125 results on '"Bartoli, Claudia"'
Search Results
2. Agroecological Protection to Support Plant Health: Where the Microbiota Fits In
- Author
-
Bartoli, Claudia, Aubertot, Jean-Noël, Litrico, Isabelle, Mougel, Christophe, Fauvergue, Xavier, editor, Rusch, Adrien, editor, Barret, Matthieu, editor, Bardin, Marc, editor, Jacquin-Joly, Emmanuelle, editor, Malausa, Thibaut, editor, and Lannou, Christian, editor
- Published
- 2022
- Full Text
- View/download PDF
3. Combined cytogenetic and molecular methods for taxonomic verification and description of Brassica populations deriving from different origins
- Author
-
Falentin, Cyril, primary, Hadj-Arab, Houria, additional, Aissiou, Fella, additional, Bartoli, Claudia, additional, Bazan, Giuseppe, additional, Boudet, Matéo, additional, Bousset-Vaslin, Lydia, additional, Chwikhi, Marwa, additional, Coriton, Olivier, additional, Deniot, Gwénaelle, additional, Ferreira de Carvalho, Julie, additional, Gay, Laurène, additional, Geraci, Anna, additional, Glory, Pascal, additional, Huteau, Virginie, additional, Ilahy, Riadh, additional, Ilardi, Vincenzo, additional, Jarillo, José A., additional, Meglic, Vladimir, additional, Oddo, Elisabetta, additional, Pernas, Monica, additional, Pineiro, Manuel, additional, Pipan, Barbara, additional, Rhim, Thouraya, additional, Richer, Vincent, additional, Rizza, Fulvia, additional, Ronfort, Joelle, additional, Rousseau-Gueutin, Mathieu, additional, Schicchi, Rosario, additional, Sinkovic, Lovro, additional, Taburel, Maryse, additional, Terzi, Valeria, additional, Théréné, Sylvain, additional, Tiret, Mathieu, additional, Tlili, Imen, additional, Wagner, Marie-Hélène, additional, Werner Badeck, Franz, additional, and Chèvre, Anne-Marie, additional
- Published
- 2024
- Full Text
- View/download PDF
4. Plant genetic bases explaining microbiota diversity shed light into a novel holobiont generalist gene theory
- Author
-
Maillet, Loeiz, primary, Norest, Manon, additional, Kautsky, Adam, additional, Geraci, Anna, additional, Oddo, Elisabetta, additional, Troia, Angelo, additional, GUILLERM-ERCKELBOUDT, Anne-Yvonne, additional, Falentin, Cyril, additional, Rousseau-Gueutin, Mathieu, additional, Chevre, Anne-Marie, additional, Istace, Benjamin, additional, Cruaud, Corinne, additional, Belser, Caroline, additional, Aury, Jean-Marc, additional, Schicchi, Rosario, additional, Frachon, Lea, additional, and Bartoli, Claudia, additional
- Published
- 2023
- Full Text
- View/download PDF
5. The genetic architecture of the adaptive potential of Arabidopsis thaliana in response to Pseudomonas syringae strains isolated from south‐west France.
- Author
-
Bartoli, Claudia, Rigal, Mylène, Huard‐Chauveau, Carine, Mayjonade, Baptiste, and Roux, Fabrice
- Subjects
- *
PSEUDOMONAS syringae , *ARABIDOPSIS thaliana , *LOCUS (Genetics) , *PHYTOPATHOGENIC microorganisms , *AGRICULTURE , *GENOME-wide association studies - Abstract
Phytopathogens are a threat for global food production and security. Emergence or re‐emergence of plant pathogens is highly dependent on the environmental conditions affecting pathogen spread and survival. Under climate change, a geographic expansion of pathogen distribution poleward has been observed, potentially resulting in disease outbreaks on crops and wild plants. Therefore, estimating the adaptive potential of plants to novel epidemics and describing the underlying genetic architecture is a primary need to propose agricultural management strategies reducing pathogen outbreaks and to breed novel plant cultivars adapted to pathogens that might spread under climate change. To address this challenge, we inoculated Pseudomonas syringae strains isolated from Arabidopsis thaliana populations from south‐west of France on the highly genetically polymorphic TOU‐A A. thaliana population from north‐east France. While no adaptive potential was identified in response to most P. syringae strains, the TOU‐A population displayed a variable disease response to the JACO‐CL strain belonging to the P. syringae phylogroup 7 (PG7). This strain carried a reduced type III secretion system (T3SS) characteristic of the PG7 as well as flexible genomic traits and potential novel effectors. Genome‐wide association mapping on 192 TOU‐A accessions revealed a polygenic architecture of disease response to JACO‐CL. The main quantitative trait locus (QTL) region encompasses two R genes and the AT5G18310 gene encoding ubiquitin hydrolase, a target of the AvrRpt2 P. syringae effector. Altogether, our results pave the way for a better understanding of the genetic and molecular basis of the adaptive potential in an ecologically relevant A. thaliana–P. syringae pathosystem. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Corrigendum: Investigating genetic diversity within the most abundant and prevalent non-pathogenic leaf-associated bacteria interacting with Arabidopsis thaliana in natural habitats
- Author
-
Ramírez-Sánchez, Daniela, primary, Gibelin-Viala, Chrystel, additional, Mayjonade, Baptiste, additional, Duflos, Rémi, additional, Belmonte, Elodie, additional, Pailler, Vincent, additional, Bartoli, Claudia, additional, Carrere, Sébastien, additional, Vailleau, Fabienne, additional, and Roux, Fabrice, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Warnings/Cautions when collecting Brassica diversity along a large climatic gradient
- Author
-
Falentin, Cyril, primary, Hadj-Arab, Houria, additional, Aissiou, Fella, additional, Bartoli, Claudia, additional, Bazan, Giuseppe, additional, Boudet, Mateo, additional, Bousset-Vaslin, Lydia, additional, Chwikhi, Marwa, additional, Coriton, Olivier, additional, Deniot, Gwenaelle, additional, Ferreira de Carvalho, Julie, additional, Gay, Laurene, additional, Geraci, Anna, additional, Glory, Pascal, additional, Huteau, Virginie, additional, Ilahy, Riadh, additional, Ilardi, Vicenzo, additional, Jarillo, Jose A., additional, Meglic, Vladimir, additional, Oddo, Elisabetta, additional, Pernas, Monica, additional, Manuel, Pineiro, additional, Pipan, Barbara, additional, Rhim, Thouraya, additional, Richer, Vincent, additional, Rizza, Fulvia, additional, Ronfort, Joelle, additional, Rousseau-Gueutin, Mathieu, additional, Schicchi, Rosario, additional, Sinkovic, Lovro, additional, Taburel, Maryse, additional, Terzi, Valeria, additional, Therene, Sylvain, additional, Tiret, Mathieu, additional, Tlili, Imen, additional, Werner Badeck, Franz, additional, and Chevre, Anne-Marie, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes
- Author
-
Wang, Miaoyan, Roux, Fabrice, Bartoli, Claudia, Huard-Chauveau, Carine, Meyer, Christopher, Lee, Hana, Roby, Dominique, McPeek, Mary Sara, and Bergelson, Joy
- Published
- 2018
9. In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana
- Author
-
Bartoli, Claudia, Frachon, Léa, Barret, Matthieu, Rigal, Mylène, Huard-Chauveau, Carine, Mayjonade, Baptiste, Zanchetta, Catherine, Bouchez, Olivier, Roby, Dominique, Carrère, Sébastien, and Roux, Fabrice
- Published
- 2018
- Full Text
- View/download PDF
10. The genetic architecture of adaptation to leaf and root bacterial microbiota in Arabidopsis thaliana
- Author
-
Roux, Fabrice, primary, Frachon, Léa, additional, and Bartoli, Claudia, additional
- Published
- 2023
- Full Text
- View/download PDF
11. The Genetic Architecture of Adaptation to Leaf and Root Bacterial Microbiota in Arabidopsis thaliana
- Author
-
Roux, Fabrice; https://orcid.org/0000-0001-8059-5638, Frachon, Léa; https://orcid.org/0000-0001-8990-1419, Bartoli, Claudia, Roux, Fabrice; https://orcid.org/0000-0001-8059-5638, Frachon, Léa; https://orcid.org/0000-0001-8990-1419, and Bartoli, Claudia
- Abstract
Understanding the role of the host genome in modulating microbiota variation is a need to shed light on the holobiont theory and overcome the current limits on the description of host-microbiota interactions at the genomic and molecular levels. However, the host genetic architecture structuring microbiota is only partly described in plants. In addition, most association genetic studies on microbiota are often carried out outside the native habitats where the host evolves and the identification of signatures of local adaptation on the candidate genes has been overlooked. To fill these gaps and dissect the genetic architecture driving adaptive plant-microbiota interactions, we adopted a genome-environment association (GEA) analysis on 141 whole-genome sequenced natural populations of Arabidopsis thaliana characterized in situ for their leaf and root bacterial communities in fall and spring, and a large range of nonmicrobial ecological factors (i.e., climate, soil, and plant communities). A much higher fraction of among-population microbiota variance was explained by the host genetics than by nonmicrobial ecological factors. Importantly, the relative importance of host genetics and nonmicrobial ecological factors in explaining the presence of particular operational taxonomic units (OTUs) differs between bacterial families and genera. In addition, the polygenic architecture of adaptation to bacterial communities was highly flexible between plant compartments and seasons. Relatedly, signatures of local adaptation were stronger on quantitative trait loci (QTLs) of the root microbiota in spring. Finally, plant immunity appears as a major source of adaptive genetic variation structuring bacterial assemblages in A. thaliana.
