FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas Gerais O presente estudo avaliou a produção de coquetéis lignocelulolíticos por fermentação em estado sólido (FES), utilizando bagaço de cana-de-açúcar e farelo de trigo como substrato e as linhagens fúngicas Aspergillus niger SCBM1 (Ni), Aspergillus fumigatus SCBM6 (Fu), Ganoderma lucidum 601 (Ga), Trametes versicolor 561 (Tr) e Pleurotus ostreatus PLO6 (Pl), em monoculturas ou em consórcio. Os extratos brutos produzidos foram avaliados em hidrólises de bagaço de cana-de-açúcar pré-tratado por auto-hidrólise (AH) e auto-hidrólise seguida de pré-tratamento alcalino (NaOH) (AH-Soda). Os coquetéis enzimáticos que apresentaram os melhores rendimentos em açúcares fermentescíveis foram selecionados e avaliados em novas hidrólises com altas cargas de sólidos e com adição de surfactante Triton X-100. Por último, realizou-se a fermentação alcoólica dos hidrolisados contendo as maiores concentrações de glicose. Nas FES realizadas com as linhagens isoladas, F1 (A. niger SCBM1 como inóculo - extrato Ni) foi a que mais se destacou na produção de enzimas, com atividades máximas para endoglucanase (82,70 U/g), exoglucanase (80,48 U/g), β-xilosidase (145,01 U/g) e manganês peroxidase (3,38 U/g). Para as FES em cocultivos, os extratos produzidos por consórcios entre Ni+Fu+Pl (F9), Ni+Tr+Pl (F6) e Ni+Ga+Pl (F10) apresentaram as maiores produções de celulases e hemicelulases, principalmente β-glicosidase (104,70, 171,09 e 106,10 U/g), β-xilosidase (89,72, 139,99 e 121,02 U/g) e xilanase (2582,38, 2267,96 e 1697,74 U/g), respectivamente. O extrato bruto produzido a partir do consórcio entre Basidiomicetos (Tr+Ga+Pl- F13) foi o mais eficiente na produção de lacase (25,27 U/g). Após as hidrólises, as maiores concentrações de glicose foram obtidas utilizando o extrato Ni (F1) nos hidrolisados de bagaço pré-tratado por AH e AH-Soda (10,78 e 10,32 g/L), extrato Fu+Ga+Pl (F11) com 9,76 (AH) e 10,60 g/L (AH-Soda) e extrato Ni+Ga+Pl (F10) com 11,92 g/L no hidrolisado de bagaço AH-Soda. Para xilose, a maior liberação foi obtida no hidrolisado F8 que utilizou o extrato Ni+Fu+Tr em bagaço AH (5,08 g/L). Após a fermentação alcóolica, uma conversão de 60,80% (em relação ao máximo teórico) foi alcançada em F1 (fermentação do hidrolisado Ni), com uma produção de 3,206 g/L de etanol e de 58,15% em F6 (3,084 g/L). Nas hidrólises realizadas com alto teor de carga de sólidos, os resultados obtidos demostraram que a concentração de açúcares redutores totais (ART) aumentou de 15,54 para 44,84 g/L no hidrolisado Ni (F1), quando a porcentagem de bagaço AH aumentou de 10 para 35%. No hidrolisado Ni+Tr+Pl (F6), a concentração de ART aumentou de 11,38 para 31,77 g/L nas mesmas condições. A adição de surfactante não influenciou significativamente no aumento no rendimento em ART no hidrolisado F1 (45,16 g/L). Já no hidrolisado F6, a concentração de ART aumentou de 30,94 para 48,16 g/L, sugerindo que para este extrato, a utilização do surfactante favoreceu a hidrólise enzimática. A fermentação do hidrolisado F6 com surfactante produziu 1,66 g/L de etanol, com conversão de 88,03 % em relação ao máximo teórico. Os resultados obtidos são promissores e incentivam estudos adicionais utilizando os extratos enzimáticos produzidos por consórcio fúngico em novas condições de hidrólise a fim de potencializar a produção de açúcares fermentescíveis e de etanol de segunda geração (etanol 2G). The present