308 results on '"Barnola, J. -M."'
Search Results
2. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica
- Author
-
Petit, JR, Jouzel, J, Raynaud, D, Barkov, NI, Barnola, J-M, Basile, I, Bender, M, Chappellaz, J, Davis, M, Delaygue, G, Delmotte, M, Kotlyakov, VM, Legrand, M, Lipenkov, VY, Lorius, C, PÉpin, L, Ritz, C, Saltzman, E, and Stievenard, M
- Subjects
Climate Action ,General Science & Technology - Abstract
The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.
- Published
- 1999
3. International Effort Helps Decipher Mysteries of Paleoclimate from Antarctic Ice Cores
- Author
-
Abynov, S. S., Angelis, M., Barkov, B. I., Barnola, J. M., Bender, M., Chapellaz, J., Chistiakov, V. K., Duval, P., Genthon, C., Jouzel, J., Kotlyakov, V. M., Korotkevitch, Ye. S., Kudriashov, B. B., Lipenkov, V. Y., Legrand, M., Lorius, C., Malaize, B., Martinerie, P., Nikolayev, V. I., Petit, J. R., Raynaud, D., Raisbeck, G., Ritz, C., Salamantin, A. N., Saltzman, E., Sowers, T., Stievenard, M., Vostretsov, R. N., Wahlen, M., Waelbroeck, C., Yiou, F., and Yiou, P.
- Subjects
Antartica ,ice core ,paleoclimate ,atmospheres ,ice - Abstract
Ice cores drilled at Vostok Station, Antarctica, and studied over the past 10 years by Russia, France, and the United States (Figure 1) are providing a wealth of information about past climate and environmental changes over more than a full glacial-interglacial cycle. The ice cores show that East Antarctica was colder and drier during glacial periods than during the Holocene and that large-scale atmospheric circulation was more vigorous during glacial times. They also support evidence from deep-sea sediment studies favoring orbital forcing of Pleistocene climate, reveal direct correlations of carbon dioxide and methane concentrations with temperature, and indicate how the accumulation of trace compounds have changed through time.
- Published
- 1995
4. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica
- Author
-
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M., Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M.
- Abstract
The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.
- Published
- 2022
- Full Text
- View/download PDF
5. Comment on 'greenland-Antarctic phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores' by C. Wunsch
- Author
-
Severinghaus, J.P., Jouzel, J., Caillon, N., Stocker, T., Huber, C., Leuenberger, M., Alley, R.B., Chappellaz, J., Barnola, J.-M., Brook, E.J., Wunsch, C., Severinghaus, J.P., Jouzel, J., Caillon, N., Stocker, T., Huber, C., Leuenberger, M., Alley, R.B., Chappellaz, J., Barnola, J.-M., Brook, E.J., and Wunsch, C.
- Published
- 2022
- Full Text
- View/download PDF
6. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years
- Author
-
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.
- Published
- 2007
- Full Text
- View/download PDF
7. Changes in atmospheric CO 2 and its carbon isotopic ratio during the penultimate deglaciation
- Author
-
Lourantou, A., Chappellaz, J., Barnola, J.-M., Masson-Delmotte, V., and Raynaud, D.
- Published
- 2010
- Full Text
- View/download PDF
8. The Ice Record of Greenhouse Gases
- Author
-
Raynaud, D., Jouzel, J., Barnola, J. M., Chappellaz, J., Delmas, R. J., and Lorius, C.
- Published
- 1993
9. Long-Term Climatic and Environmental Records from Antarctic Ice
- Author
-
Lorius, C., primary, Barnola, J-M., additional, Legrand, M., additional, Petit, J. R., additional, Raynaud, D., additional, Ritz, C., additional, Barkov, N., additional, Korotkevich, Y. S., additional, Petrov, V. N., additional, Genthon, C., additional, Jouzel, J., additional, Kotlyakov, V. M., additional, Yiou, F., additional, and Raisbeck, G., additional
- Published
- 2013
- Full Text
- View/download PDF
10. One-to-one coupling of glacial climate variability in Greenland and Antarctica
- Author
-
Barbante, C., Barnola, J.-M., Becagli, S., Beer, J., Bigler, M., Boutron, C., Blunier, T., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Debret, M., Delmonte, B., Dick, D., Falourd, S., Faria, S., Federer, U., Fischer, H., Freitag, J., Frenzel, A., Fritzsche, D., Fundel, F., Gabrielli, P., Gaspari, V., Gersonde, R., Graf, W., Grigoriev, D., Hamann, I., Hansson, M., Hoffmann, G., Hutterli, M. A., Huybrechts, P., Isaksson, E., Johnsen, S., Jouzel, J., Kaczmarska, M., Karlin, T., Kaufmann, P., Kipfstuhl, S., Kohno, M., Lambert, F., Lambrecht, Anja, Lambrecht, Astrid, Landais, A., Lawer, G., Leuenberger, M., Littot, G., Loulergue, L., Luthi, D., Maggi, V., Marino, F., Masson-Delmotte, V., Meyer, H., Miller, H., Mulvaney, R., Narcisi, B., Oerlemans, J., Oerter, H., Parrenin, F., Petit, J.-R., Raisbeck, G., Raynaud, D., Rothlisberger, R., Ruth, U., Rybak, O., Severi, M., Schmitt, J., Schwander, J., Siegenthaler, U., Siggaard-Andersen, M.-L., Spahni, R., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J.-L., Traversi, R., Udisti, R., Valero-Delgado, F., van den Broeke, M. R., van de Wal, R. S. W., Wagenbach, D., Wegner, A., Weiler, K., Wilhelms, F., Winther, J.-G., and Wolff, E.
- Abstract
Author(s): EPICA Community Members; EPICA Community Members; C. Barbante [1, 2]; J.-M. Barnola [3]; S. Becagli [4]; J. Beer [5]; M. Bigler [6, 7]; C. Boutron [3]; T. Blunier [6]; [...]
- Published
- 2006
- Full Text
- View/download PDF
11. Climatic interpretation of the recently extended Vostok ice records
- Author
-
Jouzel, J., Waelbroeck, C., Malaize, B., Bender, M., Petit, J. R., Stievenard, M., Barkov, N. I., Barnola, J. M., King, T., Kotlyakov, V. M., Lipenkov, V., Lorius, C., Raynaud, D., Ritz, C., and Sowers, T.