- Published
- 2023
12. Investigating genetic diversity within the most abundant and prevalent non-pathogenic leaf-associated bacteria interacting with Arabidopsis thaliana in natural habitats
- Author
-
Ramírez-Sánchez, Daniela, Gibelin-Viala, Chrystel, Mayjonade, Baptiste, Duflos, Rémi, Belmonte, Elodie, Pailler, Vincent, Bartoli, Claudia, Carrere, Sébastien, Vailleau, Fabienne, Roux, Fabrice, Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Génétique Diversité et Ecophysiologie des Céréales (GDEC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Université de Rennes (UR)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Ph.D. fellowship (No. 707983) from CONACYT, grant from the French Ministry of National Education and Research., and ANR-10-LABX-0041,TULIP,Towards a Unified theory of biotic Interactions: the roLe of environmental(2010)
- Subjects
plant growth promotion ,growth kinetics ,seed inoculation ,Microbiology (medical) ,commensal bacteria ,genotype-by-genotype interactions ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Microbiology ,genomic diversity ,seedling inoculation ,microbiota ,[SDV.EE.IEO]Life Sciences [q-bio]/Ecology, environment/Symbiosis - Abstract
Microbiota modulates plant health and appears as a promising lever to develop innovative, sustainable and eco-friendly agro-ecosystems. Key patterns of microbiota assemblages in plants have been revealed by an extensive number of studies based on taxonomic profiling by metabarcoding. However, understanding the functionality of microbiota is still in its infancy and relies on reductionist approaches primarily based on the establishment of representative microbial collections. In Arabidopsis thaliana, most of these microbial collections include one strain per OTU isolated from a limited number of habitats, thereby neglecting the ecological potential of genetic diversity within microbial species. With this study, we aimed at estimating the extent of genetic variation between strains within the most abundant and prevalent leaf-associated non-pathogenic bacterial species in A. thaliana located south-west of France. By combining a culture-based collection approach consisting of the isolation of more than 7,000 bacterial colonies with an informative-driven approach, we isolated 35 pure strains from eight non-pathogenic bacterial species. We detected significant intra-specific genetic variation at the genomic level and for growth rate in synthetic media. In addition, significant host genetic variation was detected in response to most bacterial strains in in vitro conditions, albeit dependent on the developmental stage at which plants were inoculated, with the presence of both negative and positive responses on plant growth. Our study provides new genetic and genomic resources for a better understanding of the plant-microbe ecological interactions at the microbiota level. We also highlight the need of considering genetic variation in both non-pathogenic bacterial species and A. thaliana to decipher the genetic and molecular mechanisms involved in the ecologically relevant dialog between hosts and leaf microbiota.
- Published
- 2022
- Full Text
- View/download PDF
13. The genetic architecture of adaptation to leaf and root bacterial microbiota in Arabidopsis thaliana
- Author
-
Roux, Fabrice, primary, Frachon, Léa, additional, and Bartoli, Claudia, additional
- Published
- 2022
- Full Text
- View/download PDF
14. Rhizocarpon geographicum Lichen Discloses a Highly Diversified Microbiota Carrying Antibiotic Resistance and Persistent Organic Pollutant Tolerance
- Author
-
Miral, Alice, primary, Kautsky, Adam, additional, Alves-Carvalho, Susete, additional, Cottret, Ludovic, additional, Guillerm-Erckelboudt, Anne-Yvonne, additional, Buguet, Manon, additional, Rouaud, Isabelle, additional, Tranchimand, Sylvain, additional, Tomasi, Sophie, additional, and Bartoli, Claudia, additional
- Published
- 2022
- Full Text
- View/download PDF
15. Unraveling the genetic architecture of the adaptive potential of Arabidopsis thaliana to face the bacterial pathogen Pseudomonas syringae in the context of global change
- Author
-
Bartoli, Claudia, primary, Rigal, Mylène, additional, Mayjonade, Baptiste, additional, and Roux, Fabrice, additional
- Published
- 2022
- Full Text
- View/download PDF
16. Rhizobium leguminosarumsymbiovarviciaestrains are natural wheat endophytes that can stimulate root development
- Author
-
Bartoli, Claudia, primary, Boivin, Stéphane, additional, Marchetti, Marta, additional, Gris, Carine, additional, Gasciolli, Virginie, additional, Gaston, Mégane, additional, Auriac, Marie‐Christine, additional, Debellé, Frédéric, additional, Cottret, Ludovic, additional, Carlier, Aurélien, additional, Masson‐Boivin, Catherine, additional, Lepetit, Marc, additional, and Lefebvre, Benoit, additional
- Published
- 2022
- Full Text
- View/download PDF
17. Investigating genetic diversity within the most abundant and prevalent non-pathogenic leaf-associated bacteria interacting with Arabidopsis thaliana in natural habitats
- Author
-
Ramirez-Sanchez, Daniela, primary, Gibelin-Viala, Chrystel, additional, Mayjonade, Baptiste, additional, Duflos, Rémi, additional, Belmonte, Elodie, additional, Pailler, Vincent, additional, Bartoli, Claudia, additional, Carrere, Sébastien, additional, Vailleau, Fabienne, additional, and Roux, Fabrice, additional
- Published
- 2022
- Full Text
- View/download PDF
18. Molecular and Genomic Characterization of the Pseudomonas syringae Phylogroup 4: An Emerging Pathogen of Arabidopsis thaliana and Nicotiana benthamiana
- Author
-
Zavala, Diego, primary, Fuenzalida, Isabel, additional, Gangas, María Victoria, additional, Peppino Margutti, Micaela, additional, Bartoli, Claudia, additional, Roux, Fabrice, additional, Meneses, Claudio, additional, Herrera-Vásquez, Ariel, additional, and Blanco-Herrera, Francisca, additional
