatlands., (© The Author(s) 2021. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2021
- Full Text
- View/download PDF
24. Temperature, moisture and freeze-thaw controls on CO 2 production in soil incubations from northern peatlands.
- Author
-
Byun E, Rezanezhad F, Fairbairn L, Slowinski S, Basiliko N, Price JS, Quinton WL, Roy-Léveillée P, Webster K, and Van Cappellen P
- Abstract
Peat accumulation in high latitude wetlands represents a natural long-term carbon sink, resulting from the cumulative excess of growing season net ecosystem production over non-growing season (NGS) net mineralization in soils. With high latitudes experiencing warming at a faster pace than the global average, especially during the NGS, a major concern is that enhanced mineralization of soil organic carbon will steadily increase CO
2 emissions from northern peatlands. In this study, we conducted laboratory incubations with soils from boreal and temperate peatlands across Canada. Peat soils were pretreated for different soil moisture levels, and CO2 production rates were measured at 12 sequential temperatures, covering a range from - 10 to + 35 °C including one freeze-thaw event. On average, the CO2 production rates in the boreal peat samples increased more sharply with temperature than in the temperate peat samples. For same temperature, optimum soil moisture levels for CO2 production were higher in the peat samples from more flooded sites. However, standard reaction kinetics (e.g., Q10 temperature coefficient and Arrhenius equation) failed to account for the apparent lack of temperature dependence of CO2 production rates measured below 0 °C, and a sudden increase after a freezing event. Thus, we caution against using the simple kinetic expressions to represent the CO2 emissions from northern peatlands, especially regarding the long NGS period with multiple soil freeze and thaw events., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
25. Blended municipal compost and biosolids materials for mine reclamation: Long-term field studies to explore metal mobility, soil fertility and microbial communities.
- Author
-
Asemaninejad A, Langley S, Mackinnon T, Spiers G, Beckett P, Mykytczuk N, and Basiliko N
- Subjects
- Biosolids, Ontario, Soil, Composting, Microbiota, Soil Pollutants analysis
- Abstract
Application of stable soil amendments is often the key to successful phytostabilization and rehabilitation of mine tailings, and microbial guilds are primary drivers of many geochemical processes promoted by these amendments. Field studies were set up at a tailings management area near Sudbury, Ontario to examine performance of blends of lime stabilized municipal biosolids and compost at nine different rates over thick (1 m) municipal compost covers planted with agricultural crops. Based on biogeochemical variability of the substrates four and ten years after application of the initial compost cover, the experimental plots could be classified into three categories: "Low" rate (0-100 t ha
-1 biosolids), "Medium" rate (200-800 t ha-1 ), and "High" rate (1600-3200 t ha-1 ) treatments. The addition of biosolids materials to the thick compost cover at rates higher than 100 t ha-1 significantly reduced C:N ratio of the substrates, available phosphorus, and some of the nutrient cations, while notably increasing inorganic carbon and the potential solubility of Ni and Cu. This suggests that increasing biosolids application rates may not equivalently ameliorate soil quality and geochemical stability. Correspondingly, microbial communities were altered by biosolids additions, further intensifying the negative impacts of biosolids on long-term efficiency of the initial compost cover. Abundance of cellulose, hemicellulose, and lignocellulose decomposers (as key drivers of mineralization and humification) was significantly reduced by "Medium" and "High" rate treatments. Most DNA sequences with high affinity to denitrifiers were detected in "High" rate treatments where geochemical conditions were optimal for higher microbial denitrification activities. These findings have implications for improving the long-term efficiency of reclamation and environmental management programs in mine tailings of northern temperate climates., Competing Interests: Declaration of competing interest None., (Crown Copyright © 2020. Published by Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
26. Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH.
- Author
-
Desjardins SM, Laamanen CA, Basiliko N, and Scott JA
- Subjects
- Acclimatization, Biomass, Carbon Dioxide, Gases, Hydrogen-Ion Concentration, Chlorophyta, Microalgae
- Abstract
For mass culture of photosynthetic green microalgae, industrial flue gases can represent a low-cost resource of CO
2 . However, flue gases are often avoided, because they often also contain high levels of SO2 and/or NO2 , which cause significant acidification of media to below pH 3 due to production of sulfuric and nitric acid. This creates an unsuitable environment for the neutrophilic microalgae commonly used in large-scale commercial production. To address this issue, we have looked at selecting acid-tolerant microalgae via growth at pH 2.5 carried out with samples bioprospected from an active smelter site. Of the eight wild samples collected, one consisting mainly of Coccomyxa sp. grew at pH 2.5 and achieved a density of 640 mg L-1 . Furthermore, three previously bioprospected green microalgae from acidic waters (pH 3-4.5) near abandoned mine sites were also re-acclimated down to their in-situ pH environment after approximately 4 years spent at neutral pH. Of those three, an axenic culture of Coccomyxa sp. was the most successful at re-acclimating and achieved the highest density of 293.1 mg L-1 and maximum daily productivity of 38.8 mg L-1 day-1 at pH 3. Re-acclimation of acid-tolerant species is, therefore, achievable when directly placed at their original pH, but gradual reduction in pH is recommended to give the cells time to acclimate.- Published