- Published
- 1996
- Full Text
- View/download PDF
12. Marine Isotope Stage (MIS) 11 in the Vostok ice core: CO2 forcing and stability of East Antarctica
- Author
-
Raynaud, D., primary, Loutre, M. F., additional, Ritz, C., additional, Chappellaz, J., additional, Barnola, J-M., additional, Jouzel, J., additional, Lipenkov, V. Y., additional, Petit, J-R., additional, and Vimeux, F., additional
- Published
- 2003
- Full Text
- View/download PDF
13. Variations in Atmospheric N2 O Concentration During Abrupt Climatic Changes
- Author
-
Fluckiger, J., Dallenbach, A., Blunier, T., Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.-M.
- Published
- 1999
14. Anomalous flow below 2700 m in the EPICA Dome C ice core detected using δ18O of atmospheric oxygen measurements
- Author
-
Dreyfus, G. B., Parrenin, F., Lemieux-Dudon, B., Durand, G., Masson-Delmotte, V., Jouzel, J., Barnola, J.-M., Panno, L., Spahni, R., Tisserand, A., Siegenthaler, U., and Leuenberger, M.
- Abstract
While there are no indications of mixing back to 800 000 years in the EPICA Dome C ice core record, comparison with marine sediment records shows significant differences in the timing and duration of events prior to stage 11 (~430 ka, thousands of years before 1950). A relationship between the isotopic composition of atmospheric oxygen (δ18O of O2, noted δ18Oatm) and daily northern hemisphere summer insolation has been observed for the youngest four climate cycles. Here we use this relationship with new δ18O of O2 measurements to show that anomalous flow in the bottom 500 m of the core distorts the duration of events by up to a factor of 2. By tuning δ18Oatm to orbital precession we derive a corrected thinning function and present a revised age scale for the interval corresponding to Marine Isotope Stages 11–20 in the EPICA Dome C ice core. Uncertainty in the phasing of δ18Oatm with respect to insolation variations in the precession band limits the accuracy of this new agescale to ±6 kyr (thousand of years). The previously reported ~30 kyr duration of interglacial stage 11 is unchanged. In contrast, the duration of stage 15.1 is reduced by a factor of 2, from 31 to 16 kyr.
- Published
- 2018
15. The Last Deglaciation in Antarctica: Further Evidence of a “Younger Dryas” Type Climatic Event
- Author
-
Jouzel, J., primary, Petit, J. R., additional, Barkov, N. I., additional, Barnola, J. M., additional, Chappellaz, J., additional, Ciais, P., additional, Kotkyakov, V. M., additional, Lorius, C., additional, Petrov, V. N., additional, Raynaud, D., additional, and Ritz, C., additional
- Published
- 1992
- Full Text
- View/download PDF
16. CO2 and Climate: Information from Antarctic Ice Core Studies
- Author
-
Raynaud, D., Barnola, J. M., Ghazi, A., editor, and Fantechi, R., editor
- Published
- 1986
- Full Text
- View/download PDF
17. Variations in Atmospheric [N.sub.2]O Concentration During Abrupt Climatic Changes
- Author
-
Fluckiger, J., Dallenbach, A., Blunier, T., Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.-M.
- Subjects
Greenhouse gases -- Analysis ,Nitrous oxide -- Analysis ,Science and technology ,Analysis - Abstract
Nitrous oxide ([N.sub.2]O) is an important greenhouse gas that is presently increasing at a rate of 0.25 percent per year. Records measured along two ice cores from Summit in Central Green[and provide information about variations in atmospheric [N.sub.2]O concentration in the past. The record covering the past millennium reduces the uncertainty regarding the preindustrial concentration. Records covering the last glacial-interglacial transition and a fast climatic change during the last ice age show that the [N.sub.2]O concentration changed in parallel with fast temperature variations in the Northern Hemisphere. This provides important information about the response of the environment to global climatic changes., Nitrous oxide ([N.sub.2]O) is an atmospheric trace gas with a relatively long lifetime of about 120 years (1). The main sources of [N.sub.2]O in preindustrial times have been tropical soils, [...]
- Published
- 1999
18. Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
- Author
-
Tison, Jean-Louis, de Angelis, M., Littot, G., Wolff, Eric, Ficher, Hubertus, Hansson, M., Bigler, Matthias, Udisti, Roberto, Wegner, Anna, Jouzel, Jean, Stenni, Barbara, Johnsen, Sigfus J., Masson-Delmotte, Valerie, Landais, Amaelle, Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J. R., Delmonte, Barbara, Dreyfus, G., Dahl-Jensen, Dorthe, Durand, G., Bereiter, Bernhard, Schilt, A., Spahni, Renato, Pol, K., Lorrain, R., Souchez, R., Samyn, D., Tison, Jean-Louis, de Angelis, M., Littot, G., Wolff, Eric, Ficher, Hubertus, Hansson, M., Bigler, Matthias, Udisti, Roberto, Wegner, Anna, Jouzel, Jean, Stenni, Barbara, Johnsen, Sigfus J., Masson-Delmotte, Valerie, Landais, Amaelle, Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J. R., Delmonte, Barbara, Dreyfus, G., Dahl-Jensen, Dorthe, Durand, G., Bereiter, Bernhard, Schilt, A., Spahni, Renato, Pol, K., Lorrain, R., Souchez, R., and Samyn, D.
- Abstract
An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from inco
- Published
- 2015
19. Can we retrieve a clear paleoclimatic signal from the deeper part of the EPICA Dome C ice core?
- Author
-
Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmontte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J.-R., Delmonte, B., Dreyfuss, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., Samyn, D., Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmontte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J.-R., Delmonte, B., Dreyfuss, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., and Samyn, D.
- Abstract
An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high resolution chemistry, ice texture) of the bottom 60m of the EPICA Dome C ice core from central Antarctica. These bottom layers have been subdivided in two sections: the lower 12m showing visible solid inclusions (basal ice) and the 48m above which we refer to as “deep ice”. Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end-term from a previous/ initial ice sheet configuration) can explain the observed bottom ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate “from within”, and not from incorporation processes of allochtone material at the ice–bedrock interface. We also discuss how th
- Published
- 2015
20. Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
- Author
-
Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, Margareta, Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J. -M., Petit, J. -R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., Samyn, D., Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, Margareta, Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J. -M., Petit, J. -R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., and Samyn, D.
- Abstract
An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (delta D-delta O-18(ice), delta O-18(atm), total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the basal clean ice facies. Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate from within, a
- Published
- 2015
- Full Text
- View/download PDF
21. Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
- Author
-
Tison, J. -L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J. -M., Petit, J. -R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., Samyn, D., Tison, J. -L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J. -M., Petit, J. -R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., and Samyn, D.