- Published
- 2022
- Full Text
- View/download PDF
19. Rhizobium leguminosarum symbiovar viciae strains are natural wheat endophytes that can stimulate root development.
- Author
-
Bartoli, Claudia, Boivin, Stéphane, Marchetti, Marta, Gris, Carine, Gasciolli, Virginie, Gaston, Mégane, Auriac, Marie‐Christine, Debellé, Frédéric, Cottret, Ludovic, Carlier, Aurélien, Masson‐Boivin, Catherine, Lepetit, Marc, and Lefebvre, Benoit
- Subjects
- *
RHIZOBIUM leguminosarum , *ROOT development , *LEGUMES , *WHEAT , *VESICULAR-arbuscular mycorrhizas , *ENDOPHYTES - Abstract
Although rhizobia that establish a nitrogen‐fixing symbiosis with legumes are also known to promote growth in non‐legumes, studies on rhizobial associations with wheat roots are scarce. We searched for Rhizobium leguminosarum symbiovar viciae (Rlv) strains naturally competent to endophytically colonize wheat roots. We isolated 20 strains from surface‐sterilized wheat roots and found a low diversity of Rlv compared to that observed in the Rlv species complex. We tested the ability of a subset of these Rlv for wheat root colonization when co‐inoculated with other Rlv. Only a few strains, including those isolated from wheat roots, and one strain isolated from pea nodules, were efficient in colonizing roots in co‐inoculation conditions, while all the strains tested in single strain inoculation conditions were found to colonize the surface and interior of roots. Furthermore, Rlv strains isolated from wheat roots were able to stimulate root development and early arbuscular mycorrhizal fungi colonization. These responses were strain and host genotype dependent. Our results suggest that wheat can be an alternative host for Rlv; nevertheless, there is a strong competition between Rlv strains for wheat root colonization. In addition, we showed that Rlv are endophytic wheat root bacteria with potential ability to modify wheat development. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
20. Le potentiel symbiotique des microorganismes du sol et les leviers d'intervention
- Author
-
Courty, Pierre-Emmanuel, Bartoli, Claudia, Lefebvre, Benoît, Almario, Juliana, Revellin, Cécile, EL Mjiyad, Noureddine, Agroécologie [Dijon], Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Université de Rennes (UR)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2021
21. The Pseudomonas viridiflava phylogroups in the P. syringae species complex are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits
- Author
-
Bartoli, Claudia, Berge, Odile, Monteil, Caroline L., Guilbaud, Caroline, Balestra, Giorgio M., Varvaro, Leonardo, Jones, Corbin, Dangl, Jeffery L., Baltrus, David A., Sands, David C., and Morris, Cindy E.
- Published
- 2014
- Full Text
- View/download PDF
22. Nasal Cytology in Radiofrequency Turbinate Volume Reduction
- Author
-
Pecorari, Giancarlo, primary, Riva, Giuseppe, additional, Bartoli, Claudia, additional, Ravera, Mattia, additional, Dell’Era, Valeria, additional, Barbero, Emanuela, additional, Aluffi Valletti, Paolo, additional, and Garzaro, Massimiliano, additional
- Published
- 2021
- Full Text
- View/download PDF
23. Rhizobium leguminosarum symbiovar viciae strains are natural wheat endophytes and can stimulate root development and colonization by arbuscular mycorrhizal fungi
- Author
-
Bartoli, Claudia, primary, Boivin, Stéphane, additional, Marchetti, Marta, additional, Gris, Carine, additional, Gasciolli, Virginie, additional, Gaston, Mégane, additional, Auriac, Marie-Christine, additional, Cottret, Ludovic, additional, Carlier, Aurélien, additional, Masson-Boivin, Catherine, additional, Lepetit, Marc, additional, and Lefebvre, Benoit, additional
- Published
- 2020
- Full Text
- View/download PDF
24. Adaptation to Plant Communities across the Genome of Arabidopsis thaliana
- Author
-
Frachon, Léa, primary, Mayjonade, Baptiste, additional, Bartoli, Claudia, additional, Hautekèete, Nina-Coralie, additional, and Roux, Fabrice, additional
- Published
- 2019
- Full Text
- View/download PDF
25. Radiation-Induced Rhinitis: Cytological and Olfactory Changes
- Author
-
Riva, Giuseppe, primary, Franco, Pierfrancesco, additional, Provenzano, Erica, additional, Arcadipane, Francesca, additional, Bartoli, Claudia, additional, Lava, Paolo, additional, Ricardi, Umberto, additional, and Pecorari, Giancarlo, additional
- Published
- 2019
- Full Text
- View/download PDF
26. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach
- Author
-
ROUX, Fabrice, BARTOLI, Claudia, Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Region Midi-Pyrenees (CLIMARES project), LABEX TULIP : ANR-10-LABX-41, ANR-11-IDEX-0002-02, and Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
genome-to-genome analysis ,Vegetal Biology ,disease resistance ,genome-wide association mapping ,pathosystème ,génome ,Microbiology and Parasitology ,food and beverages ,Plant Science ,Review ,approche génomique ,lcsh:Plant culture ,co-evolution ,crops ,Microbiologie et Parasitologie ,écologie appliquée ,pathobiota ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,microbiota ,genome wide association study (GWAS) ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,pathogenicity ,lcsh:SB1-1110 ,Biologie végétale - Abstract
The emergence and re-emergence of plant pathogenic microorganisms are processes that imply perturbations in both host and pathogen ecological niches. Global change is largely assumed to drive the emergence of new etiological agents by altering the equilibrium of the ecological habitats which in turn places hosts more in contact with pathogen reservoirs. In this context, the number of epidemics is expected to increase dramatically in the next coming decades both in wild and crop plants. Under these considerations, the identification of the genetic variants underlying natural variation of resistance is a pre-requisite to estimate the adaptive potential of wild plant populations and to develop new breeding resistant cultivars. On the other hand, the prediction of pathogen's genetic determinants underlying disease emergence can help to identify plant resistance alleles. In the genomic era, whole genome sequencing combined with the development of statistical methods led to the emergence of Genome Wide Association (GWA) mapping, a powerful tool for detecting genomic regions associated with natural variation of disease resistance in both wild and cultivated plants. However, GWA mapping has been less employed for the detection of genetic variants associated with pathogenicity in microbes. Here, we reviewed GWA studies performed either in plants or in pathogenic microorganisms (bacteria, fungi and oomycetes). In addition, we highlighted the benefits and caveats of the emerging joint GWA mapping approach that allows for the simultaneous identification of genes interacting between genomes of both partners. Finally, based on co-evolutionary processes in wild populations, we highlighted a phenotyping-free joint GWA mapping approach as a promising tool for describing the molecular landscape underlying plant - microbe interactions.