- 2021
- Full Text
- View/download PDF
27. Methanogenic archaea in peatlands.
- Author
-
L Bräuer S, Basiliko N, M P Siljanen H, and H Zinder S
- Subjects
- Methane metabolism, Microbiota physiology, Archaea classification, Soil, Soil Microbiology, Wetlands
- Abstract
Methane emission feedbacks in wetlands are predicted to influence global climate under climate change and other anthropogenic stressors. Herein, we review the taxonomy and physiological ecology of the microorganisms responsible for methane production in peatlands. Common in peat soils are five of the eight described orders of methanogens spanning three phyla (Euryarchaeota, Halobacterota and Thermoplasmatota). The phylogenetic affiliation of sequences found in peat suggest that members of the thus-far-uncultivated group Candidatus Bathyarchaeota (representing a fourth phylum) may be involved in methane cycling, either anaerobic oxidation of methane and/or methanogenesis, as at least a few organisms within this group contain the essential gene, mcrA, according to metagenomic data. Methanogens in peatlands are notoriously challenging to enrich and isolate; thus, much remains unknown about their physiology and how methanogen communities will respond to environmental changes. Consistent patterns of changes in methanogen communities have been reported across studies in permafrost peatland thaw where the resulting degraded feature is thermokarst. However much remains to be understood regarding methanogen community feedbacks to altered hydrology and warming in other contexts, enhanced atmospheric pollution (N, S and metals) loading and direct anthropogenic disturbances to peatlands like drainage, horticultural peat extraction, forestry and agriculture, as well as post-disturbance reclamation., (© The Author(s) 2020. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2020
- Full Text
- View/download PDF
28. Peatland Microbial Community Composition Is Driven by a Natural Climate Gradient.
- Author
-
Seward J, Carson MA, Lamit LJ, Basiliko N, Yavitt JB, Lilleskov E, Schadt CW, Smith DS, Mclaughlin J, Mykytczuk N, Willims-Johnson S, Roulet N, Moore T, Harris L, and Bräuer S
- Subjects
- Ontario, Soil Microbiology, United States, Archaea isolation & purification, Bacteria isolation & purification, Climate, Microbiota, Wetlands
- Abstract
Peatlands are important players in climate change-biosphere feedbacks via long-term net carbon (C) accumulation in soil organic matter and as potential net C sources including the potent greenhouse gas methane (CH
4 ). Interactions of climate, site-hydrology, plant community, and groundwater chemical factors influence peatland development and functioning, including C dioxide (CO2 ) and CH4 fluxes, but the role of microbial community composition is not well understood. To assess microbial functional and taxonomic dissimilarities, we used high throughput sequencing of the small subunit ribosomal DNA (SSU rDNA) to determine bacterial and archaeal community composition in soils from twenty North American peatlands. Targeted DNA metabarcoding showed that although Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla on average, intermediate and rich fens hosted greater diversity and taxonomic richness, as well as an array of candidate phyla when compared with acidic and nutrient-poor poor fens and bogs. Moreover, pH was revealed to be the strongest predictor of microbial community structure across sites. Predictive metagenome content (PICRUSt) showed increases in specific genes, such as purine/pyrimidine and amino-acid metabolism in mid-latitude peatlands from 38 to 45° N, suggesting a shift toward utilization of microbial biomass over utilization of initial plant biomass in these microbial communities. Overall, there appears to be noticeable differences in community structure between peatland classes, as well as differences in microbial metabolic activity between latitudes. These findings are in line with a predicted increase in the decomposition and accelerated C turnover, and suggest that peatlands north of 37° latitude may be particularly vulnerable to climate change.- Published
- 2020
- Full Text
- View/download PDF
29. Edaphic factors influencing vegetation colonization and encroachment on arsenical gold mine tailings near Sudbury, Ontario.
- Author
-
Munford KE, Watmough SA, Rivest M, Poulain A, Basiliko N, and Mykytczuk NCS
- Subjects
- Ecosystem, Gold, Ontario, Soil, Arsenic, Arsenicals
- Abstract
Mine tailings are found worldwide and can have significant impacts on ecosystem and human health. In this study, natural vegetation patterns on arsenical (As) gold (Au) mine tailings located in Sudbury, Ontario were assessed using transects located at the edge of the tailings and on the tailings. Vegetation communities were significantly different between the edge and open tailings areas of the site. Arsenic concentrations in both areas were extremely variable (from 285-17,567 mg/kg) but were not significantly correlated with vegetation diversity at the site. Nutrients (carbon (C), phosphorus (P)) and organic matter concentrations were associated with higher diversity and with the presence of climax vegetation on the tailings, but there were no significant relationships between tailings chemistry and vegetation indices on the edge. Encroachment onto the tailings from the edge occurred in conventional succession patterns, with a clear gradient from grasses (Agrostis gigantea) to trees such as Picea glauca. On the tailings, a nucleation pattern was visible, distinct from conventional succession. Trees and shrubs such as Betula papyrifera and Diervilla lonicera were associated with higher diversity and higher nutrient concentrations in the underlying tailings, whereas grasses such as A. gigantea were not. We concluded that at all areas of the site, vegetation - particularly trees - was facilitating amelioration of the underlying tailings. Despite high concentrations of As, nutrients appeared to have a greater influence than metals on vegetation diversity., Competing Interests: Declaration of interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