- Published
- 2015
22. Eight glacial cycles from an Antarctic ice core
- Author
-
EPICA Community Members, Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J. M., Bigler, M., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, Hubertus, Flückiger, J., Hansson, M. E., Huybrechts, Philippe, Jugie, G., Johnsen, S. J., Jouzel, J., Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. C., Longinelli, A., Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, Heinrich, Mulvaney, R., Oerlemans, J., Oerter, Hans, Orombelli, G., Parrenin, F., Peel, D. A., Petit, J. R., Raynaud, D., Ritz, C., Ruth, Urs, Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tabacco, I. E., Udisti, R., Wal, R. S. W., Broeke, M., Weiss, J., Wilhelms, Frank, Winther, Jan-Gunnar, Wolff, E. W., Zucchelli, M., Augustin, L, Barbante, C, Barnes, P, Barnola, J, Bigler, M, Castellano, E, Cattani, O, Chappellaz, J, Dahljensen, D, Delmonte, B, Dreyfus, G, Durand, G, Falourd, S, Fischer, H, Fluckiger, J, Hansson, M, Huybrechts, P, Jugie, R, Johnsen, S, Jouzel, J, Kaufmann, P, Kipfstuhl, J, Lambert, F, Lipenkov, V, Littot, G, Longinelli, A, Lorrain, R, Maggi, V, Masson Delmotte, V, Miller, H, Mulvaney, R, Oerlemans, J, Oerter, H, Orombelli, G, Parrenin, F, Peel, D, Petit, J, Raynaud, D, Ritz, C, Ruth, U, Schwander, J, Siegenthaler, U, Souchez, R, Stauffer, B, Steffensen, J, Stenni, B, Stocker, T, Tabacco, I, Udisti, R, van de Wal, R, van den Broeke, M, Weiss, J, Wilhelms, F, Winther, J, Wolff, E, Zucchelli, M, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J. M., Bigler, M., Castellano, E., Cattani, O., Chappellaz, J., Dahl Jensen, D., Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Flückiger, J., Hansson, M. E., Huybrechts, P., Jugie, G., Johnsen, S. J., Jouzel, J., Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. C., Longinelli, A., Lorrain, R., Maggi, V., Masson Delmotte, V., Miller, H., Mulvaney, R., Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel, D. A., Petit, J. R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, Barbara, Stocker, T. F., Tabacco, I. E., Udisti, R., van de Wal, R. S. W., van den Broeke, M., Weiss, J., Wilhelms, F., Winther, J. G., Wolff, E. W., and Zucchelli, M.
- Subjects
termination ,marine environment ,deep ice cores ,010504 meteorology & atmospheric sciences ,ice ,glacial cycle ,010502 geochemistry & geophysics ,01 natural sciences ,glacial-interglacial cycles ,Ice core ,deuterium profile ,Dome Concordia ,Ice age ,Flandrian interglacial ,Glacial period ,Marine applications ,EPICA Dome C ,Antarctica ,paleoclimate ,terminations ,Climatology ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,interglacial period ,Multidisciplinary ,article ,Oceanography ,priority journal ,greenhouse gas ,Interglacial ,environmental temperature ,Climate state ,Geology ,glacier ,deep ice core ,Climate change ,Greenhouse effect ,Quaternary ,Climate feedbacks ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,0105 earth and related environmental sciences ,glacial-interglacial cycle ,paleoclimatology ,East Antarctica ,Greenhouse and icehouse Earth ,Antarctica Vostok ice core ,13. Climate action ,Settore GEO/08 - Geochimica e Vulcanologia ,ice core record ,Physical geography ,ice core ,Glacial cycles ,global climate - Abstract
International audience; The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long--28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.
- Published
- 2004
23. Gravitational Separation in Polar Firn
- Author
-
Craig, Harmon, Raynaud, D., Barnola, J. M., Chappellaz, J., Delmas, R. J., Lorius, C., Jouzel, J., and Schwander, J.
- Published
- 1993
24. Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adélie, Antarctica)
- Author
-
Jean-Louis Tison, Petit, J. -R, Barnola, J. -M, and Mahaney, W. C.
- Subjects
010506 paleontology ,010504 meteorology & atmospheric sciences ,01 natural sciences ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
The debris-rich ice from the bottom 6 m of the 82 m deep CAROLINE (Coastal Antarctic Record of Last Interglacial Natural Environment) ice core reaching bedrock, and from five 2 m long surface cores at Moraine Prudhomme in Terre Adélie (Antarctica) is described and compared to debris-laden ice from the core-drilling site DIO. Isotopic, total-gas content, CO2 concentration and SEM investigations of embedded particles, together with ice textures and fabrics, rule out “pressure-melting” regelation around bed obstacles or “freezing-on” as possible mechanisms for the debris entrainment at the ice-bedrock interface. It is suggested that the debris entrapment by purely mechanical means (e.g. shearing) is an efficient process in forming basal ice layers (BIL) at sub-freezing temperatures. This process might be dominant at the margin of the Antarctic ice sheet where no ice shelf exists and where a ramp terminus or a buttressing coastal relief induces compressive flow.
- Published
- 1993
25. Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
- Author
-
Tison, J.-L., primary, de Angelis, M., additional, Littot, G., additional, Wolff, E., additional, Fischer, H., additional, Hansson, M., additional, Bigler, M., additional, Udisti, R., additional, Wegner, A., additional, Jouzel, J., additional, Stenni, B., additional, Johnsen, S., additional, Masson-Delmotte, V., additional, Landais, A., additional, Lipenkov, V., additional, Loulergue, L., additional, Barnola, J.-M., additional, Petit, J.-R., additional, Delmonte, B., additional, Dreyfus, G., additional, Dahl-Jensen, D., additional, Durand, G., additional, Bereiter, B., additional, Schilt, A., additional, Spahni, R., additional, Pol, K., additional, Lorrain, R., additional, Souchez, R., additional, and Samyn, D., additional
- Published
- 2015
- Full Text
- View/download PDF
26. Supplementary material to "Can we retrieve a clear paleoclimatic signal from the deeper part of the EPICA Dome C ice core?"
