93 results on '"Barmada SJ"'
Search Results
2. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models
- Author
-
Barmada, SJ, Serio, A, Arjun, A, Bilican, B, Daub, A, Ando, DM, Tsvetkov, A, Pleiss, M, Li, X, Peisach, D, Shaw, C, Chandran, S, and Finkbeiner, S
- Subjects
Biochemistry & Molecular Biology ,Medicinal and Biomolecular Chemistry ,Biochemistry and Cell Biology - Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology - cytoplasmic inclusions rich in transactive response element DNA-binding protein of 43 kDa (TDP43). Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we show that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity and discovered that pathogenic mutations shorten TDP43 half-life. New compounds that stimulate autophagy improved TDP43 clearance and localization and enhanced survival in primary murine neurons and in human stem cell-derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance. © 2014 Nature America, Inc. All rights reserved.
- Published
- 2014
3. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models
- Author
-
Krogan, Nevan, Farese, Robert, Finkbeiner, Steven, Armakola, M, Higgins, MJ, Figley, MD, Barmada, SJ, Scarborough, EA, Diaz, Z, Fang, X, Shorter, J, and Krogan, NJ
- Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease primarily affecting motor neurons. Mutations in the gene encoding TDP-43 cause some forms of the disease, and cytoplasmic TDP-43 aggregates accumulate in degenerating neurons of
- Published
- 2012
4. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
- Author
-
Klionsky, DJ, Abdel-Aziz, AK, Abdelfatah, S, Abdellatif, M, Abdoli, A, Abel, S, Abeliovich, H, Abildgaard, MH, Abudu, YP, Acevedo-Arozena, A, Adamopoulos, IE, Adeli, K, Adolph, TE, Adornetto, A, Aflaki, E, Agam, G, Agarwal, A, Aggarwal, BB, Agnello, M, Agostinis, P, Agrewala, JN, Agrotis, A, Aguilar, PV, Ahmad, ST, Ahmed, ZM, Ahumada-Castro, U, Aits, S, Aizawa, S, Akkoc, Y, Akoumianaki, T, Akpinar, HA, Al-Abd, AM, Al-Akra, L, Al-Gharaibeh, A, Alaoui-Jamali, MA, Alberti, S, Alcocer-Gómez, E, Alessandri, C, Ali, M, Alim Al-Bari, MA, Aliwaini, S, Alizadeh, J, Almacellas, E, Almasan, A, Alonso, A, Alonso, GD, Altan-Bonnet, N, Altieri, DC, Álvarez, ÉMC, Alves, S, Alves da Costa, C, Alzaharna, MM, Amadio, M, Amantini, C, Amaral, C, Ambrosio, S, Amer, AO, Ammanathan, V, An, Z, Andersen, SU, Andrabi, SA, Andrade-Silva, M, Andres, AM, Angelini, S, Ann, D, Anozie, UC, Ansari, MY, Antas, P, Antebi, A, Antón, Z, Anwar, T, Apetoh, L, Apostolova, N, Araki, T, Araki, Y, Arasaki, K, Araújo, WL, Araya, J, Arden, C, Arévalo, M-A, Arguelles, S, Arias, E, Arikkath, J, Arimoto, H, Ariosa, AR, Armstrong-James, D, Arnauné-Pelloquin, L, Aroca, A, Arroyo, DS, Arsov, I, Artero, R, Asaro, DML, Aschner, M, Ashrafizadeh, M, Ashur-Fabian, O, Atanasov, AG, Au, AK, Auberger, P, Auner, HW, Aurelian, L, Autelli, R, Avagliano, L, Ávalos, Y, Aveic, S, Aveleira, CA, Avin-Wittenberg, T, Aydin, Y, Ayton, S, Ayyadevara, S, Azzopardi, M, Baba, M, Backer, JM, Backues, SK, Bae, D-H, Bae, O-N, Bae, SH, Baehrecke, EH, Baek, A, Baek, S-H, Baek, SH, Bagetta, G, Bagniewska-Zadworna, A, Bai, H, Bai, J, Bai, X, Bai, Y, Bairagi, N, Baksi, S, Balbi, T, Baldari, CT, Balduini, W, Ballabio, A, Ballester, M, Balazadeh, S, Balzan, R, Bandopadhyay, R, Banerjee, S, Bánréti, Á, Bao, Y, Baptista, MS, Baracca, A, Barbati, C, Bargiela, A, Barilà, D, Barlow, PG, Barmada, SJ, Barreiro, E, Barreto, GE, Bartek, J, Bartel, B, Bartolome, A, Barve, GR, Basagoudanavar, SH, Bassham, DC, Bast, RC, Basu, A, Batoko, H, Batten, I, Baulieu, EE, Baumgarner, BL, Bayry, J, Beale, R, Beau, I, Beaumatin, F, Bechara, LRG, Beck, GR, Beers, MF, Begun, J, Behrends, C, Behrens, GMN, Bei, R, Bejarano, E, Bel, S, Behl, C, Belaid, A, Belgareh-Touzé, N, Bellarosa, C, Belleudi, F, Belló Pérez, M, Bello-Morales, R, Beltran, JSDO, Beltran, S, Benbrook, DM, Bendorius, M, Benitez, BA, Benito-Cuesta, I, Bensalem, J, Berchtold, MW, Berezowska, S, Bergamaschi, D, Bergami, M, Bergmann, A, Berliocchi, L, Berlioz-Torrent, C, Bernard, A, Berthoux, L, Besirli, CG, Besteiro, S, Betin, VM, Beyaert, R, Bezbradica, JS, Bhaskar, K, Bhatia-Kissova, I, Bhattacharya, R, Bhattacharya, S, Bhattacharyya, S, Bhuiyan, MS, Bhutia, SK, Bi, L, Bi, X, Biden, TJ, Bijian, K, Billes, VA, Binart, N, Bincoletto, C, Birgisdottir, AB, Bjorkoy, G, Blanco, G, Blas-Garcia, A, Blasiak, J, Blomgran, R, Blomgren, K, Blum, JS, Boada-Romero, E, Boban, M, Boesze-Battaglia, K, Boeuf, P, Boland, B, Bomont, P, Bonaldo, P, Bonam, SR, Bonfili, L, Bonifacino, JS, Boone, BA, Bootman, MD, Bordi, M, Borner, C, Bornhauser, BC, Borthakur, G, Bosch, J, Bose, S, Botana, LM, Botas, J, Boulanger, CM, Boulton, ME, Bourdenx, M, Bourgeois, B, Bourke, NM, Bousquet, G, Boya, P, Bozhkov, PV, Bozi, LHM, Bozkurt, TO, Brackney, DE, Brandts, CH, Braun, RJ, Braus, GH, Bravo-Sagua, R, Bravo-San Pedro, JM, Brest, P, Bringer, M-A, Briones-Herrera, A, Broaddus, VC, Brodersen, P, Brodsky, JL, Brody, SL, Bronson, PG, Bronstein, JM, Brown, CN, Brown, RE, Brum, PC, Brumell, JH, Brunetti-Pierri, N, Bruno, D, Bryson-Richardson, RJ, Bucci, C, Buchrieser, C, Bueno, M, Buitrago-Molina, LE, Buraschi, S, Buch, S, Buchan, JR, Buckingham, EM, Budak, H, Budini, M, Bultynck, G, Burada, F, Burgoyne, JR, Burón, MI, Bustos, V, Büttner, S, Butturini, E, Byrd, A, Cabas, I, Cabrera-Benitez, S, Cadwell, K, Cai, J, Cai, L, Cai, Q, Cairó, M, Calbet, JA, Caldwell, GA, Caldwell, KA, Call, JA, Calvani, R, Calvo, AC, Calvo-Rubio Barrera, M, Camara, NO, Camonis, JH, Camougrand, N, Campanella, M, Campbell, EM, Campbell-Valois, F-X, Campello, S, Campesi, I, Campos, JC, Camuzard, O, Cancino, J, Candido de Almeida, D, Canesi, L, Caniggia, I, Canonico, B, Cantí, C, Cao, B, Caraglia, M, Caramés, B, Carchman, EH, Cardenal-Muñoz, E, Cardenas, C, Cardenas, L, Cardoso, SM, Carew, JS, Carle, GF, Carleton, G, Carloni, S, Carmona-Gutierrez, D, Carneiro, LA, Carnevali, O, Carosi, JM, Carra, S, Carrier, A, Carrier, L, Carroll, B, Carter, AB, Carvalho, AN, Casanova, M, Casas, C, Casas, J, Cassioli, C, Castillo, EF, Castillo, K, Castillo-Lluva, S, Castoldi, F, Castori, M, Castro, AF, Castro-Caldas, M, Castro-Hernandez, J, Castro-Obregon, S, Catz, SD, Cavadas, C, Cavaliere, F, Cavallini, G, Cavinato, M, Cayuela, ML, Cebollada Rica, P, Cecarini, V, Cecconi, F, Cechowska-Pasko, M, Cenci, S, Ceperuelo-Mallafré, V, Cerqueira, JJ, Cerutti, JM, Cervia, D, Cetintas, VB, Cetrullo, S, Chae, H-J, Chagin, AS, Chai, C-Y, Chakrabarti, G, Chakrabarti, O, Chakraborty, T, Chami, M, Chamilos, G, Chan, DW, Chan, EYW, Chan, ED, Chan, HYE, Chan, HH, Chan, H, Chan, MTV, Chan, YS, Chandra, PK, Chang, C-P, Chang, C, Chang, H-C, Chang, K, Chao, J, Chapman, T, Charlet-Berguerand, N, Chatterjee, S, Chaube, SK, Chaudhary, A, Chauhan, S, Chaum, E, Checler, F, Cheetham, ME, Chen, C-S, Chen, G-C, Chen, J-F, Chen, LL, Chen, L, Chen, M, Chen, M-K, Chen, N, Chen, Q, Chen, R-H, Chen, S, Chen, W, Chen, X-M, Chen, X-W, Chen, X, Chen, Y, Chen, Y-G, Chen, Y-J, Chen, Y-Q, Chen, ZS, Chen, Z, Chen, Z-H, Chen, ZJ, Cheng, H, Cheng, J, Cheng, S-Y, Cheng, W, Cheng, X, Cheng, X-T, Cheng, Y, Cheng, Z, Cheong, H, Cheong, JK, Chernyak, BV, Cherry, S, Cheung, CFR, Cheung, CHA, Cheung, K-H, Chevet, E, Chi, RJ, Chiang, AKS, Chiaradonna, F, Chiarelli, R, Chiariello, M, Chica, N, Chiocca, S, Chiong, M, Chiou, S-H, Chiramel, AI, Chiurchiù, V, Cho, D-H, Choe, S-K, Choi, AMK, Choi, ME, Choudhury, KR, Chow, NS, Chu, CT, Chua, JP, Chua, JJE, Chung, H, Chung, KP, Chung, S, Chung, S-H, Chung, Y-L, Cianfanelli, V, Ciechomska, IA, Cifuentes, M, Cinque, L, Cirak, S, Cirone, M, Clague, MJ, Clarke, R, Clementi, E, Coccia, EM, Codogno, P, Cohen, E, Cohen, MM, Colasanti, T, Colasuonno, F, Colbert, RA, Colell, A, Čolić, M, Coll, NS, Collins, MO, Colombo, MI, Colón-Ramos, DA, Combaret, L, Comincini, S, Cominetti, MR, Consiglio, A, Conte, A, Conti, F, Contu, VR, Cookson, MR, Coombs, KM, Coppens, I, Corasaniti, MT, Corkery, DP, Cordes, N, Cortese, K, Costa, MDC, Costantino, S, Costelli, P, Coto-Montes, A, Crack, PJ, Crespo, JL, Criollo, A, Crippa, V, Cristofani, R, Csizmadia, T, Cuadrado, A, Cui, B, Cui, J, Cui, Y, Culetto, E, Cumino, AC, Cybulsky, AV, Czaja, MJ, Czuczwar, SJ, D'Adamo, S, D'Amelio, M, D'Arcangelo, D, D'Lugos, AC, D'Orazi, G, da Silva, JA, Dafsari, HS, Dagda, RK, Dagdas, Y, Daglia, M, Dai, X, Dai, Y, Dal Col, J, Dalhaimer, P, Dalla Valle, L, Dallenga, T, Dalmasso, G, Damme, M, Dando, I, Dantuma, NP, Darling, AL, Das, H, Dasarathy, S, Dasari, SK, Dash, S, Daumke, O, Dauphinee, AN, Davies, JS, Dávila, VA, Davis, RJ, Davis, T, Dayalan Naidu, S, De Amicis, F, De Bosscher, K, De Felice, F, De Franceschi, L, De Leonibus, C, de Mattos Barbosa, MG, De Meyer, GRY, De Milito, A, De Nunzio, C, De Palma, C, De Santi, M, De Virgilio, C, De Zio, D, Debnath, J, DeBosch, BJ, Decuypere, J-P, Deehan, MA, Deflorian, G, DeGregori, J, Dehay, B, Del Rio, G, Delaney, JR, Delbridge, LMD, Delorme-Axford, E, Delpino, MV, Demarchi, F, Dembitz, V, Demers, ND, Deng, H, Deng, Z, Dengjel, J, Dent, P, Denton, D, DePamphilis, ML, Der, CJ, Deretic, V, Descoteaux, A, Devis, L, Devkota, S, Devuyst, O, Dewson, G, Dharmasivam, M, Dhiman, R, di Bernardo, D, Di Cristina, M, Di Domenico, F, Di Fazio, P, Di Fonzo, A, Di Guardo, G, Di Guglielmo, GM, Di Leo, L, Di Malta, C, Di Nardo, A, Di Rienzo, M, Di Sano, F, Diallinas, G, Diao, J, Diaz-Araya, G, Díaz-Laviada, I, Dickinson, JM, Diederich, M, Dieudé, M, Dikic, I, Ding, S, Ding, W-X, Dini, L, Dinić, J, Dinic, M, Dinkova-Kostova, AT, Dionne, MS, Distler, JHW, Diwan, A, Dixon, IMC, Djavaheri-Mergny, M, Dobrinski, I, Dobrovinskaya, O, Dobrowolski, R, Dobson, RCJ, Đokić, J, Dokmeci Emre, S, Donadelli, M, Dong, B, Dong, X, Dong, Z, Dorn Ii, GW, Dotsch, V, Dou, H, Dou, J, Dowaidar, M, Dridi, S, Drucker, L, Du, A, Du, C, Du, G, Du, H-N, Du, L-L, du Toit, A, Duan, S-B, Duan, X, Duarte, SP, Dubrovska, A, Dunlop, EA, Dupont, N, Durán, RV, Dwarakanath, BS, Dyshlovoy, SA, Ebrahimi-Fakhari, D, Eckhart, L, Edelstein, CL, Efferth, T, Eftekharpour, E, Eichinger, L, Eid, N, Eisenberg, T, Eissa, NT, Eissa, S, Ejarque, M, El Andaloussi, A, El-Hage, N, El-Naggar, S, Eleuteri, AM, El-Shafey, ES, Elgendy, M, Eliopoulos, AG, Elizalde, MM, Elks, PM, Elsasser, H-P, Elsherbiny, ES, Emerling, BM, Emre, NCT, Eng, CH, Engedal, N, Engelbrecht, A-M, Engelsen, AST, Enserink, JM, Escalante, R, Esclatine, A, Escobar-Henriques, M, Eskelinen, E-L, Espert, L, Eusebio, M-O, Fabrias, G, Fabrizi, C, Facchiano, A, Facchiano, F, Fadeel, B, Fader, C, Faesen, AC, Fairlie, WD, Falcó, A, Falkenburger, BH, Fan, D, Fan, J, Fan, Y, Fang, EF, Fang, Y, Fanto, M, Farfel-Becker, T, Faure, M, Fazeli, G, Fedele, AO, Feldman, AM, Feng, D, Feng, J, Feng, L, Feng, Y, Feng, W, Fenz