- Published
- 2017
27. A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale
- Author
-
Frachon, Léa, primary, Bartoli, Claudia, additional, Carrère, Sébastien, additional, Bouchez, Olivier, additional, Chaubet, Adeline, additional, Gautier, Mathieu, additional, Roby, Dominique, additional, and Roux, Fabrice, additional
- Published
- 2018
- Full Text
- View/download PDF
28. In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana
- Author
-
Bartoli, Claudia, primary, Frachon, Léa, additional, Barret, Matthieu, additional, Rigal, Mylène, additional, Huard-Chauveau, Carine, additional, Mayjonade, Baptiste, additional, Zanchetta, Catherine, additional, Bouchez, Olivier, additional, Roby, Dominique, additional, Carrère, Sébastien, additional, and Roux, Fabrice, additional
- Published
- 2018
- Full Text
- View/download PDF
29. A set of PCRs for rapid identification and characterization of Pseudomonas syringae phylogroups (vol 120, pg 714, 2016)
- Author
-
Borschinger, Benoit, Bartoli, Claudia, Chandeysson, Charlotte, Guilbaud, Caroline, Parisi, Luciana, Bourgeay, Jean-François, Buisson, Elise, Morris, Cindy E., Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), French Ministry of Agriculture (contract n° 21000480, 'Amélioration des moyens de lutte contre Pseudomonas syringae pv actinidiae'), scholarship from the TERSYS research federation, and Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU)
- Subjects
[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
no abstract
- Published
- 2016
30. Mise à jour de la classification du groupe Pseudomonas syringae et des outils simples et rapides d'identification
- Author
-
Chandeysson, Charlotte, Berge, Odile, Bartoli, Claudia, Borschinger, Benoit, Guilbaud, Caroline, Glaux, Catherine, Monteil, Caroline, Sands, David, Morris, Cindy E., Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), Montana State University (MSU), Centre National de la Recherche Scientifique (CNRS). FRA., and Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
International audience; Pseudomonas syringae est agent phytopathogène-environnemental reconnu comme modèle remarquable. Nous avons isolé cette bactérie phytopathogène bien au-delà des zones d’agriculture, dans de nombreux substrats sur plusieurs continents constituant une collection unique au monde (>7000 souches). Une classification de cette bactérie intégrant toute la diversité et délimitant clairement les frontières est nécessaire. Les hybridations ADN/ADN et le séquençage de génomes trop lourds, les phénotypes peu fiables, et le concept de pathovar inopérant, nous conduisent à utiliser le typage MLST pour cette classification qui délimite actuellement 24 clades au sein d’au moins 14 phylogroupes. La robustesse du résultat est confirmée par les données de génomique. Pour chaque phylogroupe, les phénotypes reliés au pouvoir pathogène ont été caractérisés. A partir de ces données génotypiques et phénotypiques, les spécificités des phylogroupes ont été déterminées et un système de classification extensible à d’éventuels nouveaux groupes a été proposé. Un outil simple d’identification par analyse d’un seul gène de ménage est proposé (Berge et al. 2014). Grâce à la génomique comparative, nous avons développé des PCR spécifiques permettant l’identification au groupe P. syringae entier (Guilbaud et al.) et aux phylogroupes (Borschinger et al.) pour un crible moyen-débit de P. syringae permettant d’établir la structure des populations sur de nombreux échantillons. Cette classification nous permet d’aborder des questions sur l’écologie des agents phytopathogènes et leur stratégie d’adaptation dans différents environnements.
- Published
- 2016
31. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective
- Author
-
Bartoli, Claudia, ROUX, Fabrice, Lamichhane, Jay Ram, Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV), Institut National de la Recherche Agronomique (INRA), Region Midi-Pyrenees (project 'Accueil de nouvelles equipes d'excellence'), and French Laboratory of Excellence project 'TULIP' [ANR-10-LABX-41, ANR-11-IDEX-0002-02]
- Subjects
Gene Rearrangement ,Bacteria ,point mutations ,[SDV]Life Sciences [q-bio] ,environmental habitats ,Microreview ,genomic rearrangements ,Biological Evolution ,[SHS]Humanities and Social Sciences ,disease emergence ,Host-Pathogen Interactions ,Mutation ,[SDE]Environmental Sciences ,horizontal gene transfer ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Ecosystem - Abstract
International audience; The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops.
- Published
- 2016
32. Mise à jour de la classification du groupe Pseudomonas syringae et des outils simples et rapides d'identification
- Author
-
Berge, Odile, Bartoli, Claudia, Borschinger, Benoit, Guilbaud, Caroline, Glaux, Catherine, Monteil, Caroline, Sands, David C., Morris, Cindy E., and Chandeysson, Charlotte
- Subjects
bactérie phytopathogène ,pouvoir pathogène ,structure génétique des populations ,écologie microbienne ,méthode d'identification ,collection bactérienne ,Biodiversité et Ecologie ,pseudomonas syringae ,mise au point de technique ,Agricultural sciences ,Biodiversity and Ecology ,méthode pcr ,classification taxonomique ,criblage génétique ,pathologie végétale ,Sciences agricoles - Abstract
Pseudomonas syringae est agent phytopathogène-environnemental reconnu comme modèle remarquable. Nous avons isolé cette bactérie phytopathogène bien au-delà des zones d’agriculture, dans de nombreux substrats sur plusieurs continents constituant une collection unique au monde (>7000 souches). Une classification de cette bactérie intégrant toute la diversité et délimitant clairement les frontières est nécessaire. Les hybridations ADN/ADN et le séquençage de génomes trop lourds, les phénotypes peu fiables, et le concept de pathovar inopérant, nous conduisent à utiliser le typage MLST pour cette classification qui délimite actuellement 24 clades au sein d’au moins 14 phylogroupes. La robustesse du résultat est confirmée par les données de génomique. Pour chaque phylogroupe, les phénotypes reliés au pouvoir pathogène ont été caractérisés.[br/] A partir de ces données génotypiques et phénotypiques, les spécificités des phylogroupes ont été déterminées et un système de classification extensible à d’éventuels nouveaux groupes a été proposé. Un outil simple d’identification par analyse d’un seul gène de ménage est proposé (Berge et al. 2014). Grâce à la génomique comparative, nous avons développé des PCR spécifiques permettant l’identification au groupe P. syringae entier (Guilbaud et al.) et aux phylogroupes (Borschinger et al.) pour un crible moyen-débit de P. syringae permettant d’établir la structure des populations sur de nombreux échantillons. [br/] Cette classification nous permet d’aborder des questions sur l’écologie des agents phytopathogènes et leur stratégie d’adaptation dans différents environnements.
- Published
- 2016
33. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach
- Author
-
Bartoli, Claudia, primary and Roux, Fabrice, additional
- Published
- 2017
- Full Text
- View/download PDF
34. Du nouveau dans le groupe Pseudomonas syringae : un cadre général de classification et des outils simples et rapides d'identification
- Author
-
Berge, Odile, Bartoli, Claudia, Guilbaud, Caroline, Chandeysson, Charlotte, Morris, Cindy E., Borschinger, Benoit, Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), Laboratoire des interactions plantes micro-organismes (LIPM), and Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,data base ,classification tool ,Pseudomonas syringae ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,phylogeny ,ComputingMilieux_MISCELLANEOUS ,specific PCR - Abstract
National audience
- Published
- 2015
35. Impact of ground cover on Pseudomonas syringae communities in kiwifruit orchards
- Author
-
Borschinger, Benoit, Lacroix, Christelle, Chandeysson, Charlotte, Guilbaud, Caroline, Parisi, Luciana, Bourgeay, Jean-François, Berge, Odile, Bartoli, Claudia, Pavon, Daniel, Buisson, Elise, Morris, Cindy E., Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), and Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich). CHE.