- Author
-
Tison, J.-L., primary, de Angelis, M., additional, Littot, G., additional, Wolff, E., additional, Fischer, H., additional, Hansson, M., additional, Bigler, M., additional, Udisti, R., additional, Wegner, A., additional, Jouzel, J., additional, Stenni, B., additional, Johnsen, S., additional, Masson-Delmotte, V., additional, Landais, A., additional, Lipenkov, V., additional, Loulergue, L., additional, Barnola, J.-M., additional, Petit, J.-R., additional, Delmonte, B., additional, Dreyfus, G., additional, Dahl-Jensen, D., additional, Durand, G., additional, Bereiter, B., additional, Schilt, A., additional, Spahni, R., additional, Pol, K., additional, Lorrain, R., additional, Souchez, R., additional, and Samyn, D., additional
- Published
- 2015
- Full Text
- View/download PDF
27. Can we retrieve a clear paleoclimatic signal from the deeper part of the EPICA Dome C ice core?
- Author
-
Tison, J.-L., primary, de Angelis, M., additional, Littot, G., additional, Wolff, E., additional, Fischer, H., additional, Hansson, M., additional, Bigler, M., additional, Udisti, R., additional, Wegner, A., additional, Jouzel, J., additional, Stenni, B., additional, Johnsen, S., additional, Masson-Delmotte, V., additional, Landais, A., additional, Lipenkov, V., additional, Loulergue, L., additional, Barnola, J.-M., additional, Petit, J.-R., additional, Delmonte, B., additional, Dreyfus, G., additional, Dahl-Jensen, D., additional, Durand, G., additional, Bereiter, B., additional, Schilt, A., additional, Spahni, R., additional, Pol, K., additional, Lorrain, R., additional, Souchez, R., additional, and Samyn, D., additional
- Published
- 2015
- Full Text
- View/download PDF
28. Constraints on the atmospheric CO2 deglacial rise based on its δ13CO2 evolution
- Author
-
Lourantou, A., Lavric, J. V., Köhler, Peter, Barnola, J.-M., Michel, E., Paillard, D., Raynaud, D., and Chappellaz, J.
- Abstract
The analysis of air bubbles trapped in polar ice permits the reconstruction of atmospheric evolution of greenhouse gases, such as carbon dioxide (CO2 ), on various timescales. Within this study, the simultaneous analysis of the CO2 mixing ratio and its stable carbon isotope composition (δ 13 CO2 ) over the last two deglaciations allows us to better constrain the global carbon cycle. Based on the different isotopic signatures of the ocean and the terrestrial biosphere (major reservoirs responsible for the CO2 oscillations on a glacial interglacial scale), δ 13 CO2 contributes in distinguishing the major sources of CO2 for the studied periods. The new LGGE analytical method applied to samples from the EPICA / Dome C ice core provides a 1-sigma uncertainty over 3 measurements on the same extracted gas of 0.98 and 1.87 ppmv for CO2 , for the last and penultimate deglaciation respectively, accompanied by an averaged 0.1 1-sigma for δ 13 CO2 for both periods. This allows us to reveal significant changes in the signal through time. The time resolution of our results (∼250 and ∼730 years, for last and penultimate deglaciation) allows us to divide Terminations (T) into sub-periods, based on the different slope of CO2 rate of changes. The ∼80 ppmv CO2 increase throughout TI, coherent with previously published studies, is accompanied by a ∼0.6 decrease of δ 13 CO2 with additional clear trends during the different sub-periods. TII shows similar trends as for TI but of a larger magnitude: we therefore observe a ∼110 ppmv rise associated with an overall ∼0.9 decrease. In addition, δ 13 CO2 appears overall lighter during TII than TI. The two datasets are jointly evaluated using two C cycle box models. We conclude that oceanic processes involving stratification breakdown of the austral ocean, combined with reduction of sea ice cover and biological pump, can explain a large part of the signal. In addition, continental biosphere buildup during the Bolling/Allerod and thermohaline circulation fluctuations could have imprinted our signals in the second half of TI.
- Published
- 2009
29. Constraints on the atmospheric carbon dioxide (CO2) deglacial rise based on its stable carbon isotopic ratio increase (δ13CO2)
- Author
-
Lourantou, A., Lavric, J. V., Barnola, J. M., Michel, E., Köhler, Peter, Paillard, D., Raynaud, D., and Chappellaz, J.
- Abstract
The analysis of air bubbles trapped in polar ice permits the reconstruction of atmospheric components over various timescales. Past evolution of greenhouse gases, such as carbon dioxide (CO2), lies on the frontline of paleorecords understanding. Within this study, the glacial interglacial oscillations of CO2 will be examined for the last 160,000 years. This period encompasses two deglaciations.The simultaneous analysis of the stable carbon isotope composition (δ13CO2) allows to better constrain the global carbon cycle. Based on the different isotopic signatures of the ocean and the terrestrial biosphere (major reservoirs responsible for the CO2 oscillations on a glacial interglacial scale), δ13CO2 contributes in distinguishing the major sources of CO2 for the studied periods.The LGGE method of gas extraction from ice was used in combination with a new instrumental setup to investigate the CO2 mixing ratio and its stable carbon isotope composition in air from the two last deglaciations at the EPICA Dome Concordia site in Antarctica. Being challenged from the different ice properties corresponding to the two major periods (being in bubble form for the last and in clathrate form for the penultimate deglaciation), the resulting averaged 3-expansion 1-sigma uncertainty (0.98 and 1.87 ppmv for CO2, respectively), accompanied by an averaged 0.1 1-sigma for δ13CO2 for both periods were satisfying enough to exclude any artefact scenario in the experimental protocol. The resolution of our results (~250 and ~730 years, for last and penultimate deglaciation) allows us to divide Terminations (T) into sub-periods, based on the different slope CO2 experiences. For TI, the four sub-periods revealed climatic events for both hemispheres (e.g.: Heinrich I, Bölling/Alleröd, Antarctic Cold Reversal, Younger Dryas), as also shown from polar and oceanic proxies. For the case of TII, a similar dynamic pattern between CO2 and δ13CO2 is seen as for TI, but the synchronization of oceanic events in our atmospheric record is more delicate due to higher data uncertainties one encounters for such a time scale.Our results show a ~80 ppmv CO2 increase throughout TI, which is coherent with previously published studies. The δ13CO2 shows a deglacial ~0.6 decrease accompanying the CO2 rise, showing clear trends during the different sub-periods. TII shows similar trends as for TI but of a larger magnitude: we therefore observe a ~110 ppmv rise associated with a ~0.9 decrease. Several scenarii can explain the abrupt deglacial CO2 increase, but there is presently no consensus on the exact causes and their respective role. Still, it is presumed that the ocean reservoir contributes the most. As a first interpretation of the obtained TI coupled CO2 and δ13CO2 dataset, the use of two C cycle box models is applied, validating the initial dominant oceanic role. The use of polar and oceanic proxies for the atmosphere and the ocean, superposed with our atmospheric signal should provide some responses on the similarities and differences of both deglaciations. Similarities potentially concern forcing factors and the amplifying role of the climatic system towards the external forcing, while differences mainly concern the different relative timing and magnitudes.