30. Lake characteristics influence how methanogens in littoral sediments respond to terrestrial litter inputs.
- Author
-
Yakimovich KM, Orland C, Emilson EJS, Tanentzap AJ, Basiliko N, and Mykytczuk NCS
- Subjects
- Canada, China, Geologic Sediments, Atmosphere, Lakes
- Abstract
Shallow lake sediments harbor methanogen communities that are responsible for large amounts of CH
4 flux to the atmosphere. These communities play a major role in degrading in-fluxed terrestrial organic matter (t-OM)-much of which settles in shallow near-shore sediments. Little work has examined how sediment methanogens are affected by the quantity and quality of t-OM, and the physicochemical factors that shape their community. Here, we filled mesocosms with artificial lake sediments amended with different ratios and concentrations of coniferous and deciduous tree litter. We installed them in three boreal lakes near Sudbury, Canada that varied in trophic status and water clarity. We found that higher endogenous nutrient concentrations led to greater CH4 production when sediment solar irradiance was similar, but high irradiance of sediments also led to higher CH4 concentrations regardless of nutrient concentrations, possibly due to photooxidation of t-OM. Sediments with t-OM had overall higher CH4 concentrations than controls that had no t-OM, but there were no significant differences in CH4 concentrations with different t-OM compositions or increasing concentrations over 25%. Differences among lakes also explained variation in methanogen community structure, whereas t-OM treatments did not. Therefore, lake characteristics are important modulators of methanogen communities fueled by t-OM.- Published
- 2020
- Full Text
- View/download PDF
31. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators.
- Author
-
Porter TM, Morris DM, Basiliko N, Hajibabaei M, Doucet D, Bowman S, Emilson EJS, Emilson CE, Chartrand D, Wainio-Keizer K, Séguin A, and Venier L
- Subjects
- Animals, DNA genetics, DNA isolation & purification, Forests, Sequence Analysis, DNA methods, Soil, Arthropods genetics, Biodiversity, DNA Barcoding, Taxonomic methods, Genetic Variation genetics
- Abstract
Terrestrial arthropod fauna have been suggested as a key indicator of ecological integrity in forest systems. Because phenotypic identification is expert-limited, a shift towards DNA metabarcoding could improve scalability and democratize the use of forest floor arthropods for biomonitoring applications. The objective of this study was to establish the level of field sampling and DNA extraction replication needed for arthropod biodiversity assessments from soil. Processing 15 individually collected soil samples recovered significantly higher median richness (488-614 sequence variants) than pooling the same number of samples (165-191 sequence variants) prior to DNA extraction, and we found no significant richness differences when using 1 or 3 pooled DNA extractions. Beta diversity was robust to changes in methodological regimes. Though our ability to identify taxa to species rank was limited, we were able to use arthropod COI metabarcodes from forest soil to assess richness, distinguish among sites, and recover site indicators based on unnamed exact sequence variants. Our results highlight the need to continue DNA barcoding local taxa during COI metabarcoding studies to help build reference databases. All together, these sampling considerations support the use of soil arthropod COI metabarcoding as a scalable method for biomonitoring.
- Published
- 2019
- Full Text
- View/download PDF
32. Enrichment of peat yields novel methanogens: approaches for obtaining uncultured organisms in the age of rapid sequencing.
- Author
-
Carson MA, Bräuer S, and Basiliko N
- Subjects
- Ampicillin pharmacology, Bacteria genetics, Bacteria isolation & purification, Euryarchaeota genetics, Euryarchaeota isolation & purification, Phylogeny, RNA, Ribosomal, 16S genetics, Temperature, Bacteria metabolism, Euryarchaeota metabolism, Methane biosynthesis, Soil chemistry, Soil Microbiology
- Abstract
Methanogens are among the oldest forms of life on Earth and are detectable in a wide range of environments, but our knowledge of their overall diversity and functioning is limited. Peatlands in particular host a broad range of methanogens that contribute large amounts of methane to the atmosphere, but are largely under-represented in pure cultures. Here, we anaerobically enriched peat with common growth substrates, supplements and antibiotics to identifying novel methanogen sequences and potential growth conditions. Over 3 years, we obtained 28 new mcrA sequences from taxa that have remained previously uncultured and undescribed beyond distantly related clones or sequences detected in environmental samples. Evidence suggests that the novel methanogens, representing five of the seven known orders, were capable of growing on H2 as well as acetate and at temperatures ranging from 6 to ca. 22°C. Methods involving the use of ampicillin proved useful, although obtaining high methane production in the absence of H2 was difficult. Our results also indicate that many methanogens may rely on bacterial symbionts (commonly Clostridium spp.). Such enrichment approaches represent a useful intermediary between maker-gene detection and isolation, allowing us to broaden our understanding of methanogen physiological ecology while potentially providing valuable sequence data.