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
International audience; The phyllosphere is known for hosting a great diversity of fungi, yeasts and bacteria. These microorganisms interact with each other and with the host plant in the form of symbiosis, mutualism, commensalism, parasitism, competition or simply neutralism. Pseudomonas syringae is a ubiquitous epiphytic bacterium commonly found in these microbial communities. The phylogeny complex of P. syringae comprises 13 phylogroups, containing strains that are well-known pathogens and strains that apparently have limited capacity as pathogens. Emblematic among the pathogens are P. syringae pv. syringae (Pss) and P. syringae pv. actinidiae (Psa) belonging respectively to phylogroups 2 and 1. Bacterial blights of fruit trees caused by P. syringae lead to significant economic losses worldwide. With the expansion of bacterial blight of kiwifruit caused by P. syringae pv. actinidiae and bacterial blight of apricot caused by P. syringae pv. syringae, the identification of reservoirs of these pathogenic strains and an understanding of the role of the accompanying diversity of P. syringae in disease epidemiology are needed. Here we describe the structure of P. syringae populations on orchard ground covers based on a series of PCR that specifically identify most of the phylogroups of this species. This efficient technique allows us to link population structure on ground covers to those associated with trees and to the botanical diversity and location of the ground cover reservoirs. The overall goal of these analyses are to identify microbiological contexts that are unfavorable for disease and to conceive management strategies of ground covers to foster these microbiological contexts.
- Published
- 2015
36. Caractérisation rapide de la diversité génétique des populations de Pseudomonas syringae dans les vergers et cultures par PCR multiplex
- Author
-
Borschinger, Benoit, Chandeysson, Charlotte, Bartoli, Claudia, Guilbaud, Caroline, Parisi, Luciana, Bourgeay, Jean-François, Buisson, Elise, Morris, Cindy E., Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Laboratoire des interactions plantes micro-organismes (LIPM), and Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences - Abstract
National audience; Le chancre bactérien des arbres fruitiers causé par P. syringae engendre des pertes économiques importantes à l’échelle mondiale. Avec l’expansion du chancre du kiwi causé par P. s. pv. actinidiae (Psa) et le chancre de l’abricotier causé par P. s. pv. syringae (Pss), il est nécessaire d’identifier les réservoirs des souches pathogènes. L’un des réservoirs potentiels est le couvre-sol des vergers. Une solution pourrait être le développement de pratiques d’ingénierie écologique, plus précisément la gestion des couvre-sols dans le but de réduire leur impact en tant que source d’inoculum des maladies bactériennes des arbres fruitiers causées par P. syringae et augmenter leur rôle en tant que réserve de microorganismes antagonistes des pathogènes des arbres fruitiers. Cependant, avec la découverte récente de la complexité de la phylogénie de P. syringae et l’existence de phylogroupes renfermant plus de souches agressives que d’autres (Psa dans le phylogroupe 1, Pss dans le phylogroupe 2), l’un des premiers objectifs est le développement d’une méthode de détection spécifique, par PCR, permettant une identification rapide et précise des différents phylogroupes de P. syringae. Actuellement la seule méthode disponible est le séquençage de gènes spécifiques et conservés. La mise en application de cette nouvelle technique de génotypage permettrait l’analyse d’échantillons de grande taille. Cette technique pourrait également être utilisée en tant qu’outil de surveillance des champs et vergers. Effectivement, utiliser une technique ne ciblant qu’un seul pathovar peut être insuffisant sachant qu’il n’est pas rare d’avoir des espèces de plantes susceptibles à différentes souches de P. syringae. Ici seront présentés la mise au point de cette technique, ainsi qu’un exemple d’application concret (la structure des populations de P. syringae en vergers de kiwis).
- Published
- 2015
37. New multiplex PCR method for rapid characterization of the genetic diversity of Pseudomonas syringae in orchards and crops
- Author
-
Borschinger, Benoit, Chandeysson, Charlotte, Bartoli, Claudia, Guilbaud, Caroline, Parisi, Luciana, Bourgeay, Jean-François, Buisson, Elise, Morris, Cindy E., Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), and Université d'Avignon et des Pays de Vaucluse (UAPV). FRA.
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
National audience; Bacterial blight of fruit trees caused by Pseudomonas syringae causes significant economic losses worldwide. With the expansion of bacterial canker of kiwi caused by P. syringae pv. actinidiae (Psa) and bacterial canker of apricot caused by P. syringae pv. syringae (Pss), identification of reservoirs of pathogenic strains is required. One potential reservoir is ground covers in orchards. A solution could be the development of ecological engineering practices, particularly ground cover management in order to reduce their impact as a source of inoculum for bacterial diseases of fruit trees caused by P. syringae and increase their role as a reserve for microorganisms that are antagonistic to pathogens of fruit trees. However, with the recent discovery of the complexity of the phylogeny of P. syringae and the existence of phylogroups containing more aggressive strains than others (Psa in phylogroup 1, Pss in phylogroup 2), one of the first goals is the development of a specific molecular detection method, by PCR, allowing rapid and accurate identification of the different phylogroups of P. syringae. This would be much more efficient than the only method currently available - sequencing of specific conserved genes used in phylogenetic identification. The simple implementation of this new method of genotyping makes it possible to screen samples of very large size with little effort. This method can be deployed to develop methods of control of bacterial blight, and can be used as a generic mean of detecting and monitoring orchards and crops. Indeed, the use of a technique targeting a single pathovar may be insufficient, as it is not uncommon for plants to be simultaneously attacked by several different strains of P. syringae. The method of detection and identification of phylogroups will be presented and a concrete example for specific samples (ground cover, buds, twigs) from orchards of apricot and kiwi will be described.
- Published
- 2015
38. A broad and operational classification framework to address the ecology of Pseudomonas syringae populations
- Author
-
Berge, Odile, Monteil, Caroline, Bartoli, Claudia, Guilbaud, Caroline, Chandeysson, Charlotte, Borschinger, Benoit, Sands, David, Morris, Cindy E., Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), Università degli studi della Tuscia [Viterbo], Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), Montana State University (MSU), Universidad de Málaga (Málaga). ESP., Universidad Politécnica de Madrid (UPM). ESP., Universidad de Navarra (Pamplona). ESP., and Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS)
- Subjects
data base ,classification tool ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,citrate synthase ,Phylogeny ,specific PCR - Abstract
International audience; Understanding ecology of pathogens like Pseudomonas syringae is central to addressing the complexity of disease emergence and pathogen evolution and to develop effective and sustainable methods of control. An indispensable prerequisite is a classification tool that represents as much of the diversity as possible and delimits accurately the boundaries. By adopting an intensive sampling strategy from several continents and multiple substrates within and beyond agricultural zones we made reliable phylogroup delimitation through multi-locus sequence typing (MLST). We identified 23 clades of P. syringae within 13 phylogroups among which the seven previously described were included. The robustness of MLST-phylogroups was confirmed by the phylogeny of the core genome of representative strains. We demonstrated that the citrate synthase (cts) housekeeping gene can accurately predict phylogenetic affiliation for more than 97 % of more than 700 strains and we proposed a list of cts sequences to be used as a simple tool for quickly and precisely classifying new strains. We therefore proposed an expandable framework mainly based on a broad database and cts genetic analysis into which more diversity can be integrated. Phenotypic traits rarely provided means for classification even if some combinations were highly probable in some phylogroups. However, by clarifying the classification of strains from a wide range of habitats and describing the genotypic and phenotypic profiles of the different phylogroups, we revealed a fascinating diversity of life histories and adapative strategies deployed within the P. syringae complex. This has led us to also develop specific genetic markers, one allowing the assignment of strains to the P. syringae complex at large and others to the individual phylogroups. Using these markers in simple, rapid, reliable and cheap multiplex PCR will allow a medium throughput screen of P. syringae strains leading to easy assessment of population structure in a wide range of samples.