- Published
- 2009
30. CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating
- Author
-
BARNOLA, J. -M., PIMIENTA, P., RAYNAUD, D., and KOROTKEVICH, Y. S.
- Subjects
Atmospheric Science - Abstract
Interpretation of the past CO2 variations recorded in polar ice during the large climatic transitions requires an accurate determination of the air-ice age difference. For the Vostok core, the age differences resulting from different assumptions on the firn densification process are compared and a new procedure is proposed to date the air trapped in this core. The penultimate deglaciation is studied on the basis of this new air dating and new CO2 measurements. These measurements and results obtained on other ice cores indicate that at the beginning of the deglaciations, the CO2 increase is either in phase or lags by less than about 1000 years with respect to the Antarctic temperature, while it clearly lags the temperature at the onset of the last glaciation.DOI: 10.1034/j.1600-0889.1991.t01-1-00002.x
- Published
- 1991
31. A detailed atmospheric carbon isotopic constraint on the causes of the deglacial CO2 increase
- Author
-
Lourantou, A., Lavric, J. V., Köhler, Peter, Barnola, J. M., Michel, E., Paillard, D., Raynaud, D., and Chappellaz, J.
- Abstract
Paleo-environmental records and extensive modeling studies have demonstrated thatthe Sahara was largely covered by grass and steppe vegetation in the early to midHolocene. The orbitally controlled incoming summer insolation is the primary forcingfactor during the Holocene. It is well-documented that internal feedback-mechanismsbetween the vegetation and the atmosphere-ocean system caused a sudden shift fromthe vegetated humid Sahara state to a arid desert climate about 50004000 years ago.Proxy evidence suggests also an abrupt onset of the African Humid Period between14,000 and 11,000 yr BP. However, the attribution of the rapid onset to orbitally driveninsolation anomalies or to the Bølling-Allerød, Younger- Dryas transitions is non-trivial. Here we show in transient simulations with climate and vegetation modelsof different complexity that the abrupt change of the African Monsoon/vegetationsystem from dry/deserted glacial state to wet/green conditions is accelerated by thevegetation-albedo feedback. The non-linear response of the climate-vegetation sys-tem to precessional forcing leads to a rapid onset of the African Humid Period at∼11,000 yr BP.
- Published
- 2008
32. Constraints on the causes of CO2 rise during deglaciations: atmospheric stable carbon isotope ratio of CO2 from Antarctic ice cores
- Author
-
Lourantou, A., Lavric, J. V., Schaefer, H., Köhler, Peter, Barnola, J. M., Michel, E., Paillard, D., Raynaud, D., and Chappellaz, J.
- Abstract
The analysis of air bubbles trapped in polar ice permits the reconstruction of the evo-lution of major greenhouse gases over various timescales. This study leans on thepast behaviour of the most important human-induced greenhouse gas, carbon dioxide(CO2). The past origin of CO2 is better comprehended when studying concomitantlythe evolution of its stable carbon isotope composition, as it is affected by various frac-tionation processes in and between carbon reservoirs.The LGGE dry extraction method of gases occluded in ice was used in combinationwith a new instrumental setup to investigate the CO2 mixing ratio and its stable car-bon isotope composition (delta13CO2) in air from the last deglaciation at the EPICADome Concordia site (Antarctica). The resolution of our results (250 years in average)allows us to divide Termination I (TI) into four sub-periods, each representing differ-ent climatic features at the Earth surface (Heinrich I, Bølling/Ållerød, Antarctic ColdReversal, Younger Dryas). We observe that CO2 and delta13CO2 are not correlated.Delta13CO2 shows positive and negative excursions associated with changes in thegrowth rate of atmospheric CO2. This illustrates the dynamic character of the carboncycle and its coupling to climate change during the deglaciation. The use of two car-bon cycle box models highlight oceanic mechanisms as the major contributors to theCO2 evolution during these periods of TI, and the terrestrial biosphere for the warmBølling/Ållerød event.We will also present pioneering delta13CO2 data obtained in the course of the penul-timate deglaciation (TII); this is expected to bring some more light in the carbon cyclequestion during glacial-interglacial transitions although the existing challenge on icephysics (clathrate ice for TII vs bubbly ice for TI) should not be neglected.
- Published
- 2008
33. Anomalous flow below 2700 m in the EPICA Dome C ice core detected using d18O of atmospheric oxygen measurements
- Author
-
Dreyfus, G. B., Parrenin, F., Lemieux-Dudon, B., Durand, Geoffroy, Masson-Delmotte, Valérie, Jouzel, Jean, Barnola, J.-M., Panno, L., Spahni, R., Tisserand, A., Siegenthaler, U., Leuenberger, M., Institut Pierre-Simon-Laplace (IPSL), École normale supérieure - Paris (ENS Paris)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National d'Études Spatiales [Toulouse] (CNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Department of Geosciences [Princeton], Princeton University, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Physics Institute, Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), École normale supérieure - Paris (ENS-PSL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and EGU, Publication
- Subjects
[SDU]Sciences of the Universe [physics] ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Earth Science ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,[SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; While there are no indications of mixing back to 800 000 years in the EPICA Dome C ice core record, comparison with marine sediment records shows significant differences in the timing and duration of events prior to stage 11 (~430 ka, thousands of years before 1950). A relationship between the isotopic composition of atmospheric oxygen (d18O of O2, noted d18Oatm) and daily northern hemisphere summer insolation has been observed for the youngest four climate cycles. Here we use this relationship with new d18O of O2 measurements to show that anomalous flow in the bottom 500 m of the core distorts the duration of events by up to a factor of 2. By tuning d18Oatm to orbital precession we derive a corrected thinning function and present a revised age scale for the interval corresponding to Marine Isotope Stages 11–20 in the EPICA Dome C ice core. Uncertainty in the phasing of d18Oatm with respect to insolation variations in the precession band limits the accuracy of this new agescale to ±6 kyr (thousand of years). The previously reported ~30 kyr duration of interglacial stage 11 is unchanged. In contrast, the duration of stage 15.1 is reduced by a factor of 2, from 31 to 16 kyr.