Araujo, T, Ferguson, TA, Fernández, ÁF, Fernandez-Checa, JC, Fernández-Veledo, S, Fernie, AR, Ferrante, AW, Ferraresi, A, Ferrari, MF, Ferreira, JCB, Ferro-Novick, S, Figueras, A, Filadi, R, Filigheddu, N, Filippi-Chiela, E, Filomeni, G, Fimia, GM, Fineschi, V, Finetti, F, Finkbeiner, S, Fisher, EA, Fisher, PB, Flamigni, F, Fliesler, SJ, Flo, TH, Florance, I, Florey, O, Florio, T, Fodor, E, Follo, C, Fon, EA, Forlino, A, Fornai, F, Fortini, P, Fracassi, A, Fraldi, A, Franco, B, Franco, R, Franconi, F, Frankel, LB, Friedman, SL, Fröhlich, LF, Frühbeck, G, Fuentes, JM, Fujiki, Y, Fujita, N, Fujiwara, Y, Fukuda, M, Fulda, S, Furic, L, Furuya, N, Fusco, C, Gack, MU, Gaffke, L, Galadari, S, Galasso, A, Galindo, MF, Gallolu Kankanamalage, S, Galluzzi, L, Galy, V, Gammoh, N, Gan, B, Ganley, IG, Gao, F, Gao, H, Gao, M, Gao, P, Gao, S-J, Gao, W, Gao, X, Garcera, A, Garcia, MN, Garcia, VE, García-Del Portillo, F, Garcia-Escudero, V, Garcia-Garcia, A, Garcia-Macia, M, García-Moreno, D, Garcia-Ruiz, C, García-Sanz, P, Garg, AD, Gargini, R, Garofalo, T, Garry, RF, Gassen, NC, Gatica, D, Ge, L, Ge, W, Geiss-Friedlander, R, Gelfi, C, Genschik, P, Gentle, IE, Gerbino, V, Gerhardt, C, Germain, K, Germain, M, Gewirtz, DA, Ghasemipour Afshar, E, Ghavami, S, Ghigo, A, Ghosh, M, Giamas, G, Giampietri, C, Giatromanolaki, A, Gibson, GE, Gibson, SB, Ginet, V, Giniger, E, Giorgi, C, Girao, H, Girardin, SE, Giridharan, M, Giuliano, S, Giulivi, C, Giuriato, S, Giustiniani, J, Gluschko, A, Goder, V, Goginashvili, A, Golab, J, Goldstone, DC, Golebiewska, A, Gomes, LR, Gomez, R, Gómez-Sánchez, R, Gomez-Puerto, MC, Gomez-Sintes, R, Gong, Q, Goni, FM, González-Gallego, J, Gonzalez-Hernandez, T, Gonzalez-Polo, RA, Gonzalez-Reyes, JA, González-Rodríguez, P, Goping, IS, Gorbatyuk, MS, Gorbunov, NV, Görgülü, K, Gorojod, RM, Gorski, SM, Goruppi, S, Gotor, C, Gottlieb, RA, Gozes, I, Gozuacik, D, Graef, M, Gräler, MH, Granatiero, V, Grasso, D, Gray, JP, Green, DR, Greenhough, A, Gregory, SL, Griffin, EF, Grinstaff, MW, Gros, F, Grose, C, Gross, AS, Gruber, F, Grumati, P, Grune, T, Gu, X, Guan, J-L, Guardia, CM, Guda, K, Guerra, F, Guerri, C, Guha, P, Guillén, C, Gujar, S, Gukovskaya, A, Gukovsky, I, Gunst, J, Günther, A, Guntur, AR, Guo, C, Guo, H, Guo, L-W, Guo, M, Gupta, P, Gupta, SK, Gupta, S, Gupta, VB, Gupta, V, Gustafsson, AB, Gutterman, DD, H B, R, Haapasalo, A, Haber, JE, Hać, A, Hadano, S, Hafrén, AJ, Haidar, M, Hall, BS, Halldén, G, Hamacher-Brady, A, Hamann, A, Hamasaki, M, Han, W, Hansen, M, Hanson, PI, Hao, Z, Harada, M, Harhaji-Trajkovic, L, Hariharan, N, Haroon, N, Harris, J, Hasegawa, T, Hasima Nagoor, N, Haspel, JA, Haucke, V, Hawkins, WD, Hay, BA, Haynes, CM, Hayrabedyan, SB, Hays, TS, He, C, He, Q, He, R-R, He, Y-W, He, Y-Y, Heakal, Y, Heberle, AM, Hejtmancik, JF, Helgason, GV, Henkel, V, Herb, M, Hergovich, A, Herman-Antosiewicz, A, Hernández, A, Hernandez, C, Hernandez-Diaz, S, Hernandez-Gea, V, Herpin, A, Herreros, J, Hervás, JH, Hesselson, D, Hetz, C, Heussler, VT, Higuchi, Y, Hilfiker, S, Hill, JA, Hlavacek, WS, Ho, EA, Ho, IHT, Ho, PW-L, Ho, S-L, Ho, WY, Hobbs, GA, Hochstrasser, M, Hoet, PHM, Hofius, D, Hofman, P, Höhn, A, Holmberg, CI, Hombrebueno, JR, Yi-Ren Hong, C-WH, Hooper, LV, Hoppe, T, Horos, R, Hoshida, Y, Hsin, I-L, Hsu, H-Y, Hu, B, Hu, D, Hu, L-F, Hu, MC, Hu, R, Hu, W, Hu, Y-C, Hu, Z-W, Hua, F, Hua, J, Hua, Y, Huan, C, Huang, C, Huang, H, Huang, K, Huang, MLH, Huang, R, Huang, S, Huang, T, Huang, X, Huang, YJ, Huber, TB, Hubert, V, Hubner, CA, Hughes, SM, Hughes, WE, Humbert, M, Hummer, G, Hurley, JH, Hussain, S, Hussey, PJ, Hutabarat, M, Hwang, H-Y, Hwang, S, Ieni, A, Ikeda, F, Imagawa, Y, Imai, Y, Imbriano, C, Imoto, M, Inman, DM, Inoki, K, Iovanna, J, Iozzo, RV, Ippolito, G, Irazoqui, JE, Iribarren, P, Ishaq, M, Ishikawa, M, Ishimwe, N, Isidoro, C, Ismail, N, Issazadeh-Navikas, S, Itakura, E, Ito, D, Ivankovic, D, Ivanova, S, Iyer, AKV, Izquierdo, JM, Izumi, M, Jäättelä, M, Jabir, MS, Jackson, WT, Jacobo-Herrera, N, Jacomin, A-C, Jacquin, E, Jadiya, P, Jaeschke, H, Jagannath, C, Jakobi, AJ, Jakobsson, J, Janji, B, Jansen-Dürr, P, Jansson, PJ, Jantsch, J, Januszewski, S, Jassey, A, Jean, S, Jeltsch-David, H, Jendelova, P, Jenny, A, Jensen, TE, Jessen, N, Jewell, JL, Ji, J, Jia, L, Jia, R, Jiang, L, Jiang, Q, Jiang, R, Jiang, T, Jiang, X, Jiang, Y, Jimenez-Sanchez, M, Jin, E-J, Jin, F, Jin, H, Jin, L, Jin, M, Jin, S, Jo, E-K, Joffre, C, Johansen, T, Johnson, GVW, Johnston, SA, Jokitalo, E, Jolly, MK, Joosten, LAB, Jordan, J, Joseph, B, Ju, D, Ju, J-S, Ju, J, Juárez, E, Judith, D, Juhász, G, Jun, Y, Jung, CH, Jung, S-C, Jung, YK, Jungbluth, H, Jungverdorben, J, Just, S, Kaarniranta, K, Kaasik, A, Kabuta, T, Kaganovich, D, Kahana, A, Kain, R, Kajimura, S, Kalamvoki, M, Kalia, M, Kalinowski, DS, Kaludercic, N, Kalvari, I, Kaminska, J, Kaminskyy, VO, Kanamori, H, Kanasaki, K, Kang, C, Kang, R, Kang, SS, Kaniyappan, S, Kanki, T, Kanneganti, T-D, Kanthasamy, AG, Kanthasamy, A, Kantorow, M, Kapuy, O, Karamouzis, MV, Karim, MR, Karmakar, P, Katare, RG, Kato, M, Kaufmann, SHE, Kauppinen, A, Kaushal, GP, Kaushik, S, Kawasaki, K, Kazan, K, Ke, P-Y, Keating, DJ, Keber, U, Kehrl, JH, Keller, KE, Keller, CW, Kemper, JK, Kenific, CM, Kepp, O, Kermorgant, S, Kern, A, Ketteler, R, Keulers, TG, Khalfin, B, Khalil, H, Khambu, B, Khan, SY, Khandelwal, VKM, Khandia, R, Kho, W, Khobrekar, NV, Khuansuwan, S, Khundadze, M, Killackey, SA, Kim, D, Kim, DR, Kim, D-H, Kim, D-E, Kim, EY, Kim, E-K, Kim, H-R, Kim, H-S, Hyung-Ryong Kim, Kim, JH, Kim, JK, Kim, J-H, Kim, J, Kim, KI, Kim, PK, Kim, S-J, Kimball, SR, Kimchi, A, Kimmelman, AC, Kimura, T, King, MA, Kinghorn, KJ, Kinsey, CG, Kirkin, V, Kirshenbaum, LA, Kiselev, SL, Kishi, S, Kitamoto, K, Kitaoka, Y, Kitazato, K, Kitsis, RN, Kittler, JT, Kjaerulff, O, Klein, PS, Klopstock, T, Klucken, J, Knævelsrud, H, Knorr, RL, Ko, BCB, Ko, F, Ko, J-L, Kobayashi, H, Kobayashi, S, Koch, I, Koch, JC, Koenig, U, Kögel, D, Koh, YH, Koike, M, Kohlwein, SD, Kocaturk, NM, Komatsu, M, König, J, Kono, T, Kopp, BT, Korcsmaros, T, Korkmaz, G, Korolchuk, VI, Korsnes, MS, Koskela, A, Kota, J, Kotake, Y, Kotler, ML, Kou, Y, Koukourakis, MI, Koustas, E, Kovacs, AL, Kovács, T, Koya, D, Kozako, T, Kraft, C, Krainc, D, Krämer, H, Krasnodembskaya, AD, Kretz-Remy, C, Kroemer, G, Ktistakis, NT, Kuchitsu, K, Kuenen, S, Kuerschner, L, Kukar, T, Kumar, A, Kumar, D, Kumar, S, Kume, S, Kumsta, C, Kundu, CN, Kundu, M, Kunnumakkara, AB, Kurgan, L, Kutateladze, TG, Kutlu, O, Kwak, S, Kwon, HJ, Kwon, TK, Kwon, YT, Kyrmizi, I, La Spada, A, Labonté, P, Ladoire, S, Laface, I, Lafont, F, Lagace, DC, Lahiri, V, Lai, Z, Laird, AS, Lakkaraju, A, Lamark, T, Lan, S-H, Landajuela, A, Lane, DJR, Lane, JD, Lang, CH, Lange, C, Langel, Ü, Langer, R, Lapaquette, P, Laporte, J, LaRusso, NF, Lastres-Becker, I, Lau, WCY, Laurie, GW, Lavandero, S, Law, BYK, Law, HK-W, Layfield, R, Le, W, Le Stunff, H, Leary, AY, Lebrun, J-J, Leck, LYW, Leduc-Gaudet, J-P, Lee, C, Lee, C-P, Lee, D-H, Lee, EB, Lee, EF, Lee, GM, Lee, H-J, Lee, HK, Lee, JM, Lee, JS, Lee, J-A, Lee, J-Y, Lee, JH, Lee, M, Lee, MG, Lee, MJ, Lee, M-S, Lee, SY, Lee, S-J, Lee, SB, Lee, WH, Lee, Y-R, Lee, Y-H, Lee, Y, Lefebvre, C, Legouis, R, Lei, YL, Lei, Y, Leikin, S, Leitinger, G, Lemus, L, Leng, S, Lenoir, O, Lenz, G, Lenz, HJ, Lenzi, P, León, Y, Leopoldino, AM, Leschczyk, C, Leskelä, S, Letellier, E, Leung, C-T, Leung, PS, Leventhal, JS, Levine, B, Lewis, PA, Ley, K, Li, B, Li, D-Q, Li, J, Li, K, Li, L, Li, M, Li, P-L, Li, M-Q, Li, Q, Li, S, Li, T, Li, W, Li, X, Li, Y-P, Li, Y, Li, Z, Lian, J, Liang, C, Liang, Q, Liang, W, Liang, Y, Liao, G, Liao, L, Liao, M, Liao, Y-F, Librizzi, M, Lie, PPY, Lilly, MA, Lim, HJ, Lima, TRR, Limana, F, Lin, C, Lin, C-W, Lin, D-S, Lin, F-C, Lin, JD, Lin, KM, Lin, K-H, Lin, L-T, Lin, P-H, Lin, Q, Lin, S, Lin, S-J, Lin, W, Lin, X, Lin, Y-X, Lin, Y-S, Linden, R, Lindner, P, Ling, S-C, Lingor, P, Linnemann, AK, Liou, Y-C, Lipinski, MM, Lipovšek, S, Lira, VA, Lisiak, N, Liton, PB, Liu, C, Liu, C-H, Liu, C-F, Liu, CH, Liu, F, Liu, H, Liu, H-S, Liu, H-F, Liu, J, Liu, L, Liu, M, Liu, Q, Liu, W, Liu, X-H, Liu, X, Liu, Y, Livingston, JA, Lizard, G, Lizcano, JM, Ljubojevic-Holzer, S, LLeonart, ME, Llobet-Navàs, D, Llorente, A, Lo, CH, Lobato-Márquez, D, Long, Q, Long, YC, Loos, B, Loos, JA, López, MG, López-Doménech, G, López-Guerrero, JA, López-Jiménez, AT, López-Pérez, Ó, López-Valero, I, Lorenowicz, MJ, Lorente, M, Lorincz, P, Lossi, L, Lotersztajn, S, Lovat, PE, Lovell, JF, Lovy, A, Lőw, P, Lu, G, Lu, H, Lu, J-H, Lu, J-J, Lu, M, Lu, S, Luciani, A, Lucocq, JM, Ludovico, P, Luftig, MA, Luhr, M, Luis-Ravelo, D, Lum, JJ, Luna-Dulcey, L, Lund, AH, Lund, VK, Lünemann, JD, Lüningschrör, P, Luo, H, Luo, R, Luo, S, Luo, Z, Luparello, C, Lüscher, B, Luu, L, Lyakhovich, A, Lyamzaev, KG, Lystad, AH, Lytvynchuk, L, Ma, AC, Ma, C, Ma, M, Ma, N-F, Ma, Q-H, Ma, X, Ma, Y, Ma, Z, MacDougald, OA, Macian, F, MacIntosh, GC, MacKeigan, JP, Macleod, KF, Maday, S, Madeo, F, Madesh, M, Madl, T, Madrigal-Matute, J, Maeda, A, Maejima, Y, Magarinos, M, Mahavadi, P, Maiani, E, Maiese, K, Maiti, P, Maiuri, MC, Majello, B, Major, MB, Makareeva, E, Malik, F, Mallilankaraman, K, Malorni, W, Maloyan, A, Mammadova, N, Man, GCW, Manai, F, Mancias, JD, Mandelkow, E-M, Mandell, MA, Manfredi, AA, Manjili, MH, Manjithaya, R, Manque, P, Manshian, BB, Manzano, R, Manzoni, C, Mao, K, Marchese, C, Marchetti, S, Marconi, AM, Marcucci, F, Mardente, S, Mareninova, OA, Margeta, M, Mari, M, Marinelli, S, Marinelli, O, Mariño, G, Mariotto, S, Marshall, RS, Marten, MR, Martens, S, Martin, APJ, Martin, KR, Martin, S, Martín-Segura, A, Martín-Acebes, MA, Martin-Burriel, I, Martin-Rincon, M, Martin-Sanz, P, Martina, JA, Martinet, W, Martinez, A, Martinez, J, Martinez Velazquez, M, Martinez-Lopez, N, Martinez-Vicente, M, Martins, DO, Martins, JO, Martins, WK, Martins-Marques, T, Marzetti, E, Masaldan, S, Masclaux-Daubresse, C, Mashek, DG, Massa, V, Massieu, L, Masson, GR, Masuelli, L, Masyuk, AI, Masyuk, TV, Matarrese, P, Matheu, A, Matoba, S, Matsuzaki, S, Mattar, P, Matte, A, Mattoscio, D, Mauriz, JL, Mauthe, M, Mauvezin, C, Maverakis, E, Maycotte, P, Mayer, J, Mazzoccoli, G, Mazzoni, C, Mazzulli, JR, McCarty, N, McDonald, C, McGill, MR, McKenna, SL, McLaughlin, B, McLoughlin, F, McNiven, MA, McWilliams, TG, Mechta-Grigoriou, F, Medeiros, TC, Medina, DL, Megeney, LA, Megyeri, K, Mehrpour, M, Mehta, JL, Meijer, AJ, Meijer, AH, Mejlvang, J, Meléndez, A, Melk, A, Memisoglu, G, Mendes, AF, Meng, D, Meng, F, Meng, T, Menna-Barreto, R, Menon, MB, Mercer, C, Mercier, AE, Mergny, J-L, Merighi, A, Merkley, SD, Merla, G, Meske, V, Mestre, AC, Metur, SP, Meyer, C, Meyer, H, Mi, W, Mialet-Perez, J, Miao, J, Micale, L, Miki, Y, Milan, E, Milczarek, M, Miller, DL, Miller, SI, Miller, S, Millward, SW, Milosevic, I, Minina, EA, Mirzaei, H, Mirzaei, HR, Mirzaei, M, Mishra, A, Mishra, N, Mishra, PK, Misirkic