- Published
- 2015
39. Mutability in Pseudomonas viridiflava as a programmed balance between antibiotic resistance and pathogenicity
- Author
-
Bartoli, Claudia, Lamichhane, Jay Ram, Berge, Odile, Varvaro, Leonardo, Morris, Cindy E., Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), Tuscia University, and PhD fellowship for Claudia Bartoli provided by Tuscia University
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,DNA, Bacterial ,mutation rate ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,plasticity ,Pseudomonas ,fitness cost ,Mutation ,methyl-directed mismatch repair system ,Drug Resistance, Microbial ,Original Articles ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
International audience; Mutable bacterial cells are defective in their DNA repair system and they often have a phenotype different than their wild-type counterparts. In human bacterial pathogens, the mutable and hypermutable phenotype are often associated with general antibiotic resistance. Here, we quantified the occurrence of mutable cells in Pseudomonas viridiflava, a phytopathogenic bacterium in the P. syringae complex with a broad host range and capacity to live as saprophyte. Two phenotypic variants (transparent and mucoid) were produced by this bacterium. The transparent variant had a mutator phenotype, showed general antibiotic resistance and could not induce disease on the plant species tested (bean). In contrast, the mucoid variant did not display mutability nor resistance to antibiotics and was capable of inducing disease on bean. Both the transparent and mucoid variants were less fit when grown in vitro, while in planta both of the variants and wild-types attained similar population densities. Given the importance of the methyl-directed mismatch repair system (MMR) in the occurrence of mutable and hypermutable cells in human bacterial pathogens, we investigated whether mutations in mut genes were associated with mutator transparent cells in P. viridiflava. Our results showed no mutations in MMR genes in any of the P. viridiflava cells tested. Here we report that high mutation rate and antibiotic resistance are inversely correlated with pathogenicity in P. viridiflava but are not associated with mutations in MMR. In addition, P. viridiflava variants differ from variants produced by other phytopathogenic bacteria in the absence of reversion to the wild-type phenotype.
- Published
- 2015
40. A broad and operational classification framework to address the ecology of Pseudomonas syringae populations
- Author
-
Monteil, Caroline L., Bartoli, Claudia, Guilbaud, Caroline, Chandeysson, Charlotte, Borschinger, Benoit, Sands, D.C., Morris, Cindy E., and Berge, Odile
- Subjects
Biodiversity and Ecology ,écologie microbienne ,Biodiversité et Ecologie ,pseudomonas syringae ,phylogénie moléculaire ,marqueur génétique ,Phylogeny ,data base ,classification tool ,citrate synthase ,specific PCR ,classification moléculaire ,marqueur phénotypique ,pathologie végétale - Abstract
Understanding ecology of pathogens like Pseudomonas syringae is central to addressing the complexity of disease emergence and pathogen evolution and to develop effective and sustainable methods of control. An indispensable prerequisite is a classification tool that represents as much of the diversity as possible and delimits accurately the boundaries. By adopting an intensive sampling strategy from several continents and multiple substrates within and beyond agricultural zones we made reliable phylogroup delimitation through multi-locus sequence typing (MLST). We identified 23 clades of P. syringae within 13 phylogroups among which the seven previously described were included. The robustness of MLST-phylogroups was confirmed by the phylogeny of the core genome of representative strains. We demonstrated that the citrate synthase (cts) housekeeping gene can accurately predict phylogenetic affiliation for more than 97 % of more than 700 strains and we proposed a list of cts sequences to be used as a simple tool for quickly and precisely classifying new strains. We therefore proposed an expandable framework mainly based on a broad database and cts genetic analysis into which more diversity can be integrated. Phenotypic traits rarely provided means for classification even if some combinations were highly probable in some phylogroups. However, by clarifying the classification of strains from a wide range of habitats and describing the genotypic and phenotypic profiles of the different phylogroups, we revealed a fascinating diversity of life histories and adapative strategies deployed within the P. syringae complex. This has led us to also develop specific genetic markers, one allowing the assignment of strains to the P. syringae complex at large and others to the individual phylogroups. Using these markers in simple, rapid, reliable and cheap multiplex PCR will allow a medium throughput screen of P. syringae strains leading to easy assessment of population structure in a wide range of samples.
- Published
- 2015
41. Impact of ground cover on Pseudomonas syringae communities in kiwifruit orchards
- Author
-
Lacroix, Christelle, Chandeysson, Charlotte, Guilbaud, Caroline, Parisi, Luciana, Bourgeay, Jean-François, Berge, Odile, Bartoli, Claudia, Pavon, Daniel, Buisson, Elise, Morris, Cindy E., and Borschinger, Benoit
- Subjects
bactérie phytopathogène ,phyllogenie ,flétrissement bactérien ,Biodiversité et Ecologie ,pseudomonas syringae ,abricot ,verger ,maladie des plantes ,Agricultural sciences ,Biodiversity and Ecology ,actinidia deliciosa ,arbre fruitier à noyau ,diversité génétique ,litière ,réservoir de pathogènes ,phyllosphere ,pathologie végétale ,Sciences agricoles - Abstract
The phyllosphere is known for hosting a great diversity of fungi, yeasts and bacteria. These microorganisms interact with each other and with the host plant in the form of symbiosis, mutualism, commensalism, parasitism, competition or simply neutralism. Pseudomonas syringae is a ubiquitous epiphytic bacterium commonly found in these microbial communities. The phylogeny complex of P. syringae comprises 13 phylogroups, containing strains that are well-known pathogens and strains that apparently have limited capacity as pathogens. Emblematic among the pathogens are P. syringae pv. syringae (Pss) and P. syringae pv. actinidiae (Psa) belonging respectively to phylogroups 2 and 1. Bacterial blights of fruit trees caused by P. syringae lead to significant economic losses worldwide. With the expansion of bacterial blight of kiwifruit caused by P. syringae pv. actinidiae and bacterial blight of apricot caused by P. syringae pv. syringae, the identification of reservoirs of these pathogenic strains and an understanding of the role of the accompanying diversity of P. syringae in disease epidemiology are needed. Here we describe the structure of P. syringae populations on orchard ground covers based on a series of PCR that specifically identify most of the phylogroups of this species. This efficient technique allows us to link population structure on ground covers to those associated with trees and to the botanical diversity and location of the ground cover reservoirs. The overall goal of these analyses are to identify microbiological contexts that are unfavorable for disease and to conceive management strategies of ground covers to foster these microbiological contexts.