- Published
- 2007
34. Palaeoclimate
- Author
-
Jansen, Eystein, Overpeck, Jonathan, Briffa, Keith R., Duplessy, Jean-Claude, Joos, Fortunat, Masson-Delmotte, Valérie, Olago, Daniel, Otto-Bliesner, Bette, Peltier, W. Richard, Rahmstorf, Stefan, Ramesh, Rengaswamy, Raynaud, Dominique, Rind, David, Solomina, Olga, Villalba, Ricardo, Zhang, De’er, Barnola, J.-M., Bauer, E., Brady, E., Chandler, M., Cole, J., Cook, E., Cortijo, E., Dokken, T., Fleitmann, D., Kageyama, M., Khodri, M., Labeyrie, L., Laine, A., Levermann, A., Lie, Ø., Loutre, M.-F., Matsumoto, K., Monnin, E., Mosley-Thompson, E., Muhs, D., Muscheler, R., Osborn, T., Paasche, Ø., Parrenin, F., Plattner, G.-K., Pollack, H., Spahni, R., Stott, L.D., Thompson, L., Waelbroeck, C., Wiles, G., Zachos, J., Zhengteng, G., Jouzel, Jean, Mitchell, John, Solomon, S, Qin, D, Manning, M, Chen, Z, Marquis, M, Averyt, K, Tignor, M, Miller, H, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Paléocéanographie (PALEOCEAN), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Glaces et Continents, Climats et Isotopes Stables (GLACCIOS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2007
35. Constraints on N20 budget changes since pre-industrial time from new firn air and ice core isotope measurements
- Author
-
Bernard, S., Röckmann, T., Kaiser, J., Barnola, J. M., Fischer, Hubertus, Blunier, T., and Chappellaz, J.
- Published
- 2006
36. A continuous record of temperature evolution over a sequence of Dansgaard-Oeschger events during Marine Isotopic Stage 4 (76 to 62 kyr BP)
- Author
-
Landais, A., Barnola, J. M., Masson-Delmotte, Valérie, Jouzel, Jean, Chappellaz, J., Caillon, N., Huber, C., Leuenberger, M., Johnsen, S. J., Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), Centre for Ice and Climate [Copenhagen], Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Institut Pierre-Simon-Laplace (IPSL), École normale supérieure - Paris (ENS Paris)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National d'Études Spatiales [Toulouse] (CNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Universität Bern [Bern]-Universität Bern [Bern], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU)-Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Université Paris Descartes - Paris 5 (UPD5), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace ( IPSL ), Centre National de la Recherche Scientifique ( CNRS ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National d'Etudes Spatiales ( CNES ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -École normale supérieure - Paris ( ENS Paris ), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] ( LSCE ), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de glaciologie et géophysique de l'environnement ( LGGE ), Observatoire des Sciences de l'Univers de Grenoble ( OSUG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Climate and Environmental Physics [Bern], University of Bern, and Niels Bohr Institute ( NBI ) -University of Copenhagen ( KU )
- Subjects
Greenland ,[ SDU.STU.GL ] Sciences of the Universe [physics]/Earth Sciences/Glaciology ,Air isotopic measurements ,Dansgaard-Oeschger events (DO) ,Thermal effects ,Quaternary ,Arctic ,Isotopes ,3354 Meteorology and Atmospheric Dynamics: Precipitation (1854) Citation: Landais ,paleoclimate ,Dansgaard-Oeschger cycle ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,ComputingMilieux_MISCELLANEOUS ,Discharge (fluid mechanics) ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics] ,World ,Water ,temperature ,3339 Meteorology and Atmospheric Dynamics: Ocean/atmosphere interactions (0312 ,marine isotope stage ,Arctic and Antarctic ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,INDEX TERMS: 1040 Geochemistry: Isotopic composition/chemistry ,Iceberg discharges ,4504) ,3344 Meteorology and Atmospheric Dynamics: Paleoclimatology ,[ SDU.STU.CL ] Sciences of the Universe [physics]/Earth Sciences/Climatology ,Paleothermometry methods - Abstract
International audience; [1] Our knowledge of the temperature evolution over Greenland during Dansgaard-Oeschger events (DO) is currently qualitatively described through the water isotopic profile. Using two independent paleothermometry methods, one based on air isotopic measurements and the other on the combined measurements of water isotopes (dD and d 18 O), we show a complete and quantitative reconstruction of temperature at the NorthGRIP site over the period 76 to 62 kyr BP (DO 18, 19 and 20). We confirm that the associated warmings are larger than those conventionally depicted by the water isotopes (11°C, 16°C and 11°C for DO 18, 19 and 20). Secondly, we demonstrate that the relationship between temperature and d 18 O varies rapidly during the last glacial period, even over a DO. Finally, our temperature reconstruction over DO 19 agrees well with that predicted from simple climate models linking the DO to iceberg discharges. (2004), A continuous record of temperature evolution over a sequence of Dansgaard-Oeschger events during Marine Isotopic Stage 4 (76 to 62 kyr BP), Geophys. Res. Lett., 31, L22211, doi:10.1029/ 2004GL021193. [2] The last glacial cycle was characterized by millenial scale climate fluctuations that have been documented in the North Atlantic region through numerous marine and continental records [Bond et al., 1997; Genty et al., 2003]. The GRIP and GISP2 Summit ice cores [Dansgaard et al., 1993; Grootes et al., 1993] and the newly NorthGRIP [NorthGRIP Members, 2004] ice core exhibit 25 DO during the last glacial period. These events are characterized by rapid, e.g., in less than 100 years, and large, up to 16°C [Lang et al., 1999] warmings over Greenland. [3] Ice cores have already provided a wealth of information on DO in Greenland through the water isotopes for temperature changes, chemical records for atmospheric circulation and analysis of air bubbles for changes in greenhouse gases concentration. However, temperature reconstruction from water isotopes is subject to large biases mainly due to (i) the seasonality of the precipitation (i.e., periods without precipitation will not have their temperature recorded) [Fawcett et al., 1997] and (ii) changes in the oceanic source of Greenland snow [Boyle, 1997]. Whereas the latter can be estimated from the combined measurement of dD and d 18 O through the deuterium excess parameter (d = dD À 8 * d 18 O), we need additional information to account for the influence of seasonality and possible variation of the vertical atmospheric temperature profile (the isotopic composition of the snow depends on the condensation temperature). [4] One elegant way to overcome those difficulties is to use the isotopic composition of the air trapped in ice, a method based on the thermal diffusion of gases (nitrogen and argon), which allows estimates of the amplitude of rapid temperature increases [Severinghaus and Brook, 1999; Lang et al., 1999; Leuenberger et al., 1999]. This method gives directly access to the local mean surface temperature, and is therefore not affected by seasonality, the vertical temperature profile in the atmosphere, nor the source temperature of the precipitation. It confirms that the conventional temperature to water isotopes relationship, based on the spatial slope a s (the Dd 18 O ice /temperature slope calculated from present-day surface data) underestimates Greenland temperature change [Cuffey et al., 1995]. The temporal slope a t = Dd 18 O ice /DT (at a given site between two different climates) is lower than a s by up to a factor of 2. We have recently refined this approach, using a sophisticated firnification and heat diffusion model [Goujon et al., 2003] to quantify the temperature increase associated with large DO 12 [Landais et al., 2004]. [5] Here, we go beyond the simple quantification of the temperature increase. A detailed set of d 15 N and d 40 Ar measurements over DO 18, 19 and 20 provides us with strong constraints on the complete temperature scenario between 76 and 62 kyr BP. This period roughly corresponds to Marine Isotope Stage 4 with rapid ice sheet growth [Shackleton, 1987]. We have also measured a continuous dD profile in the ice that, combined with the existing d 18 O record, allows us to account for the source temperature effects. This complete study makes possible the precise estimation of the temperature change over a sequence of DO. [6] The d 15 N and d 40 Ar profiles (Figure 1) show a sharp peak corresponding to each warming. Rapid surface warm-GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L22211
- Published
- 2004
37. High-resolution record of the Northern Hemisphere climate extending into the last interglacial period
- Author
-
North_Greenland_Ice-Core_Project_members, Andersen, K. K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, Hubertus, Flückiger, J., Fritzsche, Diedrich, Fujii, Y., Goto-Azuma, K., Grønvold, K., Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl, Sepp, Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V., Miller, Heinrich, Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O., Raynaud, D., Röthlisberger, R., Ruth, Urs, Samyn, D., Schwander, J., Shoji, H., Siggard-Andersen, M.-L., Steffensen, J. P., Stocker, T., Sveinbjörnsdottir, A. E., Svensson, A., Takata, M., Tison, J.-L., Thorsteinsson, T., Watanabe, O., Wilhelms, Frank, and White, J.