- Published
- 2019
- Full Text
- View/download PDF
33. Microbiome functioning depends on individual and interactive effects of the environment and community structure.
- Author
-
Orland C, Emilson EJS, Basiliko N, Mykytczuk NCS, Gunn JM, and Tanentzap AJ
- Subjects
- Bacteria genetics, Bacteria metabolism, Carbon Dioxide metabolism, Genetic Variation, Lakes microbiology, Microbiota, Models, Biological, Bacteria classification, Biodiversity, Ecosystem, Environmental Microbiology
- Abstract
How ecosystem functioning changes with microbial communities remains an open question in natural ecosystems. Both present-day environmental conditions and historical events, such as past differences in dispersal, can have a greater influence over ecosystem function than the diversity or abundance of both taxa and genes. Here, we estimated how individual and interactive effects of microbial community structure defined by diversity and abundance, present-day environmental conditions, and an indicator of historical legacies influenced ecosystem functioning in lake sediments. We studied sediments because they have strong gradients in all three of these ecosystem properties and deliver important functions worldwide. By characterizing bacterial community composition and functional traits at eight sites fed by discrete and contrasting catchments, we found that taxonomic diversity and the normalized abundance of oxidase-encoding genes explained as much variation in CO
2 production as present-day gradients of pH and organic matter quantity and quality. Functional gene diversity was not linked to CO2 production rates. Surprisingly, the effects of taxonomic diversity and normalized oxidase abundance in the model predicting CO2 production were attributable to site-level differences in bacterial communities unrelated to the present-day environment, suggesting that colonization history rather than habitat-based filtering indirectly influenced ecosystem functioning. Our findings add to limited evidence that biodiversity and gene abundance explain patterns of microbiome functioning in nature. Yet we highlight among the first time how these relationships depend directly on present-day environmental conditions and indirectly on historical legacies, and so need to be contextualized with these other ecosystem properties.- Published
- 2019
- Full Text
- View/download PDF
34. Blended pulp mill, forest humus and mine residual material Technosols for mine reclamation: A growth-chamber study to explore the role of physiochemical properties of substrates and microbial inoculation on plant growth.
- Author
-
Asemaninejad A, Arteaga J, Spiers G, Beckett P, McGarry S, Mykytczuk N, and Basiliko N
- Subjects
- Agricultural Inoculants chemistry, Bacteria, Biomass, Forests, Plant Development, Plants, Sewage analysis, Sewage chemistry, Soil, Agricultural Inoculants metabolism, Copper chemistry, Metals chemistry, Soil Pollutants analysis
- Abstract
A growth chamber trial was conducted to investigate the effects of blends of pulp and paper mill residuals and forest humus on soil properties, microbial communities and germination rate and biomass production of annual ryegrass (Lolium multiflorum) in both acid-producing and neutral to mildly alkaline mine tailings in a mine reclamation context. The organic residual amendments improved the nutritional status of the tailings substrates, and increased pH in acid-generating tailings, leading to higher germination rates and improved plant growth. A trace addition (<0.02% of sludge by dry weight) of natural forest floor material as a microbial inoculum to the sludge could increase plant biomass up to four-fold. The effects of sludge application on bioavailability of metals were variable, with the concentration of soluble copper (Cu) and nickel (Ni) increasing in some of the substrates following organic amendments. Addition of paper mill residuals to mine tailings modified the microbial communities observed in the oligotrophic tailings with the majority of DNA sequences in the sludge amended substrates being found to be closely related to heterotrophic bacterial species rather than the chemolithotrophic communities that dominate tailings environments., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
35. Plant Litter Type Dictates Microbial Communities Responsible for Greenhouse Gas Production in Amended Lake Sediments.
- Author
-
Yakimovich KM, Emilson EJS, Carson MA, Tanentzap AJ, Basiliko N, and Mykytczuk NCS
- Abstract
The microbial communities of lake sediments play key roles in carbon cycling, linking lakes to their surrounding landscapes and to the global climate system as incubators of terrestrial organic matter and emitters of greenhouse gasses, respectively. Here, we amended lake sediments with three different plant leaf litters: a coniferous forest mix, deciduous forest mix, cattails ( Typha latifolia ) and then examined the bacterial, fungal and methanogen community profiles and abundances. Polyphenols were found to correlate with changes in the bacterial, methanogen, and fungal communities; most notably dominance of fungi over bacteria as polyphenol levels increased with higher abundance of the white rot fungi Phlebia spp. Additionally, we saw a shift in the dominant orders of fermentative bacteria with increasing polyphenol levels, and differences in the dominant methanogen groups, with high CH
4 production being more strongly associated with generalist groups of methanogens found at lower polyphenol levels. Our present study provides insights into and basis for future study on how shifting upland and wetland plant communities may influence anaerobic microbial communities and processes in lake sediments, and may alter the fate of terrestrial carbon entering inland waters.- Published