- Published
- 2015
42. Du nouveau dans le groupe Pseudomonas syringae : un cadre général de classification et des outils simples et rapides d'identification
- Author
-
Bartoli, Claudia, Guilbaud, Caroline, Chandeysson, Charlotte, Morris, Cindy E., Borschinger, Benoit, and Berge, Odile
- Subjects
Biodiversity and Ecology ,bactérie phytopathogène ,phylogeny ,data base ,classification tool ,Pseudomonas syringae ,specific PCR ,écologie microbienne ,Biodiversité et Ecologie ,pseudomonas syringae ,classification systématique ,détection pcr ,cle d'identification ,analyse phylogénétique ,pathologie végétale ,Sciences agricoles ,Agricultural sciences - Published
- 2015
43. New multiplex PCR method for rapid characterization of the genetic diversity of Pseudomonas syringae in orchards and crops
- Author
-
Chandeysson, Charlotte, Bartoli, Claudia, Guilbaud, Caroline, Parisi, Luciana, Bourgeay, Jean-François, Buisson, Elise, Morris, Cindy E., and Borschinger, Benoit
- Subjects
Biodiversity and Ecology ,bactérie phytopathogène ,méthode de détection ,Biodiversité et Ecologie ,détection pcr ,pathologie végétale ,Sciences agricoles ,maladie des plantes ,mise au point de test ,Agricultural sciences ,pseudomonas - Abstract
Bacterial blight of fruit trees caused by Pseudomonas syringae causes significant economic losses worldwide. With the expansion of bacterial canker of kiwi caused by P. syringae pv. actinidiae (Psa) and bacterial canker of apricot caused by P. syringae pv. syringae (Pss), identification of reservoirs of pathogenic strains is required. One potential reservoir is ground covers in orchards. A solution could be the development of ecological engineering practices, particularly ground cover management in order to reduce their impact as a source of inoculum for bacterial diseases of fruit trees caused by P. syringae and increase their role as a reserve for microorganisms that are antagonistic to pathogens of fruit trees. However, with the recent discovery of the complexity of the phylogeny of P. syringae and the existence of phylogroups containing more aggressive strains than others (Psa in phylogroup 1, Pss in phylogroup 2), one of the first goals is the development of a specific molecular detection method, by PCR, allowing rapid and accurate identification of the different phylogroups of P. syringae. This would be much more efficient than the only method currently available - sequencing of specific conserved genes used in phylogenetic identification. The simple implementation of this new method of genotyping makes it possible to screen samples of very large size with little effort. This method can be deployed to develop methods of control of bacterial blight, and can be used as a generic mean of detecting and monitoring orchards and crops. Indeed, the use of a technique targeting a single pathovar may be insufficient, as it is not uncommon for plants to be simultaneously attacked by several different strains of P. syringae. The method of detection and identification of phylogroups will be presented and a concrete example for specific samples (ground cover, buds, twigs) from orchards of apricot and kiwi will be described.
- Published
- 2015
44. Importanza degli habitat ambientali come riserva di batteri fitopatogeni ed il loro ruolo nell'evoluzione di determinanti di patogenicità
- Author
-
Bartoli, Claudia and Varvaro, Leonardo
- Subjects
Evolution ,Emergenza ,Tipo 3 di secrezione ,Emergence ,Type 3 secretion system ,Evoluzione ,AGR/12 - Abstract
Pseudomonas syringae is a phytopathogenic bacterium that attacks both herbaceous and woody plants. In the last 20 years, more than 55 disease outbreaks caused by this bacterium have been reported on woody plants. The recent studies concerning the ecology of P. syringae demonstrated that this bacterium is present in several environmental habitats. These studies also showed that the environment is a reservoir of different P. syringae genetic lineages. In this thesis, I made an effort to understand what kind of evolutionary mechanisms can underline the emergence of new P. syringae pathogenic strains and how the environment can play a role in the evolution of pathogenicity traits of this bacterium. In particular, I focused on P. syringae lineages known to be pathogenic on kiwifruit. As a first step, I participated in a study about the diversity of P. syringae. This study was carried out in the laboratory of Cindy Morris at INRA of Avignon (France), where I performed almost all the experiments of the thesis. In the study concerning the P. syringae diversity, we showed that the genetic diversity (investigated on strains isolated from a wide range of substrates) of this species complex is wider than what was previously reported by considering only strains isolated from diseased crops. In fact, we found that P. syringae is composed by 13 phylogroups. In this thesis I showed that the phylogroup 7 and 8, also called as P. viridiflava, are formed by two different Type Three Secretion Systems. However, the evolution of these two systems does not seem to be related with the ability of P. viridiflava to cause disease. In addition I showed that avrE was the only effector correlated with the pathogenicity; it seems to be necessary but not sufficient for strains to be pathogenic. In the study concerning the role of the environment as reservoirs of P. syringae pathogenic to kiwifruit, we demonstrated that strains from aquatic habitats are kiwifruit pathogens since they are able to multiply into the kiwifruit tissues as well as cause the bacterial canker disease. These environmental strains, such as the strains that cause the bacterial canker of kiwifruit, have an operon for the degradation of phenolic compounds. We then hypothesized that this operon is important during the kiwifruit vascularization. In addition, we demonstrated that the environmental strains share 18 effectors with the epidemic strains but they lack 13 of the effectors present in all the epidemic strains. We then hypothesized that less aggressive environmental strains can acquire new effectors by horizontal gene transfer and become new future epidemic strains. This scenario, as I described in the review article, could be regulated by a defective methyl-directed repair system. The understanding of why this system can be defective could provide insights on the emergence of new diseases caused by P. syringae or other pathogens. Pseudomonas syringae é un batterio patogeno di piante erbacee e legnose. Negli ultimi 20 anni piantepiù di 55 nuove malattie causate da questo fitopatogeno sono state descritte. Dato che recenti studi sull’ecologia di P. syringae hanno messo in evidenza la sua ubiquità in differenti habitat ambientali, domande riguardati il ruolo dell’ambiente come “reservoire” di linee genetiche patogene di P. syringae sono rapidamente emerse negli ultimi cinque anni. In questa tesi é stato fatto uno sforzo per comprendere quali meccanismi evolutivi possono entrare in gioco nell’evoluzione di ceppi patogeni di P. syringae e su come l’ambiente in sensu latu possa essere coinvolto nell’evoluzione di tratti connessi con la patogenicità. In particolare mi sono focalizzata su linee genetiche di P. syringae conosciute essere patogene per l’ actinidia. Come primo passo nella mia ricerca ho collaborato ad un lavoro sulla diversità di P. syringae nel laboratorio di Cindy Morris, INRA di Avignone-France) in cui ho condotto la maggior parte delle mie ricerche di tesi. Nel lavoro riguardante la diversità di P. syringae, abbiamo messo in evidenza che le diversità conosciuta fino ad oggi, e basata su ceppi isolati da piante di origine agraria, é molto sottostimata. Analizzando ceppi provenienti da tutti gli ambienti abbiamo trovato che il complesso P. syringae é costituito da 13 gruppi genetici. Nella mia tesi, in particolare, ho messo in evidenza che il gruppo 7 e 8, costituiti da ciò che viene chiamato P. viridiflava, sono formati da due diversi Type Three Secretion System. L’evoluzione di questi due sistemi non sembra però essere connessa con l’abilità di P. viridiflava in indurre la malattia. Inoltre abbiamo messo in risalto che l’unico effettore connesso con la patogenicità é l’AvrE. Nel lavoro riguardante il ruolo dell’ambiente come “reservoire” di patogeni dell’actinidia abbiamo dimostrato che ceppi isolati da ambienti acquatici rappresentano patogeni deboli ma capaci di crescere e sopravvivere in piante di actinidia allo stesso modo di ceppi che sono attualmente responsabili dell’epidemia del cancro batterico. Questi ceppi ambientali, come tutti i ceppi che causano il cancro batterico, hanno un operone per la degradazione di sostanze fenoliche, e abbiamo ipotizzato che questi geni siano importanti nella vascolarizzazione in tutte le infezioni di piante legnose. Inoltre abbiamo dimostrato che i ceppi ambientali condividono 18 effettori con i ceppi dell’epidemia ma ne mancano 13. Abbiamo quindi proposto che ceppi meno aggressivi provenienti da differenti substrati possano acquisire tramite trasferimento orizzontale nuovi effettori e quindi diventare più aggressivi e essere i rappresentanti di nuove future epidemie. Questo scenario evolutivo, come ho descritto nell’articolo di sintesi riguardante i meccanismi di evoluzione di nuove malattie emergenti, potrebbe essere regolato da un sistema di riparazione del DNA (methyl-directed mismatch repair system) difettoso. Capire il perché questo sistema a volte non funziona bene ci potrebbe aiutare nel capire e nel controllare l’emergenza di nuove malattie causate da P. syringae ed altri patogeni. Dottorato di ricerca in Protezione delle piante
- Published
- 2014
45. From the ecology of Pseudomonas syringae to probable scenarios of future disease emergence
- Author
-
Morris, Cindy E., Bartoli, Claudia, Lamichhane, Jay Ram, Monteil, Caroline, Berge, Odile, Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), and Tuscia University
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2014
46. From the ecology of Pseudomonas syringae to probable scenarios of future disease emergence
- Author
-
Bartoli, Claudia, Lamichhane, Jay-Ram, Monteil, Caroline, Berge, Odile, and Morris, Cindy E.