Marjanovic, M, Misasi, R, Misra, A, Misso, G, Mitchell, C, Mitou, G, Miura, T, Miyamoto, S, Miyazaki, M, Miyazaki, T, Miyazawa, K, Mizushima, N, Mogensen, TH, Mograbi, B, Mohammadinejad, R, Mohamud, Y, Mohanty, A, Mohapatra, S, Möhlmann, T, Mohmmed, A, Moles, A, Moley, KH, Molinari, M, Mollace, V, Møller, AB, Mollereau, B, Mollinedo, F, Montagna, C, Monteiro, MJ, Montella, A, Montes, LR, Montico, B, Mony, VK, Monzio Compagnoni, G, Moore, MN, Moosavi, MA, Mora, AL, Mora, M, Morales-Alamo, D, Moratalla, R, Moreira, PI, Morelli, E, Moreno, S, Moreno-Blas, D, Moresi, V, Morga, B, Morgan, AH, Morin, F, Morishita, H, Moritz, OL, Moriyama, M, Moriyasu, Y, Morleo, M, Morselli, E, Moruno-Manchon, JF, Moscat, J, Mostowy, S, Motori, E, Moura, AF, Moustaid-Moussa, N, Mrakovcic, M, Muciño-Hernández, G, Mukherjee, A, Mukhopadhyay, S, Mulcahy Levy, JM, Mulero, V, Muller, S, Münch, C, Munjal, A, Munoz-Canoves, P, Muñoz-Galdeano, T, Münz, C, Murakawa, T, Muratori, C, Murphy, BM, Murphy, JP, Murthy, A, Myöhänen, TT, Mysorekar, IU, Mytych, J, Nabavi, SM, Nabissi, M, Nagy, P, Nah, J, Nahimana, A, Nakagawa, I, Nakamura, K, Nakatogawa, H, Nandi, SS, Nanjundan, M, Nanni, M, Napolitano, G, Nardacci, R, Narita, M, Nassif, M, Nathan, I, Natsumeda, M, Naude, RJ, Naumann, C, Naveiras, O, Navid, F, Nawrocki, ST, Nazarko, TY, Nazio, F, Negoita, F, Neill, T, Neisch, AL, Neri, LM, Netea, MG, Neubert, P, Neufeld, TP, Neumann, D, Neutzner, A, Newton, PT, Ney, PA, Nezis, IP, Ng, CCW, Ng, TB, Nguyen, HTT, Nguyen, LT, Ni, H-M, Ní Cheallaigh, C, Ni, Z, Nicolao, MC, Nicoli, F, Nieto-Diaz, M, Nilsson, P, Ning, S, Niranjan, R, Nishimune, H, Niso-Santano, M, Nixon, RA, Nobili, A, Nobrega, C, Noda, T, Nogueira-Recalde, U, Nolan, TM, Nombela, I, Novak, I, Novoa, B, Nozawa, T, Nukina, N, Nussbaum-Krammer, C, Nylandsted, J, O'Donovan, TR, O'Leary, SM, O'Rourke, EJ, O'Sullivan, MP, O'Sullivan, TE, Oddo, S, Oehme, I, Ogawa, M, Ogier-Denis, E, Ogmundsdottir, MH, Ogretmen, B, Oh, GT, Oh, S-H, Oh, YJ, Ohama, T, Ohashi, Y, Ohmuraya, M, Oikonomou, V, Ojha, R, Okamoto, K, Okazawa, H, Oku, M, Oliván, S, Oliveira, JMA, Ollmann, M, Olzmann, JA, Omari, S, Omary, MB, Önal, G, Ondrej, M, Ong, S-B, Ong, S-G, Onnis, A, Orellana, JA, Orellana-Muñoz, S, Ortega-Villaizan, MDM, Ortiz-Gonzalez, XR, Ortona, E, Osiewacz, HD, Osman, A-HK, Osta, R, Otegui, MS, Otsu, K, Ott, C, Ottobrini, L, Ou, J-HJ, Outeiro, TF, Oynebraten, I, Ozturk, M, Pagès, G, Pahari, S, Pajares, M, Pajvani, UB, Pal, R, Paladino, S, Pallet, N, Palmieri, M, Palmisano, G, Palumbo, C, Pampaloni, F, Pan, L, Pan, Q, Pan, W, Pan, X, Panasyuk, G, Pandey, R, Pandey, UB, Pandya, V, Paneni, F, Pang, SY, Panzarini, E, Papademetrio, DL, Papaleo, E, Papinski, D, Papp, D, Park, EC, Park, HT, Park, J-M, Park, J-I, Park, JT, Park, J, Park, SC, Park, S-Y, Parola, AH, Parys, JB, Pasquier, A, Pasquier, B, Passos, JF, Pastore, N, Patel, HH, Patschan, D, Pattingre, S, Pedraza-Alva, G, Pedraza-Chaverri, J, Pedrozo, Z, Pei, G, Pei, J, Peled-Zehavi, H, Pellegrini, JM, Pelletier, J, Peñalva, MA, Peng, D, Peng, Y, Penna, F, Pennuto, M, Pentimalli, F, Pereira, CM, Pereira, GJS, Pereira, LC, Pereira de Almeida, L, Perera, ND, Pérez-Lara, Á, Perez-Oliva, AB, Pérez-Pérez, ME, Periyasamy, P, Perl, A, Perrotta, C, Perrotta, I, Pestell, RG, Petersen, M, Petrache, I, Petrovski, G, Pfirrmann, T, Pfister, AS, Philips, JA, Pi, H, Picca, A, Pickrell, AM, Picot, S, Pierantoni, GM, Pierdominici, M, Pierre, P, Pierrefite-Carle, V, Pierzynowska, K, Pietrocola, F, Pietruczuk, M, Pignata, C, Pimentel-Muiños, FX, Pinar, M, Pinheiro, RO, Pinkas-Kramarski, R, Pinton, P, Pircs, K, Piya, S, Pizzo, P, Plantinga, TS, Platta, HW, Plaza-Zabala, A, Plomann, M, Plotnikov, EY, Plun-Favreau, H, Pluta, R, Pocock, R, Pöggeler, S, Pohl, C, Poirot, M, Poletti, A, Ponpuak, M, Popelka, H, Popova, B, Porta, H, Porte Alcon, S, Portilla-Fernandez, E, Post, M, Potts, MB, Poulton, J, Powers, T, Prahlad, V, Prajsnar, TK, Praticò, D, Prencipe, R, Priault, M, Proikas-Cezanne, T, Promponas, VJ, Proud, CG, Puertollano, R, Puglielli, L, Pulinilkunnil, T, Puri, D, Puri, R, Puyal, J, Qi, X, Qi, Y, Qian, W, Qiang, L, Qiu, Y, Quadrilatero, J, Quarleri, J, Raben, N, Rabinowich, H, Ragona, D, Ragusa, MJ, Rahimi, N, Rahmati, M, Raia, V, Raimundo, N, Rajasekaran, N-S, Ramachandra Rao, S, Rami, A, Ramírez-Pardo, I, Ramsden, DB, Randow, F, Rangarajan, PN, Ranieri, D, Rao, H, Rao, L, Rao, R, Rathore, S, Ratnayaka, JA, Ratovitski, EA, Ravanan, P, Ravegnini, G, Ray, SK, Razani, B, Rebecca, V, Reggiori, F, Régnier-Vigouroux, A, Reichert, AS, Reigada, D, Reiling, JH, Rein, T, Reipert, S, Rekha, RS, Ren, H, Ren, J, Ren, W, Renault, T, Renga, G, Reue, K, Rewitz, K, Ribeiro de Andrade Ramos, B, Riazuddin, SA, Ribeiro-Rodrigues, TM, Ricci, J-E, Ricci, R, Riccio, V, Richardson, DR, Rikihisa, Y, Risbud, MV, Risueño, RM, Ritis, K, Rizza, S, Rizzuto, R, Roberts, HC, Roberts, LD, Robinson, KJ, Roccheri, MC, Rocchi, S, Rodney, GG, Rodrigues, T, Rodrigues Silva, VR, Rodriguez, A, Rodriguez-Barrueco, R, Rodriguez-Henche, N, Rodriguez-Rocha, H, Roelofs, J, Rogers, RS, Rogov, VV, Rojo, AI, Rolka, K, Romanello, V, Romani, L, Romano, A, Romano, PS, Romeo-Guitart, D, Romero, LC, Romero, M, Roney, JC, Rongo, C, Roperto, S, Rosenfeldt, MT, Rosenstiel, P, Rosenwald, AG, Roth, KA, Roth, L, Roth, S, Rouschop, KMA, Roussel, BD, Roux, S, Rovere-Querini, P, Roy, A, Rozieres, A, Ruano, D, Rubinsztein, DC, Rubtsova, MP, Ruckdeschel, K, Ruckenstuhl, C, Rudolf, E, Rudolf, R, Ruggieri, A, Ruparelia, AA, Rusmini, P, Russell, RR, Russo, GL, Russo, M, Russo, R, Ryabaya, OO, Ryan, KM, Ryu, K-Y, Sabater-Arcis, M, Sachdev, U, Sacher, M, Sachse, C, Sadhu, A, Sadoshima, J, Safren, N, Saftig, P, Sagona, AP, Sahay, G, Sahebkar, A, Sahin, M, Sahin, O, Sahni, S, Saito, N, Saito, S, Saito, T, Sakai, R, Sakai, Y, Sakamaki, J-I, Saksela, K, Salazar, G, Salazar-Degracia, A, Salekdeh, GH, Saluja, AK, Sampaio-Marques, B, Sanchez, MC, Sanchez-Alcazar, JA, Sanchez-Vera, V, Sancho-Shimizu, V, Sanderson, JT, Sandri, M, Santaguida, S, Santambrogio, L, Santana, MM, Santoni, G, Sanz, A, Sanz, P, Saran, S, Sardiello, M, Sargeant, TJ, Sarin, A, Sarkar, C, Sarkar, S, Sarrias, M-R, Sarmah, DT, Sarparanta, J, Sathyanarayan, A, Sathyanarayanan, R, Scaglione, KM, Scatozza, F, Schaefer, L, Schafer, ZT, Schaible, UE, Schapira, AHV, Scharl, M, Schatzl, HM, Schein, CH, Scheper, W, Scheuring, D, Schiaffino, MV, Schiappacassi, M, Schindl, R, Schlattner, U, Schmidt, O, Schmitt, R, Schmidt, SD, Schmitz, I, Schmukler, E, Schneider, A, Schneider, BE, Schober, R, Schoijet, AC, Schott, MB, Schramm, M, Schröder, B, Schuh, K, Schüller, C, Schulze, RJ, Schürmanns, L, Schwamborn, JC, Schwarten, M, Scialo, F, Sciarretta, S, Scott, MJ, Scotto, KW, Scovassi, AI, Scrima, A, Scrivo, A, Sebastian, D, Sebti, S, Sedej, S, Segatori, L, Segev, N, Seglen, PO, Seiliez, I, Seki, E, Selleck, SB, Sellke, FW, Selsby, JT, Sendtner, M, Senturk, S, Seranova, E, Sergi, C, Serra-Moreno, R, Sesaki, H, Settembre, C, Setty, SRG, Sgarbi, G, Sha, O, Shacka, JJ, Shah, JA, Shang, D, Shao, C, Shao, F, Sharbati, S, Sharkey, LM, Sharma, D, Sharma, G, Sharma, K, Sharma, P, Sharma, S, Shen, H-M, Shen, H, Shen, J, Shen, M, Shen, W, Shen, Z, Sheng, R, Sheng, Z, Sheng, Z-H, Shi, J, Shi, X, Shi, Y-H, Shiba-Fukushima, K, Shieh, J-J, Shimada, Y, Shimizu, S, Shimozawa, M, Shintani, T, Shoemaker, CJ, Shojaei, S, Shoji, I, Shravage, BV, Shridhar, V, Shu, C-W, Shu, H-B, Shui, K, Shukla, AK, Shutt, TE, Sica, V, Siddiqui, A, Sierra, A, Sierra-Torre, V, Signorelli, S, Sil, P, Silva, BJDA, Silva, JD, Silva-Pavez, E, Silvente-Poirot, S, Simmonds, RE, Simon, AK, Simon, H-U, Simons, M, Singh, A, Singh, LP, Singh, R, Singh, SV, Singh, SK, Singh, SB, Singh, S, Singh, SP, Sinha, D, Sinha, RA, Sinha, S, Sirko, A, Sirohi, K, Sivridis, EL, Skendros, P, Skirycz, A, Slaninová, I, Smaili, SS, Smertenko, A, Smith, MD, Soenen, SJ, Sohn, EJ, Sok, SPM, Solaini, G, Soldati, T, Soleimanpour, SA, Soler, RM, Solovchenko, A, Somarelli, JA, Sonawane, A, Song, F, Song, HK, Song, J-X, Song, K, Song, Z, Soria, LR, Sorice, M, Soukas, AA, Soukup, S-F, Sousa, D, Sousa, N, Spagnuolo, PA, Spector, SA, Srinivas Bharath, MM, St Clair, D, Stagni, V, Staiano, L, Stalnecker, CA, Stankov, MV, Stathopulos, PB, Stefan, K, Stefan, SM, Stefanis, L, Steffan, JS, Steinkasserer, A, Stenmark, H, Sterneckert, J, Stevens, C, Stoka, V, Storch, S, Stork, B, Strappazzon, F, Strohecker, AM, Stupack, DG, Su, H, Su, L-Y, Su, L, Suarez-Fontes, AM, Subauste, CS, Subbian, S, Subirada, PV, Sudhandiran, G, Sue, CM, Sui, X, Summers, C, Sun, G, Sun, J, Sun, K, Sun, M-X, Sun, Q, Sun, Y, Sun, Z, Sunahara, KKS, Sundberg, E, Susztak, K, Sutovsky, P, Suzuki, H, Sweeney, G, Symons, JD, Sze, SCW, Szewczyk, NJ, Tabęcka-Łonczynska, A, Tabolacci, C, Tacke, F, Taegtmeyer, H, Tafani, M, Tagaya, M, Tai, H, Tait, SWG, Takahashi, Y, Takats, S, Talwar, P, Tam, C, Tam, SY, Tampellini, D, Tamura, A, Tan, CT, Tan, E-K, Tan, Y-Q, Tanaka, M, Tang, D, Tang, J, Tang, T-S, Tanida, I, Tao, Z, Taouis, M, Tatenhorst, L, Tavernarakis, N, Taylor, A, Taylor, GA, Taylor, JM, Tchetina, E, Tee, AR, Tegeder, I, Teis, D, Teixeira, N, Teixeira-Clerc, F, Tekirdag, KA, Tencomnao, T, Tenreiro, S, Tepikin, AV, Testillano, PS, Tettamanti, G, Tharaux, P-L, Thedieck, K, Thekkinghat, AA, Thellung, S, Thinwa, JW, Thirumalaikumar, VP, Thomas, SM, Thomes, PG, Thorburn, A, Thukral, L, Thum, T, Thumm, M, Tian, L, Tichy, A, Till, A, Timmerman, V, Titorenko, VI, Todi, SV, Todorova, K, Toivonen, JM, Tomaipitinca, L, Tomar, D, Tomas-Zapico, C, Tomić, S, Tong, BC-K, Tong, C, Tong, X, Tooze, SA, Torgersen, ML, Torii, S, Torres-López, L, Torriglia, A, Towers, CG, Towns, R, Toyokuni, S, Trajkovic, V, Tramontano, D, Tran, Q-G, Travassos, LH, Trelford, CB, Tremel, S, Trougakos, IP, Tsao, BP, Tschan, MP, Tse, H-F, Tse, TF, Tsugawa, H, Tsvetkov, AS, Tumbarello, DA, Tumtas, Y, Tuñón, MJ, Turcotte, S, Turk, B, Turk, V, Turner, BJ, Tuxworth, RI, Tyler, JK, Tyutereva, EV, Uchiyama, Y, Ugun-Klusek, A, Uhlig, HH, Ułamek-Kozioł, M, Ulasov, IV, Umekawa, M, Ungermann, C, Unno, R, Urbe, S, Uribe-Carretero, E, Üstün, S, Uversky, VN, Vaccari, T, Vaccaro, MI, Vahsen, BF, Vakifahmetoglu-Norberg, H, Valdor, R, Valente, MJ, Valko, A, Vallee, RB, Valverde, AM, Van den Berghe, G, van der Veen, S, Van Kaer, L, van Loosdregt, J, van