study evaluated the production of lignocellulolytic cocktails by solid-state fermentation (SSF), using sugarcane bagasse and wheat bran as substrates and the fungal strains Aspergillus niger SCBM1 (Ni), Aspergillus fumigatus SCBM6 (Fu), Ganoderma lucidum 601 (Ga), Trametes versicolor 561 (Tr) and Pleurotus ostreatus PLO6 (Pl) in monocultures and/or in consortia. The crude extracts produced were evaluated in the hydrolysis of sugarcane bagasse pretreated by autohydrolysis (AH) and by autohydrolysis followed by alkaline pretreatment (NaOH) (AH-Soda). The enzymatic cocktails that presented the best yields in terms of fermentable sugars were selected and evaluated in new hydrolyses experiments with high loads of solids and with addition of the surfactant Triton X-100. At last, alcoholic fermentations of the hydrolysates containing the highest glucose concentrations were carried out. In the SSF performed with isolated strains, the fermentation that used A. niger SCBM1 as inoculum (Ni – F1 extract) was the most outstanding in the production of enzymes, with maximum activities for endoglicanae (82.70 U/g), exoglicanae (80.48 U/g), β-xylosidase (145.01 U/g) and manganese peroxidase (3.38 U/g). For the SSF performed in co-culture of fungal strains, the extracts produced by consortia between Ni+Fu+Pl (F9), Ni+Tr+Pl (F6) and Ni+Ga+Pl (F10) presented the highest productions of cellulases and hemicellulases, mainly β-glucosidase (104.70, 171.09 and 106.10 U/g), β-xylosidase (89.72, 139.99 and 121.02 U/g) and xylanase (2582.38, 2267.96 and 1697.74 U/g), respectively. The crude cocktail produced from the consortium between Basidiomycetes (Tr+Ga+Pl) was the most efficient for laccase production (25.27 U/g). After the hydrolyses, the highest glucose concentrations were obtained in the hydrolysates of sugarcane bagasse pretreated by AH and AH-Soda using Ni extract (F1) with 10.78 and 10,32 g/L, Fu+Ga+Pl extract (F11) with 9.76 g/L (AH) and 10.60 g/L (AH-Soda) and Ni+Ga+Pl extract (F10) with 11.92 g/L in AH-Soda hydrolysate. For xylose, the highest release was obtained after F8 hydrolysis that used Ni+Fu+Tr extract in sugarcane bagasse pretreatment by AH (5.08 g/L). After alcoholic fermentation, 60.80 % (in relation to the theoretical maximum) of conversion was achieved in F1 (Ni hydrolysate), with a production of 3,20 g/L of ethanol and 58,15 % in F6 (3,08 g/L) of ethanol. In hydrolysis performed with high load of solids, the results obtained showed that the concentrations of total reducing sugars (TRS) increased from 15.54 to 44.84 g/L in Ni hydrolysate (F1), when the percentage of bagasse pretreatment by AH increased from 10 to 35 % . In the Ni+Tr+Pl (F6) hydrolysate, TRS concentration increased from 11.38 to 31.77 g/L under the same conditions. The addition of surfactant did not significantly influenced concentration of TRS in Ni hydrolysate (45.16 g/L). In the F6 hydrolysis, the TRS concentration increased from 30.94 to 48.16 g/L, suggesting that for this extract, the use of surfactant favored the enzymatic action. The fermentation of F6 hydrolysate produced 1.66 g/L of ethanol, with 88.03 % of conversion in relation to the theoretical maximum. The obtained results are promising and encourage additional studies using enzymatic extracts produced by fungal consortium in new hydrolysis conditions in order to enhance the production of fermentable sugars and second generation ethanol (2G ethanol). Tese (Doutorado)