- 2018
- Full Text
- View/download PDF
36. A role for methanogens and methane in the regulation of GLP-1.
- Author
-
Laverdure R, Mezouari A, Carson MA, Basiliko N, and Gagnon J
- Abstract
Introduction: The gastrointestinal (GI) microbiome has emerged as a potential regulator of metabolism. However, the precise mechanisms of how microorganisms may influence physiology remain largely unknown. Interestingly, GI microorganisms, including methanogens, are localized within the same regions as the glucagon-like peptide-1 (GLP-1) secreting L cells. GLP-1 plays key roles appetite and glucose regulation. Furthermore, both methane and GLP-1 levels are altered in obese humans with metabolic disease. We predict that high-fat diet-induced obesity alters the abundance of GI methanogens and that methane may play a role in the GLP-1 secretory response from the L cell., Methods: To demonstrate this, GLP-1 secretion response and faecal methanogens were examined in mice given a high-fat diet for 14 weeks. In addition, the direct effect of methane on GLP-1 secretion was assessed in two L-cell models (NCI-H716 and GLUTag)., Results: High-fat diet caused a significant increase in both GLP-1 secretion and faecal methanogen content. There was a direct correlation between GLP-1 secretion response and faecal methanogen levels. In L cells, methane stimulated GLP-1 secretion and enhanced intracellular cAMP content., Conclusion: These results indicate that alterations in the methanogen communities occurring in obesity may play a vital role in directly enhancing GLP-1 secretion, and that methane can directly stimulate the secretion of GLP-1.
- Published
- 2017
- Full Text
- View/download PDF
37. Approaches to R education in Canadian universities.
- Author
-
Carson MA and Basiliko N
- Abstract
Introduction: R language is a powerful tool used in a wide array of research disciplines and owes a large amount of its success to its open source and adaptable nature. The popularity of R has grown rapidly over the past two decades and the number of users and packages is increasing at a near exponential rate. This rapid growth has prompted a number of formal and informal online and text resources, the volume of which is beginning to present challenges to novices learning R. Students are often first exposed to R in upper division undergraduate classes or during their graduate studies. The way R is presented likely has consequences for the fundamental understanding of the program and language itself; user comprehension of R may be better if learning the language itself followed by conducting analyses, compared to someone who is learning another subject (e.g. statistics) using R for the first time. Consequently, an understanding of the approaches to R education is critical. Methods: To establish how students are exposed to R, we used a survey to evaluate the current use in Canadian university courses, including the context in which R is presented and the types of uses of R in the classroom. Additionally, we looked at the reasons professors either do or don't use/teach R. Results: We found that R is used in a broad range of course disciplines beyond statistics (e.g. ecology) and just over one half of Canadian universities have at least one course that uses R. Discussion and Conclusions: Developing programming-literate students is of utmost importance and our hope is that this benchmark study will influence how post-secondary educators, as well as other programmers, approach R, specifically when developing educational and supplemental content in online, text, and package-specific formats aiding in student's comprehension of the R language., Competing Interests: NB is an active professor at a Canadian university and had the opportunity to participate in the survey. The authors do not feel his participation, or lack of participation, compete with the interest or conclusions of the study.
- Published
- 2016
- Full Text
- View/download PDF
38. A novel isolate and widespread abundance of the candidate alphaproteobacterial order (Ellin 329), in southern Appalachian peatlands.
- Author
-
Harbison AB, Carson MA, Lamit LJ, Basiliko N, and Bräuer SL
- Subjects
- Alphaproteobacteria genetics, Alphaproteobacteria metabolism, Ecosystem, Genes, rRNA, Methane metabolism, Microbial Consortia, Phylogeny, Alphaproteobacteria classification, Alphaproteobacteria isolation & purification, Soil Microbiology
- Abstract
Peatlands of all latitudes play an integral role in global climate change by serving as a carbon sink and a primary source of atmospheric methane; however, the microbial ecology of mid-latitude peatlands is vastly understudied. Herein, next generation Illumina amplicon sequencing of small subunit rRNA genes was utilized to elucidate the microbial communities in three southern Appalachian peatlands. In contrast to northern peatlands, Proteobacteria dominated over Acidobacteria in all three sites. An average of 11 bacterial phyla was detected at relative abundance values >1%, with three candidate divisions (OP3, WS3 and NC10) represented, indicating high phylogenetic diversity. Physiological traits of isolates within the candidate alphaproteobacterial order, Ellin 329, obtained here and in previous studies indicate that bacteria of this order may be involved in hydrolysis of poly-, di- and monosaccharides. Community analyses indicate that Ellin 329 is the third most abundant order and is most abundant near the surface layers where plant litter decomposition should be primarily occurring. In sum, members of Ellin 329 likely play important roles in organic matter decomposition, in southern Appalachian peatlands and should be investigated further in other peatlands and ecosystem types., (© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2016