Wijk, SJL, Vandenberghe, W, Vanhorebeek, I, Vannier-Santos, MA, Vannini, N, Vanrell, MC, Vantaggiato, C, Varano, G, Varela-Nieto, I, Varga, M, Vasconcelos, MH, Vats, S, Vavvas, DG, Vega-Naredo, I, Vega-Rubin-de-Celis, S, Velasco, G, Velázquez, AP, Vellai, T, Vellenga, E, Velotti, F, Verdier, M, Verginis, P, Vergne, I, Verkade, P, Verma, M, Verstreken, P, Vervliet, T, Vervoorts, J, Vessoni, AT, Victor, VM, Vidal, M, Vidoni, C, Vieira, OV, Vierstra, RD, Viganó, S, Vihinen, H, Vijayan, V, Vila, M, Vilar, M, Villalba, JM, Villalobo, A, Villarejo-Zori, B, Villarroya, F, Villarroya, J, Vincent, O, Vindis, C, Viret, C, Viscomi, MT, Visnjic, D, Vitale, I, Vocadlo, DJ, Voitsekhovskaja, OV, Volonté, C, Volta, M, Vomero, M, Von Haefen, C, Vooijs, MA, Voos, W, Vucicevic, L, Wade-Martins, R, Waguri, S, Waite, KA, Wakatsuki, S, Walker, DW, Walker, MJ, Walker, SA, Walter, J, Wandosell, FG, Wang, B, Wang, C-Y, Wang, C, Wang, D, Wang, F, Wang, G, Wang, H, Wang, H-G, Wang, J, Wang, K, Wang, L, Wang, MH, Wang, M, Wang, N, Wang, P, Wang, QJ, Wang, Q, Wang, QK, Wang, QA, Wang, W-T, Wang, W, Wang, X, Wang, Y, Wang, Y-Y, Wang, Z, Warnes, G, Warnsmann, V, Watada, H, Watanabe, E, Watchon, M, Wawrzyńska, A, Weaver, TE, Wegrzyn, G, Wehman, AM, Wei, H, Wei, L, Wei, T, Wei, Y, Weiergräber, OH, Weihl, CC, Weindl, G, Weiskirchen, R, Wells, A, Wen, RH, Wen, X, Werner, A, Weykopf, B, Wheatley, SP, Whitton, JL, Whitworth, AJ, Wiktorska, K, Wildenberg, ME, Wileman, T, Wilkinson, S, Willbold, D, Williams, B, Williams, RSB, Williams, RL, Williamson, PR, Wilson, RA, Winner, B, Winsor, NJ, Witkin, SS, Wodrich, H, Woehlbier, U, Wollert, T, Wong, E, Wong, JH, Wong, RW, Wong, VKW, Wong, WW-L, Wu, A-G, Wu, C, Wu, J, Wu, KK, Wu, M, Wu, S-Y, Wu, S, Wu, WKK, Wu, X, Wu, Y-W, Wu, Y, Xavier, RJ, Xia, H, Xia, L, Xia, Z, Xiang, G, Xiang, J, Xiang, M, Xiang, W, Xiao, B, Xiao, G, Xiao, H, Xiao, H-T, Xiao, J, Xiao, L, Xiao, S, Xiao, Y, Xie, B, Xie, C-M, Xie, M, Xie, Y, Xie, Z, Xilouri, M, Xu, C, Xu, E, Xu, H, Xu, J, Xu, L, Xu, WW, Xu, X, Xue, Y, Yakhine-Diop, SMS, Yamaguchi, M, Yamaguchi, O, Yamamoto, A, Yamashina, S, Yan, S, Yan, S-J, Yan, Z, Yanagi, Y, Yang, C, Yang, D-S, Yang, H, Yang, H-T, Yang, J-M, Yang, J, Yang, L, Yang, M, Yang, P-M, Yang, Q, Yang, S, Yang, S-F, Yang, W, Yang, WY, Yang, X, Yang, Y, Yao, H, Yao, S, Yao, X, Yao, Y-G, Yao, Y-M, Yasui, T, Yazdankhah, M, Yen, PM, Yi, C, Yin, X-M, Yin, Y, Yin, Z, Ying, M, Ying, Z, Yip, CK, Yiu, SPT, Yoo, YH, Yoshida, K, Yoshii, SR, Yoshimori, T, Yousefi, B, Yu, B, Yu, H, Yu, J, Yu, L, Yu, M-L, Yu, S-W, Yu, VC, Yu, WH, Yu, Z, Yuan, J, Yuan, L-Q, Yuan, S, Yuan, S-SF, Yuan, Y, Yuan, Z, Yue, J, Yue, Z, Yun, J, Yung, RL, Zacks, DN, Zaffagnini, G, Zambelli, VO, Zanella, I, Zang, QS, Zanivan, S, Zappavigna, S, Zaragoza, P, Zarbalis, KS, Zarebkohan, A, Zarrouk, A, Zeitlin, SO, Zeng, J, Zeng, J-D, Žerovnik, E, Zhan, L, Zhang, B, Zhang, DD, Zhang, H, Zhang, H-L, Zhang, J, Zhang, J-P, Zhang, KYB, Zhang, LW, Zhang, L, Zhang, M, Zhang, P, Zhang, S, Zhang, W, Zhang, X, Zhang, X-W, Zhang, XD, Zhang, Y, Zhang, Y-D, Zhang, Y-Y, Zhang, Z, Zhao, H, Zhao, L, Zhao, S, Zhao, T, Zhao, X-F, Zhao, Y, Zheng, G, Zheng, K, Zheng, L, Zheng, S, Zheng, X-L, Zheng, Y, Zheng, Z-G, Zhivotovsky, B, Zhong, Q, Zhou, A, Zhou, B, Zhou, C, Zhou, G, Zhou, H, Zhou, J, Zhou, K, Zhou, R, Zhou, X-J, Zhou, Y, Zhou, Z-Y, Zhou, Z, Zhu, B, Zhu, C, Zhu, G-Q, Zhu, H, Zhu, W-G, Zhu, Y, Zhuang, H, Zhuang, X, Zientara-Rytter, K, Zimmermann, CM, Ziviani, E, Zoladek, T, Zong, W-X, Zorov, DB, Zorzano, A, Zou, W, Zou, Z, Zuryn, S, Zwerschke, W, Brand-Saberi, B, Dong, XC, Kenchappa, CS, Lin, Y, Oshima, S, Rong, Y, Sluimer, JC, Stallings, CL, and Tong, C-K
- Abstract
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
- Published
- 2021
5. Uncovering active modulators of native macroautophagy through novel high-content screens
- Author
-
Safren, N, primary, Tank, EM, additional, Santoro, N, additional, and Barmada, SJ, additional
- Published
- 2019
- Full Text
- View/download PDF
6. Pearls & oy-sters: the use of CT venography in Hirayama disease.
- Author
-
Waung MW, Grossman AW, Barmada SJ, Josephson SA, Dillon WP, Ralph JW, Waung, Maggie W, Grossman, Aaron W, Barmada, Sami J, Josephson, S Andrew, Dillon, William P, and Ralph, Jeffrey W
- Published
- 2012
- Full Text
- View/download PDF
7. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury.
- Author
-
Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, Min SW, Gan L, Finkbeiner S, Huang EJ, Farese RV Jr, Martens, Lauren Herl, Zhang, Jiasheng, Barmada, Sami J, Zhou, Ping, Kamiya, Sherry, Sun, Binggui, Min, Sang-Won, Gan, Li, and Finkbeiner, Steven
- Abstract
Progranulin (PGRN) is a widely expressed secreted protein that is linked to inflammation. In humans, PGRN haploinsufficiency is a major inherited cause of frontotemporal dementia (FTD), but how PGRN deficiency causes neurodegeneration is unknown. Here we show that loss of PGRN results in increased neuron loss in response to injury in the CNS. When exposed acutely to 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydrophine (MPTP), mice lacking PGRN (Grn⁻/⁻) showed more neuron loss and increased microgliosis compared with wild-type mice. The exacerbated neuron loss was due not to selective vulnerability of Grn⁻/⁻ neurons to MPTP, but rather to an increased microglial inflammatory response. Consistent with this, conditional mutants lacking PGRN in microglia exhibited MPTP-induced phenotypes similar to Grn⁻/⁻ mice. Selective depletion of PGRN from microglia in mixed cortical cultures resulted in increased death of wild-type neurons in the absence of injury. Furthermore, Grn⁻/⁻ microglia treated with LPS/IFN-γ exhibited an amplified inflammatory response, and conditioned media from these microglia promoted death of cultured neurons. Our results indicate that PGRN deficiency leads to dysregulated microglial activation and thereby contributes to increased neuron loss with injury. These findings suggest that PGRN deficiency may cause increased neuron loss in other forms of CNS injury accompanied by neuroinflammation. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
8. Endogenous retrovirus-like proteins recruit UBQLN2 to stress granules and alter their functional properties.
- Author
-
Mohan HM, Fernandez MG, Huang C, Lin R, Ryou JH, Seyfried D, Grotewold N, Whiteley AM, Barmada SJ, Basrur V, Mosalaganti S, Paulson HL, and Sharkey LM
- Abstract
The human genome is replete with sequences derived from foreign elements including endogenous retrovirus-like proteins of unknown function. Here we show that UBQLN2, a ubiquitin-proteasome shuttle factor implicated in neurodegenerative diseases, is regulated by the linked actions of two retrovirus-like proteins, RTL8 and PEG10. RTL8 confers on UBQLN2 the ability to complex with and regulate PEG10. PEG10, a core component of stress granules, drives the recruitment of UBQLN2 to stress granules under various stress conditions, but can only do so when RTL8 is present. Changes in PEG10 levels further remodel the kinetics of stress granule disassembly and overall composition by incorporating select extracellular vesicle proteins. Within stress granules, PEG10 forms virus-like particles, underscoring the structural heterogeneity of this class of biomolecular condensates. Together, these results reveal an unexpected link between pathways of cellular proteostasis and endogenous retrovirus-like proteins.
- Published
- 2024
- Full Text
- View/download PDF
9. Stress granule formation helps to mitigate neurodegeneration.
- Author
-
Glineburg MR, Yildirim E, Gomez N, Rodriguez G, Pak J, Li X, Altheim C, Waksmacki J, McInerney GM, Barmada SJ, and Todd PK
- Subjects
- Animals, Humans, RNA Recognition Motif Proteins metabolism, RNA Recognition Motif Proteins genetics, Drosophila Proteins metabolism, Drosophila Proteins genetics, Poly-ADP-Ribose Binding Proteins metabolism, Poly-ADP-Ribose Binding Proteins genetics, Mice, Drosophila melanogaster metabolism, Drosophila melanogaster genetics, RNA Helicases metabolism, RNA Helicases genetics, Ataxia genetics, Ataxia metabolism, DNA Helicases metabolism, DNA Helicases genetics, Alphavirus genetics, Alphavirus metabolism, Rats, Carrier Proteins metabolism, Drosophila metabolism, Cytoplasmic Granules metabolism, Stress, Physiological, DNA-Binding Proteins, Stress Granules metabolism, Neurodegenerative Diseases metabolism, Neurodegenerative Diseases genetics, Amyotrophic Lateral Sclerosis metabolism, Amyotrophic Lateral Sclerosis genetics, Neurons metabolism, Frontotemporal Dementia metabolism, Frontotemporal Dementia genetics
- Abstract
Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades., (© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2024
- Full Text
- View/download PDF
10. AAGGG repeat expansions trigger RFC1 -independent synaptic dysregulation in human CANVAS neurons.
- Author
-
Maltby CJ, Krans A, Grudzien SJ, Palacios Y, Muiños J, Suárez A, Asher M, Willey S, Van Deynze K, Mumm C, Boyle AP, Cortese A, Ndayisaba A, Khurana V, Barmada SJ, Dijkstra AA, and Todd PK
- Subjects
- Humans, Bilateral Vestibulopathy genetics, Bilateral Vestibulopathy metabolism, Vestibular Diseases genetics, Alleles, Replication Protein C genetics, Replication Protein C metabolism, Neurons metabolism, Induced Pluripotent Stem Cells metabolism, Induced Pluripotent Stem Cells cytology, DNA Repeat Expansion genetics, Cerebellar Ataxia genetics, Cerebellar Ataxia pathology, Cerebellar Ataxia metabolism, Synapses metabolism, Synapses genetics
- Abstract
Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recessively inherited neurodegenerative disorder caused by intronic biallelic, nonreference CCCTT/AAGGG repeat expansions within RFC1 . To investigate how these repeats cause disease, we generated patient induced pluripotent stem cell-derived neurons (iNeurons). CCCTT/AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway function. In reporter assays, AAGGG repeats are translated into pentapeptide repeat proteins. However, these proteins and repeat RNA foci were not detected in iNeurons, and overexpression of these repeats failed to induce neuronal toxicity. CANVAS iNeurons exhibit defects in neuronal development and diminished synaptic connectivity that is rescued by CRISPR deletion of a single expanded AAGGG allele. These deficits were neither replicated by RFC1 knockdown in control iNeurons nor rescued by RFC1 reprovision in CANVAS iNeurons. These findings support a repeat-dependent but RFC1 protein-independent cause of neuronal dysfunction in CANVAS, with implications for therapeutic development in this currently untreatable condition.