- Published
- 2004
38. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation
- Author
-
Stenni, B., Buiron, D., Frezzoti, M., Albani, S., Barbante, C., Bard, E., Barnola, J. M., Baroni, M., Baumgartner, M., Bonazza, M., Capron, E., Castellano, E., Chappellaz, J., Delmonte, B., Falourd, S., Genoni, L., Iacumin, P., Jouzel, J., Kipfstuhl, Sepp, Landais, A., Lemieux-Dudon, B., Maggi, V., Masson-Delmotte, V., Mazzola, C., Minster, B., Montagnat, M., Mulvaney, R., Narcisi, B., Oerter, Hans, Parrenin, F., Petit, J. R., Ritz, C., Scarchilli, C., Schilt, A., Schüpbach, S., Schwander, J., Selmo, E., Severi, M., Stocker, T. F., Udisti, R., Stenni, B., Buiron, D., Frezzoti, M., Albani, S., Barbante, C., Bard, E., Barnola, J. M., Baroni, M., Baumgartner, M., Bonazza, M., Capron, E., Castellano, E., Chappellaz, J., Delmonte, B., Falourd, S., Genoni, L., Iacumin, P., Jouzel, J., Kipfstuhl, Sepp, Landais, A., Lemieux-Dudon, B., Maggi, V., Masson-Delmotte, V., Mazzola, C., Minster, B., Montagnat, M., Mulvaney, R., Narcisi, B., Oerter, Hans, Parrenin, F., Petit, J. R., Ritz, C., Scarchilli, C., Schilt, A., Schüpbach, S., Schwander, J., Selmo, E., Severi, M., Stocker, T. F., and Udisti, R.
- Published
- 2011
39. Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation
- Author
-
Lourantou, A., Lavric, J. V., Köhler, Peter, Barnola, J.-M., Paillard, D., Michel, E., Raynaud, D., Chappellaz, J., Lourantou, A., Lavric, J. V., Köhler, Peter, Barnola, J.-M., Paillard, D., Michel, E., Raynaud, D., and Chappellaz, J.
- Published
- 2010
40. High-resolution carbon dioxide concentration record 650,000800,000 years before present
- Author
-
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, Hubertus, Kawamura, K., Stocker, T. F., Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, Hubertus, Kawamura, K., and Stocker, T. F.
- Published
- 2008
41. 'EDML1': a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years
- Author
-
Ruth, U., Barnola, J.-M., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lambrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., Wolff, E., Ruth, U., Barnola, J.-M., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lambrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., and Wolff, E.
- Published
- 2007
42. d13C-CO2 during the last deglaciation: where we actually stand on measurements and interpretation
- Author
-
Lourantou, A., Lavric, J. V., Köhler, Peter, Paillard, D., Barnola, J. M., Michel, E., Raynaud, D., Chappellaz, J., Lourantou, A., Lavric, J. V., Köhler, Peter, Paillard, D., Barnola, J. M., Michel, E., Raynaud, D., and Chappellaz, J.
- Published
- 2007
43. The EDC3 chronology for the EPICA Dome C ice core
- Author
-
Parrenin, F., Barnola, J. M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, Hubertus, Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J., Raisbeck, G., Raynaud, D., Ruth, Urs, Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., Wolff, E., Parrenin, F., Barnola, J. M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, Hubertus, Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J., Raisbeck, G., Raynaud, D., Ruth, Urs, Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.
- Published
- 2007
44. Orbital and millennial Antarctic climate variability over the past 800 000 years
- Author
-
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, Hubertus, Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, Hans, Parrenin, F., Raisbeck, G., Raynaud, D., Schwander, J., Spahni, R., Souchez, R., Selmo, E., Schilt, A., Steffensen, J. P., Stenni, B., Stauffer, B., Stocker, T. F., Tison, J. L., Werner, Martin, Wolff, E. W., Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, Hubertus, Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, Hans, Parrenin, F., Raisbeck, G., Raynaud, D., Schwander, J., Spahni, R., Souchez, R., Selmo, E., Schilt, A., Steffensen, J. P., Stenni, B., Stauffer, B., Stocker, T. F., Tison, J. L., Werner, Martin, and Wolff, E. W.
- Published
- 2007
45. EDML1: A chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years
- Author
-
Ruth, Urs, Barnola, J. M., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, Hubertus, Fundel, Felix, Huybrechts, Philippe, Kaufmann, P., Kipfstuhl, Sepp, Lambrecht, A., Morganti, A., Oerter, Hans, Parrenin, F., Rybak, Oleg, Severi, M., Udisti, R., Wilhelms, Frank, Wolff, E., Ruth, Urs, Barnola, J. M., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, Hubertus, Fundel, Felix, Huybrechts, Philippe, Kaufmann, P., Kipfstuhl, Sepp, Lambrecht, A., Morganti, A., Oerter, Hans, Parrenin, F., Rybak, Oleg, Severi, M., Udisti, R., Wilhelms, Frank, and Wolff, E.