- Full Text
- View/download PDF
39. The microbiomes and metagenomes of forest biochars.
- Author
-
Noyce GL, Winsborough C, Fulthorpe R, and Basiliko N
- Subjects
- Acidobacteria genetics, Acidobacteria isolation & purification, Bacteria genetics, Bacteria isolation & purification, Betaproteobacteria genetics, Betaproteobacteria isolation & purification, Forests, Metagenome, Microbiota, Planctomycetales genetics, Planctomycetales isolation & purification, Bacteria classification, Charcoal analysis, Sequence Analysis, DNA methods, Soil Microbiology
- Abstract
Biochar particles have been hypothesized to provide unique microhabitats for a portion of the soil microbial community, but few studies have systematically compared biochar communities to bulk soil communities. Here, we used a combination of sequencing techniques to assess the taxonomic and functional characteristics of microbial communities in four-year-old biochar particles and in adjacent soils across three forest environments. Though effects varied between sites, the microbial community living in and around the biochar particles had significantly lower prokaryotic diversity and higher eukaryotic diversity than the surrounding soil. In particular, the biochar bacterial community had proportionally lower abundance of Acidobacteria, Planctomycetes, and β-Proteobacteria taxa, compared to the soil, while the eukaryotic biochar community had an 11% higher contribution of protists belonging to the Aveolata superphylum. Additionally, we were unable to detect a consistent biochar effect on the genetic functional potential of these microbial communities for the subset of the genetic data for which we were able to assign functions through MG-RAST. Overall, these results show that while biochar particles did select for a unique subset of the biota found in adjacent soils, effects on the microbial genetic functional potential appeared to be specific to contrasting forest soil environments.
- Published
- 2016
- Full Text
- View/download PDF
40. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?
- Author
-
Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J, Foulquier A, Yuste JC, Glanville HC, Jones DL, Angel R, Salminen J, Newton RJ, Bürgmann H, Ingram LJ, Hamer U, Siljanen HM, Peltoniemi K, Potthast K, Bañeras L, Hartmann M, Banerjee S, Yu RQ, Nogaro G, Richter A, Koranda M, Castle SC, Goberna M, Song B, Chatterjee A, Nunes OC, Lopes AR, Cao Y, Kaisermann A, Hallin S, Strickland MS, Garcia-Pausas J, Barba J, Kang H, Isobe K, Papaspyrou S, Pastorelli R, Lagomarsino A, Lindström ES, Basiliko N, and Nemergut DR
- Abstract
Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.
- Published
- 2016
- Full Text
- View/download PDF
41. The importance of plant genotype and contemporary evolution for terrestrial ecosystem processes.
- Author
-
Fitzpatrick CR, Agrawal AA, Basiliko N, Hastings AP, Isaac ME, Preston M, and Johnson MT
- Subjects
- Nitrogen chemistry, Oxygen Consumption, Seedlings growth & development, Seedlings metabolism, Soil chemistry, Biological Evolution, Ecosystem, Genotype, Oenothera biennis genetics
- Abstract
Plant genetic variation and evolutionary dynamics are predicted to impact ecosystem processes but these effects are poorly understood. Here we test the hypothesis that plant genotype and contemporary evolution influence the flux of energy and nutrients through soil, which then feedback to affect seedling performance in subsequent generations. We conducted a multiyear field evolution experiment using the native biennial plant Oenothera biennis. This experiment was coupled with experimental assays to address our hypothesis and quantify the relative importance of evolutionary and ecological factors on multiple ecosystem processes. Plant genotype, contemporary evolution, spatial variation, and herbivory affected ecosystem processes (e.g., leaf decay, soil respiration, seedling performance, N cycling), but their relative importance varied between specific ecosystem variables. Insect herbivory and evolution also contributed to a feedback that affected seedling biomass of O. biennis in the next generation. Our results show that heritable variation among plant genotypes can be an important factor affecting local ecosystem processes, and while effects of contemporary evolution were detectable and sometimes strong, they were often contingent on other ecological, factors.
- Published
- 2015
- Full Text
- View/download PDF
42. Bringing guest scientists to the university biology classroom via the web.
- Author
-
Basiliko N and Gupta V
- Subjects
- Canada, Education, Graduate, Humans, Biology education, Faculty, Internet, Research Personnel, Universities, Videoconferencing
- Abstract
This commentary describes an initiative to bring national and international guest scientists to undergraduate and introductory graduate classrooms via web videoconferencing to facilitate interesting and effective research-informed teaching. Interactions center around both journal articles authored by the guests that are in line with weekly course lecture topics and on learning about the nature of academia in other parts of the world. Some particularly interesting perspectives from guests have come about by connecting with a journal editor-in-chief, a textbook author and with a scientist who shared a recently rejected manuscript and peer reviews. Beyond allowing students a unique behind-the-scenes look into how research questions are asked and answered, this initiative helps overcome the limited nature of a single instructor's research area to better complement the comprehensive scope of university courses., (© FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
43. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog.
- Author
-
Larmola T, Bubier JL, Kobyljanec C, Basiliko N, Juutinen S, Humphreys E, Preston M, and Moore TR
- Subjects
- Ontario, Seasons, Wetlands, Carbon Dioxide metabolism, Carbon Sequestration, Ecosystem, Nitrogen metabolism, Phosphorus metabolism, Plants metabolism, Potassium metabolism
- Abstract
To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7-12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May-September 2011 using climate-controlled chambers. A substrate-induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20-30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N-only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate-induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2 . The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N-only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N-P/K colimited rather than N-limited. Negative effects of further N-only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat-forming Sphagnum., (© 2013 John Wiley & Sons Ltd.)