- Published
- 2024
- Full Text
- View/download PDF
11. TorsinA is essential for neuronal nuclear pore complex localization and maturation.
- Author
-
Kim S, Phan S, Tran HT, Shaw TR, Shahmoradian SH, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, and Dauer WT
- Subjects
- Animals, Mice, Neurogenesis, Humans, Mice, Knockout, Mice, Inbred C57BL, Nuclear Pore metabolism, Nuclear Pore genetics, Neurons metabolism, Molecular Chaperones metabolism, Molecular Chaperones genetics, Nuclear Pore Complex Proteins metabolism, Nuclear Pore Complex Proteins genetics
- Abstract
As lifelong interphase cells, neurons face an array of unique challenges. A key challenge is regulating nuclear pore complex (NPC) biogenesis and localization, the mechanisms of which are largely unknown. Here we identify neuronal maturation as a period of strongly upregulated NPC biogenesis. We demonstrate that the AAA+ protein torsinA, whose dysfunction causes the neurodevelopmental movement disorder DYT-TOR1A dystonia and co-ordinates NPC spatial organization without impacting total NPC density. We generated an endogenous Nup107-HaloTag mouse line to directly visualize NPC organization in developing neurons and find that torsinA is essential for proper NPC localization. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized nascent NPCs, and the formation of complete NPCs is delayed. Our work demonstrates that NPC spatial organization and number are independently determined and identifies NPC biogenesis as a process vulnerable to neurodevelopmental disease insults., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2024
- Full Text
- View/download PDF
12. Molecular Visualization of Neuronal TDP43 Pathology In Situ .
- Author
-
Erwin AL, Chang ML, Fernandez MG, Attili D, Russ JE, Sutanto R, Pinarbasi ES, Bekier M, Brant TS, Hahn T, Dykstra M, Thomas D, Li X, Baldridge RD, Tank EMH, Barmada SJ, and Mosalaganti S
- Abstract
Nuclear exclusion and cytoplasmic accumulation of the RNA-binding protein TDP43 are characteristic of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite this, the origin and ultrastructure of cytosolic TDP43 deposits remain unknown. Accumulating evidence suggests that abnormal RNA homeostasis can drive pathological TDP43 mislocalization, enhancing RNA misprocessing due to loss of nuclear TDP43 and engendering a cycle that ends in cell death. Here, we show that adding small monovalent oligonucleotides successfully recapitulates pathological TDP43 mislocalization and aggregation in iPSC-derived neurons (iNeurons). By employing a multimodal in situ cryo-correlative light and electron microscopy pipeline, we examine how RNA influences the localization and aggregation of TDP43 in near-native conditions. We find that mislocalized TDP43 forms ordered fibrils within lysosomes and autophagosomes in iNeurons as well as in patient tissue, and provide the first high-resolution snapshots of TDP43 aggregates in situ . In so doing, we provide a cellular model for studying initial pathogenic events underlying ALS, FTLD, and related TDP43-proteinopathies., Competing Interests: S.J.B. serves on the advisory board for Neurocures, Inc., Symbiosis, Eikonizo Therapeutics, Ninesquare Therapeutics, the Live Like Lou Foundation, and the Robert Packard Center for ALS Research. S.J.B. has received research funding from Denali Therapeutics, Biogen, Inc., Lysoway Therapeutics, Amylyx Therapeutics, Acelot Therapeutics, Meira GTX, Inc., Prevail Therapeutics, Eikonizo Therapeutics, and Ninesquare Therapeutics.
- Published
- 2024
- Full Text
- View/download PDF
13. TDP43 autoregulation gives rise to shortened isoforms that are tightly controlled by both transcriptional and post-translational mechanisms.
- Author
-
Dykstra MM, Weskamp K, Gómez NB, Waksmacki J, Tank E, Glineburg MR, Snyder A, Pinarbasi E, Bekier M, Li X, Bai J, Shahzad S, Nedumaran J, Wieland C, Stewart C, Willey S, Grotewold N, McBride J, Moran JJ, Suryakumar AV, Lucas M, Tessier P, Ward M, Todd P, and Barmada SJ
- Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, highly prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a byproduct of TDP43 autoregulation and cleared by nonsense mediated RNA decay (NMD). The sTDP43-encoding transcripts that escape NMD can lead to toxicity but are rapidly degraded post-translationally. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration in vitro and in vivo via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and provide insight into the consequences of aberrant sTDP43 accumulation in disease.
- Published
- 2024
- Full Text
- View/download PDF
14. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats.
- Author
-
Tseng YJ, Krans A, Malik I, Deng X, Yildirim E, Ovunc S, Tank EMH, Jansen-West K, Kaufhold R, Gomez NB, Sher R, Petrucelli L, Barmada SJ, and Todd PK
- Subjects
- Humans, Ataxia, DNA Repeat Expansion genetics, Fragile X Mental Retardation Protein genetics, Fragile X Mental Retardation Protein metabolism, Fragile X Syndrome genetics, Fragile X Syndrome metabolism, GC Rich Sequence, HEK293 Cells, Induced Pluripotent Stem Cells metabolism, Neurons metabolism, Ribosomes metabolism, Ribosomes genetics, Tremor, Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis metabolism, C9orf72 Protein genetics, C9orf72 Protein metabolism, Frontotemporal Dementia genetics, Frontotemporal Dementia metabolism, Protein Biosynthesis, Trinucleotide Repeat Expansion genetics, Ribosomal Proteins metabolism
- Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders., (© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2024
- Full Text
- View/download PDF
15. Counter-regulation of RNA stability by UPF1 and TDP43.
- Author
-
Gomez N, Hsieh C, Li X, Dykstra M, Waksmacki J, Altheim C, Bechar Y, Klim J, Zaepfel B, Rothstein J, Tank EE, and Barmada SJ
- Abstract
RNA quality control is crucial for proper regulation of gene expression. Disruption of nonsense mediated mRNA decay (NMD), the primary RNA decay pathway responsible for the degradation of transcripts containing premature termination codons (PTCs), can disrupt development and lead to multiple diseases in humans and other animals. Similarly, therapies targeting NMD may have applications in hematological, neoplastic and neurological disorders. As such, tools capable of accurately quantifying NMD status could be invaluable for investigations of disease pathogenesis and biomarker identification. Toward this end, we assemble, validate, and apply a next-generation sequencing approach (NMDq) for identifying and measuring the abundance of PTC-containing transcripts. After validating NMDq performance and confirming its utility for tracking RNA surveillance, we apply it to determine pathway activity in two neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) characterized by RNA misprocessing and abnormal RNA stability. Despite the genetic and pathologic evidence implicating dysfunctional RNA metabolism, and NMD in particular, in these conditions, we detected no significant differences in PTC-encoding transcripts in ALS models or disease. Contrary to expectations, overexpression of the master NMD regulator UPF1 had little effect on the clearance of transcripts with PTCs, but rather restored RNA homeostasis through differential use and decay of alternatively poly-adenylated isoforms. Together, these data suggest that canonical NMD is not a significant contributor to ALS/FTD pathogenesis, and that UPF1 promotes neuronal survival by regulating transcripts with abnormally long 3'UTRs.
- Published
- 2024
- Full Text
- View/download PDF
16. AAGGG repeat expansions trigger RFC1-independent synaptic dysregulation in human CANVAS Neurons.
- Author
-
Maltby CJ, Krans A, Grudzien SJ, Palacios Y, Muiños J, Suárez A, Asher M, Khurana V, Barmada SJ, Dijkstra AA, and Todd PK
- Abstract
Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a late onset, recessively inherited neurodegenerative disorder caused by biallelic, non-reference pentameric AAGGG(CCCTT) repeat expansions within the second intron of replication factor complex subunit 1 ( RFC1 ). To investigate how these repeats cause disease, we generated CANVAS patient induced pluripotent stem cell (iPSC) derived neurons (iNeurons) and utilized calcium imaging and transcriptomic analysis to define repeat-elicited gain-of-function and loss-of-function contributions to neuronal toxicity. AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway functions. In reporter assays, AAGGG repeats are translated into pentapeptide repeat proteins that selectively accumulate in CANVAS patient brains. However, neither these proteins nor repeat RNA foci were detected in iNeurons, and overexpression of these repeats in isolation did not induce neuronal toxicity. CANVAS iNeurons exhibit defects in neuronal development and diminished synaptic connectivity that is rescued by CRISPR deletion of a single expanded allele. These phenotypic deficits were not replicated by knockdown of RFC1 in control neurons and were not rescued by ectopic expression of RFC1. These findings support a repeat-dependent but RFC1-independent cause of neuronal dysfunction in CANVAS, with important implications for therapeutic development in this currently untreatable condition., Competing Interests: Conflicts of interest The authors declare no direct conflicts of interest related to the content of this manuscript. No commercial forces had editorial or supervisory input on the content of the manuscript or its figures. P.K.T. holds a shared patent on ASOs with Ionis Pharmaceuticals. He has served as a consultant with Denali Therapeutics, and he has licensed technology and antibodies to Denali and Abcam. V.K. is a co-founder of and senior advisor to DaCapo Brainscience and Yumanity Therapeutics, companies focused on CNS diseases.
- Published
- 2023
- Full Text
- View/download PDF
17. Roadmap for C9ORF72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis: Report on the C9ORF72 FTD/ALS Summit.
- Author
-
Sattler R, Traynor BJ, Robertson J, Van Den Bosch L, Barmada SJ, Svendsen CN, Disney MD, Gendron TF, Wong PC, Turner MR, Boxer A, Babu S, Benatar M, Kurnellas M, Rohrer JD, Donnelly CJ, Bustos LM, Van Keuren-Jensen K, Dacks PA, and Sabbagh MN
- Abstract
A summit held March 2023 in Scottsdale, Arizona (USA) focused on the intronic hexanucleotide expansion in the C9ORF72 gene and its relevance in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS; C9ORF72-FTD/ALS). The goal of this summit was to connect basic scientists, clinical researchers, drug developers, and individuals affected by C9ORF72-FTD/ALS to evaluate how collaborative efforts across the FTD-ALS disease spectrum might break down existing disease silos. Presentations and discussions covered recent discoveries in C9ORF72-FTD/ALS disease mechanisms, availability of disease biomarkers and recent advances in therapeutic development, and clinical trial design for prevention and treatment for individuals affected by C9ORF72-FTD/ALS and asymptomatic pathological expansion carriers. The C9ORF72-associated hexanucleotide repeat expansion is an important locus for both ALS and FTD. C9ORF72-FTD/ALS may be characterized by loss of function of the C9ORF72 protein and toxic gain of functions caused by both dipeptide repeat (DPR) proteins and hexanucleotide repeat RNA. C9ORF72-FTD/ALS therapeutic strategies discussed at the summit included the use of antisense oligonucleotides, adeno-associated virus (AAV)-mediated gene silencing and gene delivery, and engineered small molecules targeting RNA structures associated with the C9ORF72 expansion. Neurofilament light chain, DPR proteins, and transactive response (TAR) DNA-binding protein 43 (TDP-43)-associated molecular changes were presented as biomarker candidates. Similarly, brain imaging modalities (i.e., magnetic resonance imaging [MRI] and positron emission tomography [PET]) measuring structural, functional, and metabolic changes were discussed as important tools to monitor individuals affected with C9ORF72-FTD/ALS, at both pre-symptomatic and symptomatic disease stages. Finally, summit attendees evaluated current clinical trial designs available for FTD or ALS patients and concluded that therapeutics relevant to FTD/ALS patients, such as those specifically targeting C9ORF72, may need to be tested with composite endpoints covering clinical symptoms of both FTD and ALS. The latter will require novel clinical trial designs to be inclusive of all patient subgroups spanning the FTD/ALS spectrum., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
18. Stress granule formation helps to mitigate neurodegeneration.
- Author
-
Glineburg MR, Yildirim E, Gomez N, Li X, Pak J, Altheim C, Waksmacki J, McInerney G, Barmada SJ, and Todd PK
- Abstract
Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP ( rin in Drosophila ) and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.
- Published
- 2023
- Full Text
- View/download PDF
19. The MLO-down on TDP-43.
- Author
-
Dykstra M and Barmada SJ
- Subjects
- Humans, DNA-Binding Proteins, Centrosome
- Published
- 2023
- Full Text
- View/download PDF
20. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats.
- Author
-
Tseng YJ, Malik I, Deng X, Krans A, Jansen-West K, Tank EMH, Gomez NB, Sher R, Petrucelli L, Barmada SJ, and Todd PK
- Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1, and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter cell lines and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation - suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation elongation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders., Competing Interests: CONFLICT OF INTEREST The authors declare no competing interests.
- Published
- 2023
- Full Text
- View/download PDF
21. C-terminal frameshift variant of TDP-43 with pronounced aggregation-propensity causes rimmed vacuole myopathy but not ALS/FTD.