- Abstract
A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronol- ogy for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dat- ing information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchro- nized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronol- ogy GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ∼6 years and always less than 450 years over the last 128 ka (al- ways less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.
- Published
- 2007
46. The EDC3 chronology for the EPICA Dome C ice core
- Author
-
Parrenin, Frederic, Barnola, J.-M., Beer, J., Blunier, Thomas, Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, Hubertus, Fujita, S., Jouzel, Jean, Kawamura, K., Lemieux, B., Loulergue, L., Masson-Delmotte, Valerie, Narcisi, B., Petit, J.-R., Raisbeck, Grant, Raynaud, D., Ruth, Urs, Schwander, J., Severi, M., Spahni, R., Steffensen, Jørgen Peder, Svensson, Anders, Udisti, R., Waelbroeck, C., Wolff, Eric, Parrenin, Frederic, Barnola, J.-M., Beer, J., Blunier, Thomas, Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, Hubertus, Fujita, S., Jouzel, Jean, Kawamura, K., Lemieux, B., Loulergue, L., Masson-Delmotte, Valerie, Narcisi, B., Petit, J.-R., Raisbeck, Grant, Raynaud, D., Ruth, Urs, Schwander, J., Severi, M., Spahni, R., Steffensen, Jørgen Peder, Svensson, Anders, Udisti, R., Waelbroeck, C., and Wolff, Eric
- Abstract
Udgivelsesdato: 17 August
- Published
- 2007
47. New constraints on the gas age-ice age difference along EPICA ice cores, 0-50 kyr
- Author
-
Loulergue, L., Parrenin, F., Blunier, Thomas, Barnola, J. M., Spahni, R., Schilt, A., Raisbeck, G., Chappellaz, J., Loulergue, L., Parrenin, F., Blunier, Thomas, Barnola, J. M., Spahni, R., Schilt, A., Raisbeck, G., and Chappellaz, J.
- Published
- 2007
48. Synchronization of ice core records via atmospheric gases
- Author
-
Blunier, Thomas, Spahni, R., Barnola, J. M., Loulergue, L., Schwander, J., Blunier, Thomas, Spahni, R., Barnola, J. M., Loulergue, L., and Schwander, J.
- Published
- 2007
49. EDML1:a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 year
- Author
-
Ruth, U., Barnola, J. M., Beer, J., Bigler, M., Blunier, Thomas, Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lembrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., Wolff, E., Ruth, U., Barnola, J. M., Beer, J., Bigler, M., Blunier, Thomas, Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lembrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., and Wolff, E.
- Published
- 2007
50. One-to-one coupling of glacial climate variability in Greenland and Antarctica
- Author
-
EPICA Community Members, The, Barbante, C., Barnola, J.-M., Becagli, S., Beer, J., Bigler, M., Boutron, C., Blunier, T., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Debret, M., Delmonte, B., Dick, Dorothee, Falourd, S., Faria, S., Federer, U., Fischer, Hubertus, Freitag, Johannes, Frenzel, Andreas, Fritzsche, Diedrich, Fundel, Felix, Gabrielli, P., Gaspari, V., Gersonde, Rainer, Graf, W., Grigoriev, D., Hamann, Ilka, Hansson, M., Hoffmann, G., Hutterli, M. A., Huybrechts, Philippe, Isaksson, E., Johnsen, S., Jouzel, J., Kaczmarska, M., Karlin, T., Kaufmann, P., Kipfstuhl, Sepp, Kohno, Mika, Lambert, F., Lambrecht, Anja, Lambrecht, Astrid, Landais, A., Lawer, G., Leuenberger, M., Littot, G., Loulergue, L., Lüthi, D., Maggi, V., Marino, F., Masson-Delmotte, V., Meyer, Hanno, Miller, Heinrich, Mulvaney, R., Narcisi, B., Oerlemans, J., Oerter, Hans, Parrenin, F., Petit, J.-R., Raisbeck, G., Raynaud, D., Röthlisberger, R., Ruth, Urs, Rybak, Oleg, Severi, M., Schmitt, Jochen, Schwander, J., Siegenthaler, U., Siggaard-Andersen, M.-L., Spahni, R., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J.-L., Traversi, R., Udisti, R., Valero-Delgado, Fernando, van den Broeke, M. R., van de Wal, R. S. W., Wagenbach, D., Wegner, Anna, Weiler, K., Wilhelms, Frank, Winther, J.-G., Wolff, E., EPICA Community Members, The, Barbante, C., Barnola, J.-M., Becagli, S., Beer, J., Bigler, M., Boutron, C., Blunier, T., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Debret, M., Delmonte, B., Dick, Dorothee, Falourd, S., Faria, S., Federer, U., Fischer, Hubertus, Freitag, Johannes, Frenzel, Andreas, Fritzsche, Diedrich, Fundel, Felix, Gabrielli, P., Gaspari, V., Gersonde, Rainer, Graf, W., Grigoriev, D., Hamann, Ilka, Hansson, M., Hoffmann, G., Hutterli, M. A., Huybrechts, Philippe, Isaksson, E., Johnsen, S., Jouzel, J., Kaczmarska, M., Karlin, T., Kaufmann, P., Kipfstuhl, Sepp, Kohno, Mika, Lambert, F., Lambrecht, Anja, Lambrecht, Astrid, Landais, A., Lawer, G., Leuenberger, M., Littot, G., Loulergue, L., Lüthi, D., Maggi, V., Marino, F., Masson-Delmotte, V., Meyer, Hanno, Miller, Heinrich, Mulvaney, R., Narcisi, B., Oerlemans, J., Oerter, Hans, Parrenin, F., Petit, J.-R., Raisbeck, G., Raynaud, D., Röthlisberger, R., Ruth, Urs, Rybak, Oleg, Severi, M., Schmitt, Jochen, Schwander, J., Siegenthaler, U., Siggaard-Andersen, M.-L., Spahni, R., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J.-L., Traversi, R., Udisti, R., Valero-Delgado, Fernando, van den Broeke, M. R., van de Wal, R. S. W., Wagenbach, D., Wegner, Anna, Weiler, K., Wilhelms, Frank, Winther, J.-G., and Wolff, E.
- Abstract
Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core stud- ies1,2 have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland3–5 through the Atlantic meridional over- turning circulation6–8. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland9, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.
- Published
- 2006
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.