- Published
- 2013
- Full Text
- View/download PDF
44. Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type.
- Author
-
Gupta V, Smemo KA, Yavitt JB, Fowle D, Branfireun B, and Basiliko N
- Subjects
- Anaerobiosis, Oxidation-Reduction, Isotopes metabolism, Methane metabolism
- Abstract
Peatlands are an important source of the atmospheric greenhouse gas methane (CH4). Although CH4 cycling and fluxes have been quantified for many northern peatlands, imprecision in process-based approaches to predicting CH4 emissions suggests that our understanding of underlying processes is incomplete. Microbial anaerobic oxidation of CH4 (AOM) is an important CH4 sink in marine sediments, but AOM has only recently been identified in a few nonmarine systems. We used (13)C isotope tracers and followed the fate of (13)C into CO2 and peat in order to study the geographic extent, relative importance, and biogeochemistry of AOM in 15 North American peatlands spanning a ∼1500 km latitudinal transect that varied in hydrology, vegetation, and soil chemistry. For the first time, we demonstrate that AOM is a widespread and quantitatively important process across many peatland types and that anabolic microbial assimilation of CH4-C occurs. However, AOM rate is not predicted by CH4 production rates and the primary mechanism of C assimilation remains uncertain. AOM rates are higher in fen than bog sites, suggesting electron acceptor constraints on AOM. Nevertheless, AOM rates were not correlated with porewater ion concentrations or stimulated following additions of nitrate, sulfate, or ferric iron, suggesting that an unidentified electron acceptor(s) must drive AOM in peatlands. Globally, we estimate that AOM could consume a large proportion of CH4 produced annually (1.6-49 Tg) and thereby constrain emissions and greenhouse gas forcing.
- Published
- 2013
- Full Text
- View/download PDF
45. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands.
- Author
-
Basiliko N, Henry K, Gupta V, Moore TR, Driscoll BT, and Dunfield PF
- Abstract
Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought about by these land uses.
- Published
- 2013
- Full Text
- View/download PDF
46. Peatland microbial communities and decomposition processes in the james bay lowlands, Canada.
- Author
-
Preston MD, Smemo KA, McLaughlin JW, and Basiliko N
- Abstract
Northern peatlands are a large repository of atmospheric carbon due to an imbalance between primary production by plants and microbial decomposition. The James Bay Lowlands (JBL) of northern Ontario are a large peatland-complex but remain relatively unstudied. Climate change models predict the region will experience warmer and drier conditions, potentially altering plant community composition, and shifting the region from a long-term carbon sink to a source. We collected a peat core from two geographically separated (ca. 200 km) ombrotrophic peatlands (Victor and Kinoje Bogs) and one minerotrophic peatland (Victor Fen) located near Victor Bog within the JBL. We characterized (i) archaeal, bacterial, and fungal community structure with terminal restriction fragment length polymorphism of ribosomal DNA, (ii) estimated microbial activity using community level physiological profiling and extracellular enzymes activities, and (iii) the aeration and temperature dependence of carbon mineralization at three depths (0-10, 50-60, and 100-110 cm) from each site. Similar dominant microbial taxa were observed at all three peatlands despite differences in nutrient content and substrate quality. In contrast, we observed differences in basal respiration, enzyme activity, and the magnitude of substrate utilization, which were all generally higher at Victor Fen and similar between the two bogs. However, there was no preferential mineralization of carbon substrates between the bogs and fens. Microbial community composition did not correlate with measures of microbial activity but pH was a strong predictor of activity across all sites and depths. Increased peat temperature and aeration stimulated CO(2) production but this did not correlate with a change in enzyme activities. Potential microbial activity in the JBL appears to be influenced by the quality of the peat substrate and the presence of microbial inhibitors, which suggests the existing peat substrate will have a large influence on future JBL carbon dynamics.
- Published
- 2012
- Full Text
- View/download PDF
47. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP.
- Author
-
Gupta V, Smemo KA, Yavitt JB, and Basiliko N
- Subjects
- Alphaproteobacteria isolation & purification, Archaea classification, Archaea genetics, Archaea isolation & purification, DNA, Bacterial analysis, DNA, Bacterial genetics, Denaturing Gradient Gel Electrophoresis, Ecosystem, Gammaproteobacteria isolation & purification, Hydrogen-Ion Concentration, Molecular Sequence Data, New York, Oxidation-Reduction, Oxygenases analysis, Oxygenases genetics, Phylogeny, Polymerase Chain Reaction, RNA, Ribosomal, 16S analysis, RNA, Ribosomal, 16S genetics, Sequence Alignment, Sequence Analysis, DNA, Wetlands, Alphaproteobacteria classification, Alphaproteobacteria genetics, Gammaproteobacteria classification, Gammaproteobacteria genetics, Methane metabolism, Soil chemistry, Soil Microbiology
- Abstract
The active methanotroph community was investigated in two contrasting North American peatlands, a nutrient-rich sedge fen and nutrient-poor Sphagnum bog using in vitro incubations and (13)C-DNA stable-isotope probing (SIP) to measure methane (CH(4)) oxidation rates and label active microbes followed by fingerprinting and sequencing of bacterial and archaeal 16S rDNA and methane monooxygenase (pmoA and mmoX) genes. Rates of CH(4) oxidation were slightly, but significantly, faster in the bog and methanotrophs belonged to the class Alphaproteobacteria and were similar to other methanotrophs of the genera Methylocystis, Methylosinus, and Methylocapsa or Methylocella detected in, or isolated from, European bogs. The fen had a greater phylogenetic diversity of organisms that had assimilated (13)C, including methanotrophs from both the Alpha- and Gammaproteobacteria classes and other potentially non-methanotrophic organisms that were similar to bacteria detected in a UK and Finnish fen. Based on similarities between bacteria in our sites and those in Europe, including Russia, we conclude that site physicochemical characteristics rather than biogeography controlled the phylogenetic diversity of active methanotrophs and that differences in phylogenetic diversity between the bog and fen did not relate to measured CH(4) oxidation rates. A single crenarchaeon in the bog site appeared to be assimilating (13)C in 16S rDNA; however, its phylogenetic similarity to other CO(2)-utilizing archaea probably indicates that this organism is not directly involved in CH(4) oxidation in peat.