- Author
-
Ervilha Pereira P, Schuermans N, Meylemans A, LeBlanc P, Versluys L, Copley KE, Rubien JD, Altheimer C, Peetermans M, Debackere E, Vanakker O, Janssens S, Baets J, Verhoeven K, Lammens M, Symoens S, De Paepe B, Barmada SJ, Shorter J, De Bleecker JL, Bogaert E, and Dermaut B
- Subjects
- Animals, Rats, DNA-Binding Proteins genetics, DNA-Binding Proteins metabolism, Frameshift Mutation, Mutation, Humans, Amyotrophic Lateral Sclerosis pathology, Frontotemporal Dementia genetics, Frontotemporal Dementia pathology, Pick Disease of the Brain
- Abstract
Neuronal TDP-43-positive inclusions are neuropathological hallmark lesions in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Pathogenic missense variants in TARDBP, the gene encoding TDP-43, can cause ALS and cluster in the C-terminal prion-like domain (PrLD), where they modulate the liquid condensation and aggregation properties of the protein. TDP-43-positive inclusions are also found in rimmed vacuole myopathies, including sporadic inclusion body myositis, but myopathy-causing TDP-43 variants have not been reported. Using genome-wide linkage analysis and whole exome sequencing in an extended five-generation family with an autosomal dominant rimmed vacuole myopathy, we identified a conclusively linked frameshift mutation in TDP-43 producing a C-terminally altered PrLD (TDP-43
p.Trp385IlefsTer10 ) (maximum multipoint LOD-score 3.61). Patient-derived muscle biopsies showed TDP-43-positive sarcoplasmic inclusions, accumulation of autophagosomes and transcriptomes with abnormally spliced sarcomeric genes (including TTN and NEB) and increased expression of muscle regeneration genes. In vitro phase separation assays demonstrated that TDP-43Trp385IlefsTer10 does not form liquid-like condensates and readily forms solid-like fibrils indicating increased aggregation propensity compared to wild-type TDP-43. In Drosophila TDP-43p.Trp385IlefsTer10 behaved as a partial loss-of-function allele as it was able to rescue the TBPH (fly ortholog of TARDBP) neurodevelopmental lethal null phenotype while showing strongly reduced toxic gain-of-function properties upon overexpression. Accordingly, TDP-43p.Trp385IlefsTer10 showed reduced toxicity in a primary rat neuron disease model. Together, these genetic, pathological, in vitro and in vivo results demonstrate that TDP-43p.Trp385IlefsTer10 is an aggregation-prone partial loss-of-function variant that causes autosomal dominant vacuolar myopathy but not ALS/FTD. Our study genetically links TDP-43 proteinopathy to myodegeneration, and reveals a tissue-specific role of the PrLD in directing pathology., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
22. TorsinA is essential for the timing and localization of neuronal nuclear pore complex biogenesis.
- Author
-
Kim S, Phan S, Shaw TR, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, and Dauer WT
- Abstract
Nuclear pore complexes (NPCs) regulate information transfer between the nucleus and cytoplasm. NPC defects are linked to several neurological diseases, but the processes governing NPC biogenesis and spatial organization are poorly understood. Here, we identify a temporal window of strongly upregulated NPC biogenesis during neuronal maturation. We demonstrate that the AAA+ protein torsinA, whose loss of function causes the neurodevelopmental movement disorder DYT-TOR1A (DYT1) dystonia, coordinates NPC spatial organization during this period without impacting total NPC density. Using a new mouse line in which endogenous Nup107 is Halo-Tagged, we find that torsinA is essential for correct localization of NPC formation. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized, nascent NPCs, and NPC assembly completion is delayed. Our work implies that NPC spatial organization and number are independently regulated and suggests that torsinA is critical for the normal localization and assembly kinetics of NPCs., Competing Interests: Competing interests: The authors declare no competing interests.
- Published
- 2023
- Full Text
- View/download PDF
23. Glia in FTLD-GRN: from supporting cast to leading role.
- Author
-
Pinarbasi ES and Barmada SJ
- Subjects
- Humans, Animals, Mice, Intercellular Signaling Peptides and Proteins genetics, Neuroglia, Mutation, Progranulins genetics, Neurodegenerative Diseases, Frontotemporal Lobar Degeneration genetics, Frontotemporal Dementia genetics
- Abstract
A subset of the neurodegenerative disease frontotemporal lobar degeneration (FTLD) is caused by mutations in the progranulin (GRN) gene. In this issue of the JCI, Marsan and colleagues demonstrate disease-specific transcriptional profiles in multiple glial cell lineages - astrocytes, microglia, and oligodendroglia - that are highly conserved between patients with FTLD-GRN and the widely used Grn-/- mouse model. Additionally, the authors show that Grn-/- astrocytes fail to adequately maintain synapses in both mouse and human models. This study presents a compelling argument for a central role for glia in neurodegeneration and creates a rich resource for extending mechanistic insight into pathophysiology, identifying potential biomarkers, and developing therapeutic approaches.
- Published
- 2023
- Full Text
- View/download PDF
24. miRNA analysis reveals novel dysregulated pathways in amyotrophic lateral sclerosis.
- Author
-
Hur J, Paez-Colasante X, Figueroa-Romero C, Lo TW, Barmada SJ, Paulsen MT, Ljungman M, Alakwaa FM, Savelieff MG, Goutman SA, and Feldman EL
- Subjects
- Humans, Mutation, Amyotrophic Lateral Sclerosis pathology, MicroRNAs genetics, MicroRNAs metabolism, Neurodegenerative Diseases, Frontotemporal Dementia genetics
- Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Its complex pathogenesis and phenotypic heterogeneity hinder therapeutic development and early diagnosis. Altered RNA metabolism is a recurrent pathophysiologic theme, including distinct microRNA (miRNA) profiles in ALS tissues. We profiled miRNAs in accessible biosamples, including skin fibroblasts and whole blood and compared them in age- and sex-matched healthy controls versus ALS participants with and without repeat expansions to chromosome 9 open reading frame 72 (C9orf72; C9-ALS and nonC9-ALS), the most frequent ALS mutation. We identified unique and shared profiles of differential miRNA (DmiRNA) levels in each C9-ALS and nonC9-ALS tissues versus controls. Fibroblast DmiRNAs were validated by quantitative real-time PCR and their target mRNAs by 5-bromouridine and 5-bromouridine-chase sequencing. We also performed pathway analysis to infer biological meaning, revealing anticipated, tissue-specific pathways and pathways previously linked to ALS, as well as novel pathways that could inform future research directions. Overall, we report a comprehensive study of a miRNA profile dataset from C9-ALS and nonC9-ALS participants across two accessible biosamples, providing evidence of dysregulated miRNAs in ALS and possible targets of interest. Distinct miRNA patterns in accessible tissues may also be leveraged to distinguish ALS participants from healthy controls for earlier diagnosis. Future directions may look at potential correlations of miRNA profiles with clinical parameters., (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
25. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia.
- Author
-
McMillan M, Gomez N, Hsieh C, Bekier M, Li X, Miguez R, Tank EMH, and Barmada SJ
- Subjects
- Humans, Methylation, Neurons metabolism, RNA genetics, RNA metabolism, Amyotrophic Lateral Sclerosis pathology, Frontotemporal Dementia genetics, Frontotemporal Dementia metabolism
- Abstract
RNA methylation at adenosine N6 (m6A) is one of the most common RNA modifications, impacting RNA stability, transport, and translation. Previous studies uncovered RNA destabilization in amyotrophic lateral sclerosis (ALS) models in association with accumulation of the RNA-binding protein TDP43. Here, we show that TDP43 recognizes m6A RNA and that RNA methylation is critical for both TDP43 binding and autoregulation. We also observed extensive RNA hypermethylation in ALS spinal cord, corresponding to methylated TDP43 substrates. Emphasizing the importance of m6A for TDP43 binding and function, we identified several m6A factors that enhance or suppress TDP43-mediated toxicity via single-cell CRISPR-Cas9 in primary neurons. The most promising modifier-the canonical m6A reader YTHDF2-accumulated within ALS spinal neurons, and its knockdown prolonged the survival of human neurons carrying ALS-associated mutations. Collectively, these data show that m6A modifications modulate RNA binding by TDP43 and that m6A is pivotal for TDP43-related neurodegeneration in ALS., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
26. Ubiquilin-2 regulates pathological alpha-synuclein.
- Author
-
Sandoval-Pistorius SS, Gerson JE, Liggans N, Ryou JH, Oak K, Li X, Negron-Rios KY, Fischer S, Barsh H, Crowley EV, Skinner ME, Sharkey LM, Barmada SJ, and Paulson HL
- Subjects
- Mice, Animals, Humans, alpha-Synuclein genetics, alpha-Synuclein metabolism, Lewy Bodies metabolism, Mice, Transgenic, Autophagy-Related Proteins genetics, Autophagy-Related Proteins metabolism, Adaptor Proteins, Signal Transducing genetics, Adaptor Proteins, Signal Transducing metabolism, Parkinson Disease genetics, Parkinson Disease metabolism, Synucleinopathies metabolism
- Abstract
The key protein implicated in Parkinson's disease and other synucleinopathies is α-synuclein, and a post-translationally modified form of the protein, phosphorylated at serine 129 (pS129), is a principal component in Lewy bodies, a pathological hallmark of PD. While altered proteostasis has been implicated in the etiology of Parkinson's disease, we still have a limited understanding of how α-synuclein is regulated in the nervous system. The protein quality control protein Ubiquilin-2 (UBQLN2) is known to accumulate in synucleinopathies, but whether it directly regulates α-synuclein is unknown. Using cellular and mouse models, we find that UBQLN2 decreases levels of α-synuclein, including the pS129 phosphorylated isoform. Pharmacological inhibition of the proteasome revealed that, while α-synuclein may be cleared by parallel and redundant quality control pathways, UBQLN2 preferentially targets pS129 for proteasomal degradation. Moreover, in brain tissue from human PD and transgenic mice expressing pathogenic α-synuclein (A53T), native UBQLN2 becomes more insoluble. Collectively, our studies support a role for UBQLN2 in directly regulating pathological forms of α-synuclein and indicate that UBQLN2 dysregulation in disease may contribute to α-synuclein-mediated toxicity., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
27. Neuronal Puncta/Aggregate Formation by WT and Mutant UBQLN2.
- Author
-
Safren N, Sharkey LM, and Barmada SJ
- Subjects
- Humans, Neurons metabolism, Protein Aggregates, Autophagy-Related Proteins genetics, Autophagy-Related Proteins metabolism, Adaptor Proteins, Signal Transducing genetics, Adaptor Proteins, Signal Transducing metabolism, Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis metabolism, Neurodegenerative Diseases metabolism, Parkinson Disease metabolism
- Abstract
Protein aggregates are a common feature of nearly all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Here we describe a method to quickly and accurately measure protein aggregation in cells expressing a fluorescently tagged aggregation-prone protein. This unbiased method obviates the need for manual scoring and facilitates the identification of factors governing protein self-assembly and its downstream consequences for cell heath., (© 2023. Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
28. Nuclear import receptors are recruited by FG-nucleoporins to rescue hallmarks of TDP-43 proteinopathy.
- Author
-
Khalil B, Chhangani D, Wren MC, Smith CL, Lee JH, Li X, Puttinger C, Tsai CW, Fortin G, Morderer D, Gao J, Liu F, Lim CK, Chen J, Chou CC, Croft CL, Gleixner AM, Donnelly CJ, Golde TE, Petrucelli L, Oskarsson B, Dickson DW, Zhang K, Shorter J, Yoshimura SH, Barmada SJ, Rincon-Limas DE, and Rossoll W
- Subjects
- Animals, Mice, Active Transport, Cell Nucleus, Autopsy, DNA-Binding Proteins, Nuclear Pore Complex Proteins, Humans, Drosophila, Amyotrophic Lateral Sclerosis, Frontotemporal Dementia
- Abstract
Background: Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) disease spectrum, causing both nuclear loss-of-function and cytoplasmic toxic gain-of-function phenotypes. While TDP-43 proteinopathy has been associated with defects in nucleocytoplasmic transport, this process is still poorly understood. Here we study the role of karyopherin-β1 (KPNB1) and other nuclear import receptors in regulating TDP-43 pathology., Methods: We used immunostaining, immunoprecipitation, biochemical and toxicity assays in cell lines, primary neuron and organotypic mouse brain slice cultures, to determine the impact of KPNB1 on the solubility, localization, and toxicity of pathological TDP-43 constructs. Postmortem patient brain and spinal cord tissue was stained to assess KPNB1 colocalization with TDP-43 inclusions. Turbidity assays were employed to study the dissolution and prevention of aggregation of recombinant TDP-43 fibrils in vitro. Fly models of TDP-43 proteinopathy were used to determine the effect of KPNB1 on their neurodegenerative phenotype in vivo., Results: We discovered that several members of the nuclear import receptor protein family can reduce the formation of pathological TDP-43 aggregates. Using KPNB1 as a model, we found that its activity depends on the prion-like C-terminal region of TDP-43, which mediates the co-aggregation with phenylalanine and glycine-rich nucleoporins (FG-Nups) such as Nup62. KPNB1 is recruited into these co-aggregates where it acts as a molecular chaperone that reverses aberrant phase transition of Nup62 and TDP-43. These findings are supported by the discovery that Nup62 and KPNB1 are also sequestered into pathological TDP-43 aggregates in ALS/FTD postmortem CNS tissue, and by the identification of the fly ortholog of KPNB1 as a strong protective modifier in Drosophila models of TDP-43 proteinopathy. Our results show that KPNB1 can rescue all hallmarks of TDP-43 pathology, by restoring its solubility and nuclear localization, and reducing neurodegeneration in cellular and animal models of ALS/FTD., Conclusion: Our findings suggest a novel NLS-independent mechanism where, analogous to its canonical role in dissolving the diffusion barrier formed by FG-Nups in the nuclear pore, KPNB1 is recruited into TDP-43/FG-Nup co-aggregates present in TDP-43 proteinopathies and therapeutically reverses their deleterious phase transition and mislocalization, mitigating neurodegeneration., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
29. CGG repeats trigger translational frameshifts that generate aggregation-prone chimeric proteins.
- Author
-
Wright SE, Rodriguez CM, Monroe J, Xing J, Krans A, Flores BN, Barsur V, Ivanova MI, Koutmou KS, Barmada SJ, and Todd PK
- Subjects
- Arginine genetics, Ataxia, Fragile X Syndrome, Glycine genetics, Humans, Peptides genetics, Peptides metabolism, Recombinant Fusion Proteins metabolism, Fragile X Mental Retardation Protein genetics, Fragile X Mental Retardation Protein metabolism, Neurodegenerative Diseases genetics, Protein Aggregation, Pathological, Trinucleotide Repeats
- Abstract
CGG repeat expansions in the FMR1 5'UTR cause the neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). These repeats form stable RNA secondary structures that support aberrant translation in the absence of an AUG start codon (RAN translation), producing aggregate-prone peptides that accumulate within intranuclear neuronal inclusions and contribute to neurotoxicity. Here, we show that the most abundant RAN translation product, FMRpolyG, is markedly less toxic when generated from a construct with a non-repetitive alternating codon sequence in place of the CGG repeat. While exploring the mechanism of this differential toxicity, we observed a +1 translational frameshift within the CGG repeat from the arginine to glycine reading frame. Frameshifts occurred within the first few translated repeats and were triggered predominantly by RNA sequence and structural features. Short chimeric R/G peptides form aggregates distinct from those formed by either pure arginine or glycine, and these chimeras induce toxicity in cultured rodent neurons. Together, this work suggests that CGG repeats support translational frameshifting and that chimeric RAN translated peptides may contribute to CGG repeat-associated toxicity in FXTAS and related disorders., (© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2022
- Full Text
- View/download PDF
30. Myotubularin-related phosphatase 5 is a critical determinant of autophagy in neurons.
- Author
-
Chua JP, Bedi K, Paulsen MT, Ljungman M, Tank EMH, Kim ES, McBride JP, Colón-Mercado JM, Ward ME, Weisman LS, and Barmada SJ
- Subjects
- Autophagy genetics, Neurons physiology, Autophagosomes metabolism, Protein Tyrosine Phosphatases, Non-Receptor genetics, Protein Tyrosine Phosphatases, Non-Receptor metabolism
- Abstract
Autophagy is a conserved, multi-step process of capturing proteolytic cargo in autophagosomes for lysosome degradation. The capacity to remove toxic proteins that accumulate in neurodegenerative disorders attests to the disease-modifying potential of the autophagy pathway. However, neurons respond only marginally to conventional methods for inducing autophagy, limiting efforts to develop therapeutic autophagy modulators for neurodegenerative diseases. The determinants underlying poor autophagy induction in neurons and the degree to which neurons and other cell types are differentially sensitive to autophagy stimuli are incompletely defined. Accordingly, we sampled nascent transcript synthesis and stabilities in fibroblasts, induced pluripotent stem cells (iPSCs), and iPSC-derived neurons (iNeurons), thereby uncovering a neuron-specific stability of transcripts encoding myotubularin-related phosphatase 5 (MTMR5). MTMR5 is an autophagy suppressor that acts with its binding partner, MTMR2, to dephosphorylate phosphoinositides critical for autophagy initiation and autophagosome maturation. We found that MTMR5 is necessary and sufficient to suppress autophagy in iNeurons and undifferentiated iPSCs. Using optical pulse labeling to visualize the turnover of endogenously encoded proteins in live cells, we observed that knockdown of MTMR5 or MTMR2, but not the unrelated phosphatase MTMR9, significantly enhances neuronal degradation of TDP-43, an autophagy substrate implicated in several neurodegenerative diseases. Our findings thus establish a regulatory mechanism of autophagy intrinsic to neurons and targetable for clearing disease-related proteins in a cell-type-specific manner. In so doing, our results not only unravel novel aspects of neuronal biology and proteostasis but also elucidate a strategy for modulating neuronal autophagy that could be of high therapeutic potential for multiple neurodegenerative diseases., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