- Subjects
bactérie phytopathogène ,pouvoir pathogène ,écologie microbienne ,Biodiversité et Ecologie ,pseudomonas syringae ,lignée génétique ,maladie des plantes ,Agricultural sciences ,commensalisme ,habitat non agricole ,Biodiversity and Ecology ,diversité des populations ,bactérie saprophyte ,emergence de maladies ,réservoir de pathogènes ,pathologie végétale ,Sciences agricoles - Published
- 2014
47. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy
- Author
-
Lamichhane, Jay Ram, primary, Bartoli, Claudia, additional, and Varvaro, Leonardo, additional
- Published
- 2016
- Full Text
- View/download PDF
48. The Pseudomonas viridiflava phylogroups in the P. syringae species complex are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits
- Author
-
Bartoli, Claudia, Berge, Odile, Monteil, Caroline, Guilbaud, Caroline, Balestra, Giorgio M., Varvaro, Leonardo, Jones, Corbin D., Dangl, Jeffery L., Baltrus, David A, Sands, David, Morris, Cindy E., Università degli studi della Tuscia [Viterbo], Unité de Pathologie Végétale (PV), Institut National de la Recherche Agronomique (INRA), Department of Biology - Carolina Center for Genome Sciences, University of North Carolina [Chapel Hill] (UNC), University of North Carolina System (UNC)-University of North Carolina System (UNC), University of North Carolina System (UNC), University of Arizona, Department Plant Sciences and Plant Pathology [Bozeman], Montana State University (MSU), Tuscia University (Italy), Italian Minister of Agriculture and Food Polices (MIPAAF), Project ACTINIDIA - OIGA [247], NIH [R01-GM066025], Howard Hughes Medical Institute, and Gordon and Betty Moore Foundation [GBMF3030]
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,Genomic Islands ,Genotype ,Virulence ,Adaptation, Biological ,Genetic Variation ,Pseudomonas syringae ,Gene Expression Regulation, Bacterial ,Phenotype ,Bacterial Proteins ,Genetic Loci ,Pseudomonas ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Bacterial Secretion Systems ,Genome, Bacterial ,Phylogeny ,Plant Diseases ,Solanum tuberosum - Abstract
International audience; As a species complex, Pseudomonas syringae exists in both agriculture and natural aquatic habitats. P. viridiflava, a member of this complex, has been reported to be phenotypically largely homogenous. We characterized strains from different habitats, selected based on their genetic similarity to previously described P. viridiflava strains. We revealed two distinct phylogroups and two different kinds of variability in phenotypic traits and genomic content. The strains exhibited phase variation in phenotypes including pathogenicity and soft rot on potato. We showed that the presence of two configurations of the Type III Secretion System [single (S-PAI) and tripartite (T-PAI) pathogenicity islands] are not correlated with pathogenicity or with the capacity to induce soft rot in contrast to previous reports. The presence/absence of the avrE effector gene was the only trait we found to be correlated with pathogenicity of P. viridiflava. Other Type III secretion effector genes were not correlated with pathogenicity. A genomic region resembling an exchangeable effector locus (EEL) was found in S-PAI strains, and a probable recombination between the two PAIs is described. The ensemble of the variability observed in these phylogroups of P. syringae likely contributes to their adaptability to alternating opportunities for pathogenicity or saprophytic survival.
- Published
- 2013
49. A Genomic Map of Climate Adaptation in <italic>Arabidopsis thaliana</italic> at a Micro-Geographic Scale.
- Author
-
Frachon, Léa, Bartoli, Claudia, Carrère, Sébastien, Bouchez, Olivier, Chaubet, Adeline, Gautier, Mathieu, Roby, Dominique, and Roux, Fabrice
- Subjects
ARABIDOPSIS thaliana ,CLIMATE change ,PHYTOGEOGRAPHY ,PHYSIOLOGY - Abstract
Understanding the genetic bases underlying climate adaptation is a key element to predict the potential of species to face climate warming. Although substantial climate variation is observed at a micro-geographic scale, most genomic maps of climate adaptation have been established at broader geographical scales. Here, by using a Pool-Seq approach combined with a Bayesian hierarchical model that control for confounding by population structure, we performed a genome–environment association (GEA) analysis to investigate the genetic basis of adaptation to six climate variables in 168 natural populations of
Arabidopsis thaliana distributed in south-west of France. Climate variation among the 168 populations represented up to 24% of climate variation among 521 European locations whereA. thaliana inhabits. We identified neat and strong peaks of association, with most of the associated SNPs being significantly enriched in likely functional variants and/or in the extreme tail of genetic differentiation among populations. Furthermore, genes involved in transcriptional mechanisms appear predominant in plant functions associated with local climate adaptation. Globally, our results suggest that climate adaptation is an important driver of genomic variation inA. thaliana at a small spatial scale and mainly involves genome-wide changes in fundamental mechanisms of gene regulation. The identification of climate-adaptive genetic loci at a micro-geographic scale also highlights the importance to include within-species genetic diversity in ecological niche models for projecting potential species distributional shifts over short geographic distances. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
50. Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes.
- Author
-
Miaoyan Wang, Roux, Fabrice, Bartoli, Claudia, Huard-Chauveau, Carine, Meyer, Christopher, Lee, Hana, Roby, Dominique, McPeek, Mary Sara, and Bergelson, Joy
- Subjects
GENOMES ,GENETIC models ,NATURAL immunity ,GENETIC testing ,COMMUNICABLE diseases - Abstract
Infectious diseases are often affected by specific pairings of hosts and pathogens and therefore by both of their genomes. The integration of a pair of genomes into genome-wide association mapping can provide an exquisitely detailed view of the genetic landscape of complex traits. We present a statistical method, ATOMM (Analysis with a Two-Organism Mixed Model), that maps a trait of interest to a pair of genomes simultaneously; this method makes use of whole-genome sequence data for both host and pathogen organisms. ATOMM uses a two-way mixed-effect model to test for genetic associations and cross-species genetic interactions while accounting for sample structure including interactions between the genetic backgrounds of the two organisms. We demonstrate the applicability of ATOMM to a joint association study of quantitative disease resistance (QDR) in the Arabidopsis thaliana–Xanthomonas arboricola pathosystem. Our method uncovers a clear host–strain specificity in QDR and provides a powerful approach to identify genetic variants on both genomes that contribute to phenotypic variation. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.