- Published
- 2012
- Full Text
- View/download PDF
48. Links between methanotroph community composition and CH oxidation in a pine forest soil.
- Author
-
Bengtson P, Basiliko N, Dumont MG, Hills M, Murrell JC, Roy R, and Grayston SJ
- Subjects
- Bacteria genetics, DNA, Bacterial genetics, Oxidation-Reduction, Phospholipids analysis, Pinus microbiology, Sequence Analysis, DNA, Bacteria metabolism, Methane metabolism, Soil analysis, Soil Microbiology, Trees microbiology
- Abstract
The main gap in our knowledge about what determines the rate of CH(4) oxidation in forest soils is the biology of the microorganisms involved, the identity of which remains unclear. In this study, we used stable-isotope probing (SIP) following (13)CH(4) incorporation into phospholipid fatty acids (PLFAs) and DNA/RNA, and sequencing of methane mono-oxygenase (pmoA) genes, to identify the influence of variation in community composition on CH(4) oxidation rates. The rates of (13)C incorporation into PLFAs differed between horizons, with low (13)C incorporation in the organic soil and relatively high (13)C incorporation into the two mineral horizons. The microbial community composition of the methanotrophs incorporating the (13)C label also differed between horizons, and statistical analyses suggested that the methanotroph community composition was a major cause of variation in CH(4) oxidation rates. Both PLFA and pmoA-based data indicated that CH(4) oxidizers in this soil belong to the uncultivated 'upland soil cluster alpha'. CH(4) oxidation potential exhibited the opposite pattern to (13)C incorporation, suggesting that CH(4) oxidation potential assays may correlate poorly with in situ oxidation rates. The DNA/RNA-SIP assay was not successful, most likely due to insufficient (13)C-incorporation into DNA/RNA. The limitations of the technique are briefly discussed.
- Published
- 2009
- Full Text
- View/download PDF
49. The fate of experimentally deposited nitrogen in mesocosms from two Canadian peatlands.
- Author
-
Blodau C, Basiliko N, Mayer B, and Moore TR
- Subjects
- Air Pollutants analysis, Canada, Environmental Monitoring methods, Nitrogen analysis, Organic Chemicals analysis, Organic Chemicals metabolism, Sphagnopsida chemistry, Water analysis, Water Pollutants analysis, Air Pollutants metabolism, Ecosystem, Nitrogen metabolism, Soil analysis, Sphagnopsida metabolism, Water Pollutants metabolism
- Abstract
In large regions of Europe and North America, peatlands have been exposed to elevated rates of atmospheric nitrogen (N) deposition. We investigated the fate of experimentally added N (NH(4)(15)NO3) at two different N loads (1.2 and 4.7 g N m(-2) yr(-1)) and water tables (1 and 32 cm) in intact cores from two peatlands, located in Central and Eastern Canada. The sites receive an estimated total N load of 0.6 g m(-2) a(-1) and 1.5 g m(-2) yr(-1), excluding nitrogen fixation. In all treatments, experimentally added nitrate (NO(3-)) was fully (96-99%) and ammonium (NH(4+)) mostly (81-97%) retained by the plant cover, mainly consisting of Sphagnum mosses, or in the unsaturated zone below. However, on average only 48% of the (15)N were recovered from the plant cover, and substantial amounts were found in depth layers of 2-6 cm (21-46%) and 8-12 cm (1.4-10.8%) below the moss surface. The amount of (15)N retained also significantly decreased with a lower water table from 56+/-9% to 40+/-10%. These findings document a substantial mobility of N, particularly during water table drawdown. Analysis of (15)N by a sequential diffusion procedure revealed a transfer of (15)N from NO(3-) into NH(4+) and dissolved organic N (DON), but the contents of (15)N in these pools accounted for less than 1% of the total N, natural background subtracted. The mass flux of dissolved (15)N into the peat was small compared to the total mass flux of (15)N. The accumulation of (15)N in the bulk peat must have been caused by a mechanism that was not investigated, possibly by transport of particulate organic N.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.