31. Poly(GR) and poly(GA) in cerebrospinal fluid as potential biomarkers for C9ORF72-ALS/FTD.
- Author
-
Krishnan G, Raitcheva D, Bartlett D, Prudencio M, McKenna-Yasek DM, Douthwright C, Oskarsson BE, Ladha S, King OD, Barmada SJ, Miller TM, Bowser R, Watts JK, Petrucelli L, Brown RH, Kankel MW, and Gao FB
- Subjects
- Biomarkers, C9orf72 Protein genetics, C9orf72 Protein metabolism, Dipeptides metabolism, Humans, Proteins, Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis metabolism, Frontotemporal Dementia genetics, Frontotemporal Dementia metabolism
- Abstract
GGGGCC repeat expansion in C9ORF72, which can be translated in both sense and antisense directions into five dipeptide repeat (DPR) proteins, including poly(GP), poly(GR), and poly(GA), is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we developed sensitive assays that can detect poly(GA) and poly(GR) in the cerebrospinal fluid (CSF) of patients with C9ORF72 mutations. CSF poly(GA) and poly(GR) levels did not correlate with age at disease onset, disease duration, or rate of decline of ALS Functional Rating Scale, and the average levels of these DPR proteins were similar in symptomatic and pre-symptomatic patients with C9ORF72 mutations. However, in a patient with C9ORF72-ALS who was treated with antisense oligonucleotide (ASO) targeting the aberrant C9ORF72 transcript, CSF poly(GA) and poly(GR) levels decreased approximately 50% within 6 weeks, indicating they may serve as sensitive fluid-based biomarkers in studies directed against the production of GGGGCC repeat RNAs or DPR proteins., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
32. Heat shock protein Grp78/BiP/HspA5 binds directly to TDP-43 and mitigates toxicity associated with disease pathology.
- Author
-
François-Moutal L, Scott DD, Ambrose AJ, Zerio CJ, Rodriguez-Sanchez M, Dissanayake K, May DG, Carlson JM, Barbieri E, Moutal A, Roux KJ, Shorter J, Khanna R, Barmada SJ, McGurk L, and Khanna M
- Subjects
- Animals, DNA-Binding Proteins metabolism, Drosophila metabolism, Endoplasmic Reticulum Chaperone BiP, HSP70 Heat-Shock Proteins genetics, Heat-Shock Proteins metabolism, Humans, Molecular Chaperones, Amyotrophic Lateral Sclerosis metabolism, Neurodegenerative Diseases
- Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
33. Autophagy and ALS: mechanistic insights and therapeutic implications.
- Author
-
Chua JP, De Calbiac H, Kabashi E, and Barmada SJ
- Subjects
- Autophagy physiology, Humans, Proteostasis, Unfolded Protein Response, Amyotrophic Lateral Sclerosis metabolism, Frontotemporal Dementia genetics
- Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases. Abbreviations : ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
- Published
- 2022
- Full Text
- View/download PDF
34. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury.
- Author
-
Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, Min SW, Gan L, Finkbeiner S, Huang EJ, and Jr RVF
- Published
- 2022
- Full Text
- View/download PDF
35. TDP-43 stabilizes G3BP1 mRNA: relevance to amyotrophic lateral sclerosis/frontotemporal dementia.
- Author
-
Sidibé H, Khalfallah Y, Xiao S, Gómez NB, Fakim H, Tank EMH, Di Tomasso G, Bareke E, Aulas A, McKeever PM, Melamed Z, Destroimaisons L, Deshaies JE, Zinman L, Parker JA, Legault P, Tétreault M, Barmada SJ, Robertson J, and Vande Velde C
- Subjects
- Amyotrophic Lateral Sclerosis pathology, Cells, Cultured, Frontotemporal Dementia pathology, Humans, Neurons pathology, RNA, Messenger, Amyotrophic Lateral Sclerosis metabolism, DNA Helicases metabolism, DNA-Binding Proteins metabolism, Frontotemporal Dementia metabolism, Neurons metabolism, Poly-ADP-Ribose Binding Proteins metabolism, RNA Helicases metabolism, RNA Recognition Motif Proteins metabolism
- Abstract
TDP-43 nuclear depletion and concurrent cytoplasmic accumulation in vulnerable neurons is a hallmark feature of progressive neurodegenerative proteinopathies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cellular stress signalling and stress granule dynamics are now recognized to play a role in ALS/FTD pathogenesis. Defective stress granule assembly is associated with increased cellular vulnerability and death. Ras-GAP SH3-domain-binding protein 1 (G3BP1) is a critical stress granule assembly factor. Here, we define that TDP-43 stabilizes G3BP1 transcripts via direct binding of a highly conserved cis regulatory element within the 3' untranslated region. Moreover, we show in vitro and in vivo that nuclear TDP-43 depletion is sufficient to reduce G3BP1 protein levels. Finally, we establish that G3BP1 transcripts are reduced in ALS/FTD patient neurons bearing TDP-43 cytoplasmic inclusions/nuclear depletion. Thus, our data indicate that, in ALS/FTD, there is a compromised stress granule response in disease-affected neurons due to impaired G3BP1 mRNA stability caused by TDP-43 nuclear depletion. These data implicate TDP-43 and G3BP1 loss of function as contributors to disease., (© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2021
- Full Text
- View/download PDF
36. Development of a specific live-cell assay for native autophagic flux.
- Author
-
Safren N, Tank EM, Malik AM, Chua JP, Santoro N, and Barmada SJ
- Subjects
- Adaptor Proteins, Signal Transducing genetics, Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis therapy, Autophagy-Related Proteins genetics, C9orf72 Protein genetics, CRISPR-Cas Systems, DNA-Binding Proteins genetics, Drug Screening Assays, Antitumor, Frontotemporal Dementia genetics, Frontotemporal Dementia therapy, HEK293 Cells, High-Throughput Screening Assays, Humans, Luminescent Proteins genetics, Microtubule-Associated Proteins genetics, Models, Biological, Motor Neurons metabolism, Mutation, Autophagy drug effects
- Abstract
Autophagy is an evolutionarily conserved pathway mediating the breakdown of cellular proteins and organelles. Emphasizing its pivotal nature, autophagy dysfunction contributes to many diseases; nevertheless, development of effective autophagy modulating drugs is hampered by fundamental deficiencies in available methods for measuring autophagic activity or flux. To overcome these limitations, we introduced the photoconvertible protein Dendra2 into the MAP1LC3B locus of human cells via CRISPR/Cas9 genome editing, enabling accurate and sensitive assessments of autophagy in living cells by optical pulse labeling. We used this assay to perform high-throughput drug screens of four chemical libraries comprising over 30,000 diverse compounds, identifying several clinically relevant drugs and novel autophagy modulators. A select series of candidate compounds also modulated autophagy flux in human motor neurons modified by CRISPR/Cas9 to express GFP-labeled LC3. Using automated microscopy, we tested the therapeutic potential of autophagy induction in several distinct neuronal models of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In doing so, we found that autophagy induction exhibited discordant effects, improving survival in disease models involving the RNA binding protein TDP-43, while exacerbating toxicity in neurons expressing mutant forms of UBQLN2 and C9ORF72 associated with familial ALS/FTD. These studies confirm the utility of the Dendra2-LC3 assay, while illustrating the contradictory effects of autophagy induction in different ALS/FTD subtypes., Competing Interests: Conflict of interest Nathaniel Safren, Elizabeth M. Tank, and Sami J. Barmada are coapplicants on a patent application for an assay probing mammalian autophagy (US Pat Appl 16/288802)., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
37. Role of Optical Coherence Tomography in Identifying Retinal Biomarkers in Frontotemporal Dementia: A Review.
- Author
-
Moinuddin O, Khandwala NS, Young KZ, Sathrasala SK, Barmada SJ, Albin RL, and Besirli CG
- Abstract
Purpose of Review: Frontotemporal dementia (FTD) is often misdiagnosed or recognized late. Clinical heterogeneity and overlap with other dementias impede accurate diagnosis. FTD biomarkers are limited, expensive, and invasive. We present a narrative review of the current literature focused on optical coherence tomography (OCT) to identify retinal biomarkers of dementia, discuss OCT findings in FTD, and explore the implications of an FTD-specific ocular biomarker for research and patient care., Recent Findings: Recent studies suggest that outer retinal thinning detected via OCT may function as a novel ocular biomarker of FTD. The degree and rate of inner retinal thinning may correlate with disease severity and progression. In Alzheimer disease (AD), OCT demonstrates thinning of the inner retina, which may differentiate this condition from FTD. We conducted a comprehensive search of the literature and reviewed published OCT findings in FTD, AD, and mild cognitive impairment, as well as reports on biomarkers of FTD and AD used in the research and patient care settings. Three of the authors (O.M., N.S.K., and K.Z.Y.) independently conducted literature searches using PubMed to identify studies published before May 1, 2020, using the following search terminology: "Alzheimer's disease," "Alzheimer's dementia," "frontotemporal dementia," "FTD," "mild cognitive impairment," "dementia biomarkers," and "neurodegeneration biomarkers." Search results were then refined using one or more of the following keywords: "optical coherence tomography," "optical coherence tomography angiography," "retinal imaging," and "retinal thinning." The selection of published works for inclusion in this narrative review was then limited to full-text articles written in English based on consensus agreement of the authors., Summary: FTD diagnosis is imprecise, emphasizing the need for improved state and trait biomarkers. OCT imaging of the retina holds considerable potential for establishing effective ocular biomarkers for FTD., (© 2021 American Academy of Neurology.)
- Published
- 2021
- Full Text
- View/download PDF
38. Enhanced detection of expanded repeat mRNA foci with hybridization chain reaction.
- Author
-
Glineburg MR, Zhang Y, Krans A, Tank EM, Barmada SJ, and Todd PK
- Subjects
- Amyotrophic Lateral Sclerosis metabolism, Amyotrophic Lateral Sclerosis pathology, C9orf72 Protein metabolism, Cells, Cultured, DNA Repeat Expansion physiology, Fibroblasts metabolism, Fibroblasts pathology, Frontotemporal Dementia metabolism, Frontotemporal Dementia pathology, Humans, RNA, Messenger metabolism, Amyotrophic Lateral Sclerosis genetics, C9orf72 Protein genetics, Frontotemporal Dementia genetics, In Situ Hybridization, Fluorescence methods, RNA, Messenger genetics
- Abstract
Transcribed nucleotide repeat expansions form detectable RNA foci in patient cells that contribute to disease pathogenesis. The most widely used method for detecting RNA foci, fluorescence in situ hybridization (FISH), is powerful but can suffer from issues related to signal above background. Here we developed a repeat-specific form of hybridization chain reaction (R-HCR) as an alternative method for detection of repeat RNA foci in two neurodegenerative disorders: C9orf72 associated ALS and frontotemporal dementia (C9 ALS/FTD) and Fragile X-associated tremor/ataxia syndrome. R-HCR to both G
4 C2 and CGG repeats exhibited comparable specificity but > 40 × sensitivity compared to FISH, with better detection of both nuclear and cytoplasmic foci in human C9 ALS/FTD fibroblasts, patient iPSC derived neurons, and patient brain samples. Using R-HCR, we observed that integrated stress response (ISR) activation significantly increased the number of endogenous G4 C2 repeat RNA foci and triggered their selective nuclear accumulation without evidence of stress granule co-localization in patient fibroblasts and patient derived neurons. These data suggest that R-HCR can be a useful tool for tracking the behavior of repeat expansion mRNA in C9 ALS/FTD and other repeat expansion disorders.- Published
- 2021
- Full Text
- View/download PDF
39. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects.
- Author
-
Qiu H, Lee S, Shang Y, Wang WY, Au KF, Kamiya S, Barmada SJ, Finkbeiner S, Lui H, Carlton CE, Tang AA, Oldham MC, Wang H, Shorter J, Filiano AJ, Roberson ED, Tourtellotte WG, Chen B, Tsai LH, and Huang EJ
- Published
- 2021
- Full Text
- View/download PDF
40. Matrin 3 in neuromuscular disease: physiology and pathophysiology.
- Author
-
Malik AM and Barmada SJ
- Subjects
- Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis physiopathology, Animals, Disease Models, Animal, Distal Myopathies genetics, Distal Myopathies physiopathology, Frontotemporal Dementia genetics, Frontotemporal Dementia physiopathology, Gene Expression Regulation, Humans, Mice, Knockout, Mutation, Nuclear Matrix-Associated Proteins chemistry, Nuclear Matrix-Associated Proteins deficiency, RNA-Binding Proteins chemistry, Mice, Neuromuscular Diseases genetics, Neuromuscular Diseases physiopathology, Nuclear Matrix-Associated Proteins genetics, Nuclear Matrix-Associated Proteins physiology, RNA-Binding Proteins genetics, RNA-Binding Proteins physiology
- Abstract
RNA-binding proteins (RBPs) are essential factors required for the physiological function of neurons, muscle, and other tissue types. In keeping with this, a growing body of genetic, clinical, and pathological evidence indicates that RBP dysfunction and/or gene mutation leads to neurodegeneration and myopathy. Here, we summarize the current understanding of matrin 3 (MATR3), a poorly understood RBP implicated not only in ALS and frontotemporal dementia but also in distal myopathy. We begin by reviewing MATR3's functions, its regulation, and how it may be involved in both sporadic and familial neuromuscular disease. We also discuss insights gleaned from cellular and animal models of MATR3 pathogenesis, the links between MATR3 and other disease-associated RBPs, and the mechanisms underlying RBP-mediated disorders.
- Published
- 2021
- Full Text
- View/download PDF
41. An Allosteric Modulator of RNA Binding Targeting the N-Terminal Domain of TDP-43 Yields Neuroprotective Properties.
- Author
-
Mollasalehi N, Francois-Moutal L, Scott DD, Tello JA, Williams H, Mahoney B, Carlson JM, Dong Y, Li X, Miranda VG, Gokhale V, Wang W, Barmada SJ, and Khanna M
- Subjects
- Amyotrophic Lateral Sclerosis drug therapy, Amyotrophic Lateral Sclerosis metabolism, Amyotrophic Lateral Sclerosis physiopathology, Animals, Binding Sites drug effects, DNA-Binding Proteins chemistry, Disease Models, Animal, Drosophila, Humans, Molecular Docking Simulation, Small Molecule Libraries chemistry, Allosteric Regulation drug effects, DNA-Binding Proteins metabolism, Protein Domains drug effects, RNA metabolism, Small Molecule Libraries pharmacology
- Abstract
In this study, we targeted the N-terminal domain (NTD) of transactive response (TAR) DNA binding protein (TDP-43), which is implicated in several neurodegenerative diseases. In silico docking of 50K compounds to the NTD domain of TDP-43 identified a small molecule (nTRD22) that is bound to the N-terminal domain. Interestingly, nTRD22 caused allosteric modulation of the RNA binding domain (RRM) of TDP-43, resulting in decreased binding to RNA in vitro . Moreover, incubation of primary motor neurons with nTRD22 induced a reduction of TDP-43 protein levels, similar to TDP-43 RNA binding-deficient mutants and supporting a disruption of TDP-43 binding to RNA. Finally, nTRD22 mitigated motor impairment in a Drosophila model of amyotrophic lateral sclerosis. Our findings provide an exciting way of allosteric modulation of the RNA-binding region of TDP-43 through the N-terminal domain.
- Published
- 2020
- Full Text
- View/download PDF
42. TDP-43 Nuclear Bodies: A NEAT Response to Stress?
- Author
-
Malik AM and Barmada SJ
- Subjects
- DNA-Binding Proteins, Humans, RNA-Binding Proteins, Amyotrophic Lateral Sclerosis, RNA, Long Noncoding
- Abstract
In this issue of Molecular Cell, Wang et al. (2020) investigate stress-induced nuclear condensates of the RNA-binding protein TDP-43, uncovering a protective function for these granules as well as an RNA-dependent mechanism for scaffolding them., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
43. The carboxyl termini of RAN translated GGGGCC nucleotide repeat expansions modulate toxicity in models of ALS/FTD.
- Author
-
He F, Flores BN, Krans A, Frazer M, Natla S, Niraula S, Adefioye O, Barmada SJ, and Todd PK
- Subjects
- Animals, Dipeptides, Disease Models, Animal, Drosophila, Rats, Rats, Long-Evans, Amyotrophic Lateral Sclerosis genetics, C9orf72 Protein genetics, DNA Repeat Expansion, Frontotemporal Dementia genetics, Protein Biosynthesis genetics, Reading Frames genetics
- Abstract
An intronic hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This repeat is thought to elicit toxicity through RNA mediated protein sequestration and repeat-associated non-AUG (RAN) translation of dipeptide repeat proteins (DPRs). We generated a series of transgenic Drosophila models expressing GGGGCC (G
4 C2 ) repeats either inside of an artificial intron within a GFP reporter or within the 5' untranslated region (UTR) of GFP placed in different downstream reading frames. Expression of 484 intronic repeats elicited minimal alterations in eye morphology, viability, longevity, or larval crawling but did trigger RNA foci formation, consistent with prior reports. In contrast, insertion of repeats into the 5' UTR elicited differential toxicity that was dependent on the reading frame of GFP relative to the repeat. Greater toxicity correlated with a short and unstructured carboxyl terminus (C-terminus) in the glycine-arginine (GR) RAN protein reading frame. This change in C-terminal sequence triggered nuclear accumulation of all three RAN DPRs. A similar differential toxicity and dependence on the GR C-terminus was observed when repeats were expressed in rodent neurons. The presence of the native C-termini across all three reading frames was partly protective. Taken together, these findings suggest that C-terminal sequences outside of the repeat region may alter the behavior and toxicity of dipeptide repeat proteins derived from GGGGCC repeats.- Published
- 2020
- Full Text
- View/download PDF
44. Cytoplasmic TDP43 Binds microRNAs: New Disease Targets in Amyotrophic Lateral Sclerosis.
- Author
-
Paez-Colasante X, Figueroa-Romero C, Rumora AE, Hur J, Mendelson FE, Hayes JM, Backus C, Taubman GF, Heinicke L, Walter NG, Barmada SJ, Sakowski SA, and Feldman EL
- Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, and incurable neurodegenerative disease. Recent studies suggest that dysregulation of gene expression by microRNAs (miRNAs) may play an important role in ALS pathogenesis. The reversible nature of this dysregulation makes miRNAs attractive pharmacological targets and a potential therapeutic avenue. Under physiological conditions, miRNA biogenesis, which begins in the nucleus and includes further maturation in the cytoplasm, involves trans-activation response element DNA/RNA-binding protein of 43 kDa (TDP43). However, TDP43 mutations or stress trigger TDP43 mislocalization and inclusion formation, a hallmark of most ALS cases, that may lead to aberrant protein/miRNA interactions in the cytoplasm. Herein, we demonstrated that TDP43 exhibits differential binding affinity for select miRNAs, which prompted us to profile miRNAs that preferentially bind cytoplasmic TDP43. Using cellular models expressing TDP43 variants and miRNA profiling analyses, we identified differential levels of 65 cytoplasmic TDP43-associated miRNAs. Of these, approximately 30% exhibited levels that differed by more than 3-fold in the cytoplasmic TDP43 models relative to our control model. The hits included both novel miRNAs and miRNAs previously associated with ALS that potentially regulate several predicted genes and pathways that may be important for pathogenesis. Accordingly, these findings highlight specific miRNAs that may shed light on relevant disease pathways and could represent potential biomarkers and reversible treatment targets for ALS., (Copyright © 2020 Paez-Colasante, Figueroa-Romero, Rumora, Hur, Mendelson, Hayes, Backus, Taubman, Heinicke, Walter, Barmada, Sakowski and Feldman.)
- Published
- 2020
- Full Text
- View/download PDF
45. Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS.
- Author
-
Weskamp K, Tank EM, Miguez R, McBride JP, Gómez NB, White M, Lin Z, Gonzalez CM, Serio A, Sreedharan J, and Barmada SJ
- Subjects
- Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis pathology, Animals, Cell Line, DNA-Binding Proteins genetics, Humans, Mice, Motor Neurons pathology, Neuroglia pathology, Protein Isoforms biosynthesis, Protein Isoforms genetics, Amyotrophic Lateral Sclerosis metabolism, DNA-Binding Proteins biosynthesis, Motor Neurons metabolism, Neuroglia metabolism
- Abstract
Cortical hyperexcitability and mislocalization of the RNA-binding protein TDP43 are highly conserved features in amyotrophic lateral sclerosis (ALS). Nevertheless, the relationship between these phenomena remains poorly defined. Here, we showed that hyperexcitability recapitulates TDP43 pathology by upregulating shortened TDP43 (sTDP43) splice isoforms. These truncated isoforms accumulated in the cytoplasm and formed insoluble inclusions that sequestered full-length TDP43 via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression was toxic to mammalian neurons, suggesting neurodegeneration arising from complementary gain- and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts were enriched in vulnerable motor neurons, and we observed a striking accumulation of sTDP43 within neurons and glia of ALS patients. Collectively, these studies uncover a pathogenic role for alternative TDP43 isoforms in ALS, and implicate sTDP43 as a key contributor to the susceptibility of motor neurons in this disorder.
- Published
- 2020
- Full Text
- View/download PDF
46. A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis.
- Author
-
Rodriguez CM, Wright SE, Kearse MG, Haenfler JM, Flores BN, Liu Y, Ifrim MF, Glineburg MR, Krans A, Jafar-Nejad P, Sutton MA, Bassell GJ, Parent JM, Rigo F, Barmada SJ, and Todd PK
- Subjects
- Animals, Cell Line, Cell Survival genetics, Female, Fragile X Mental Retardation Protein biosynthesis, Induced Pluripotent Stem Cells, Male, Mice, Neurons metabolism, Oligonucleotides, Antisense pharmacology, Protein Biosynthesis, Rats, Rats, Long-Evans, Rats, Sprague-Dawley, Receptor, Metabotropic Glutamate 5 biosynthesis, Receptor, Metabotropic Glutamate 5 genetics, DNA Repeat Expansion genetics, Fragile X Mental Retardation Protein genetics, Fragile X Syndrome genetics, Trinucleotide Repeats genetics
- Abstract
Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5'-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.
- Published
- 2020
- Full Text
- View/download PDF
47. High-throughput screening yields several small-molecule inhibitors of repeat-associated non-AUG translation.
- Author
-
Green KM, Sheth UJ, Flores BN, Wright SE, Sutter AB, Kearse MG, Barmada SJ, Ivanova MI, and Todd PK
- Subjects
- Amyotrophic Lateral Sclerosis drug therapy, Animals, Ataxia drug therapy, Azepines pharmacology, Azepines therapeutic use, Cells, Cultured, Circular Dichroism, DNA Repeat Expansion drug effects, DNA Repeat Expansion genetics, Drug Evaluation, Preclinical, Fragile X Syndrome drug therapy, HEK293 Cells, Humans, Neurodegenerative Diseases genetics, Propidium pharmacology, Propidium therapeutic use, Pyrimidines pharmacology, Pyrimidines therapeutic use, Quinazolines pharmacology, Quinazolines therapeutic use, Rats, Tremor drug therapy, Trinucleotide Repeat Expansion drug effects, Amyotrophic Lateral Sclerosis genetics, Ataxia genetics, Fragile X Syndrome genetics, Tremor genetics, Trinucleotide Repeat Expansion genetics
- Abstract
Repeat-associated non-AUG (RAN) translation is a noncanonical translation initiation event that occurs at nucleotide-repeat expansion mutations that are associated with several neurodegenerative diseases, including fragile X-associated tremor ataxia syndrome (FXTAS), ALS, and frontotemporal dementia (FTD). Translation of expanded repeats produces toxic proteins that accumulate in human brains and contribute to disease pathogenesis. Consequently, RAN translation constitutes a potentially important therapeutic target for managing multiple neurodegenerative disorders. Here, we adapted a previously developed RAN translation assay to a high-throughput format to screen 3,253 bioactive compounds for inhibition of RAN translation of expanded CGG repeats associated with FXTAS. We identified five diverse small molecules that dose-dependently inhibited CGG RAN translation, while relatively sparing canonical translation. All five compounds also inhibited RAN translation of expanded GGGGCC repeats associated with ALS and FTD. Using CD and native gel analyses, we found evidence that three of these compounds, BIX01294, CP-31398, and propidium iodide, bind directly to the repeat RNAs. These findings provide proof-of-principle supporting the development of selective small-molecule RAN translation inhibitors that act across multiple disease-causing repeats.
- Published
- 2019
- Full Text
- View/download PDF
48. DDX3X and specific initiation factors modulate FMR1 repeat-associated non-AUG-initiated translation.
- Author
-
Linsalata AE, He F, Malik AM, Glineburg MR, Green KM, Natla S, Flores BN, Krans A, Archbold HC, Fedak SJ, Barmada SJ, and Todd PK
- Subjects
- Animals, Ataxia genetics, Cells, Cultured, DEAD-box RNA Helicases genetics, Drosophila Proteins genetics, Drosophila melanogaster, Eukaryotic Initiation Factors genetics, Female, Fragile X Mental Retardation Protein genetics, Fragile X Syndrome genetics, HEK293 Cells, HeLa Cells, Humans, Immunoprecipitation, Male, Phenotype, Reverse Transcriptase Polymerase Chain Reaction, Tremor genetics, Ataxia metabolism, DEAD-box RNA Helicases metabolism, Drosophila Proteins metabolism, Eukaryotic Initiation Factors metabolism, Fragile X Mental Retardation Protein metabolism, Fragile X Syndrome metabolism, Tremor metabolism
- Abstract
A CGG trinucleotide repeat expansion in the 5' UTR of FMR1 causes the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). This repeat supports a non-canonical mode of protein synthesis known as repeat-associated, non-AUG (RAN) translation. The mechanism underlying RAN translation at CGG repeats remains unclear. To identify modifiers of RAN translation and potential therapeutic targets, we performed a candidate-based screen of eukaryotic initiation factors and RNA helicases in cell-based assays and a Drosophila melanogaster model of FXTAS. We identified multiple modifiers of toxicity and RAN translation from an expanded CGG repeat in the context of the FMR1 5'UTR. These include the DEAD-box RNA helicase belle/DDX3X, the helicase accessory factors EIF4B/4H, and the start codon selectivity factors EIF1 and EIF5. Disrupting belle/DDX3X selectively inhibited FMR1 RAN translation in Drosophila in vivo and cultured human cells, and mitigated repeat-induced toxicity in Drosophila and primary rodent neurons. These findings implicate RNA secondary structure and start codon fidelity as critical elements mediating FMR1 RAN translation and identify potential targets for treating repeat-associated neurodegeneration., (© 2019 The Authors.)
- Published
- 2019
- Full Text
- View/download PDF
49. An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration.
- Author
-
Flores BN, Li X, Malik AM, Martinez J, Beg AA, and Barmada SJ
- Subjects
- Animals, Caenorhabditis elegans, Female, Humans, Male, Neurodegenerative Diseases genetics, Neurodegenerative Diseases metabolism, Protein Aggregates, Protein Stability, RNA chemistry, RNA, Mitochondrial chemistry, RNA, Mitochondrial metabolism, RNA, Ribosomal chemistry, RNA, Ribosomal metabolism, Rats, DNA-Binding Proteins chemistry, DNA-Binding Proteins metabolism, Mutation, Neurodegenerative Diseases pathology, RNA metabolism, Salts chemistry
- Abstract
The majority of individuals with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) exhibit neuronal cytoplasmic inclusions rich in the RNA binding protein TDP43. Even so, the relation between the RNA binding properties of TDP43 and neurodegeneration remains obscure. Here, we show that engineered mutations disrupting a salt bridge between the RNA recognition motifs of TDP43 interfere with RNA binding and eliminate the recognition of native TDP43 substrates. The same mutations dramatically destabilize TDP43, alter its subcellular localization, and abrogate TDP43-dependent neurodegeneration. Worms harboring homologous TDP-1 mutations phenocopy knockout strains, confirming the necessity of salt bridge residues for TDP43 function. Moreover, the accumulation of functional TDP43, but not RNA binding-deficient variants, disproportionately affects transcripts encoding ribosome and oxidative phosphorylation components. These studies demonstrate the significance of the salt bridge in sustaining TDP43 stability and RNA binding properties, factors that are crucial for neurodegeneration arising from TDP43 deposition in ALS and FTD., (Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
50. Mutant UBQLN2 promotes toxicity by modulating intrinsic self-assembly.
- Author
-
Sharkey LM, Safren N, Pithadia AS, Gerson JE, Dulchavsky M, Fischer S, Patel R, Lantis G, Ashraf N, Kim JH, Meliki A, Minakawa EN, Barmada SJ, Ivanova MI, and Paulson HL
- Subjects
- Adaptor Proteins, Signal Transducing, Adaptor Proteins, Vesicular Transport genetics, Amyotrophic Lateral Sclerosis genetics, Amyotrophic Lateral Sclerosis metabolism, Animals, Autophagy-Related Proteins, Frontotemporal Dementia genetics, Frontotemporal Dementia metabolism, Gene Expression Regulation, Mice, Mice, Transgenic, Mutation, Neurons, Protein Conformation, Protein Domains, Ubiquitin, Adaptor Proteins, Vesicular Transport metabolism, Protein Aggregation, Pathological
- Abstract
UBQLN2 is one of a family of proteins implicated in ubiquitin-dependent protein quality control and integrally tied to human neurodegenerative disease. Whereas wild-type UBQLN2 accumulates in intraneuronal deposits in several common age-related neurodegenerative diseases, mutations in the gene encoding this protein result in X-linked amyotrophic lateral sclerosis/frontotemporal dementia associated with TDP43 accumulation. Using in vitro protein analysis, longitudinal fluorescence imaging and cellular, neuronal, and transgenic mouse models, we establish that UBQLN2 is intrinsically prone to self-assemble into higher-order complexes, including liquid-like droplets and amyloid aggregates. UBQLN2 self-assembly and solubility are reciprocally modulated by the protein's ubiquitin-like and ubiquitin-associated domains. Moreover, a pathogenic UBQLN2 missense mutation impairs droplet dynamics and favors amyloid-like aggregation associated with neurotoxicity. These data emphasize the critical link between UBQLN2's role in ubiquitin-dependent pathways and its propensity to self-assemble and aggregate in neurodegenerative diseases., Competing Interests: The authors declare no conflict of interest.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.