41 results on '"Baringer, M. O."'
Search Results
2. Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5°N
- Author
-
Johns, W. E., Baringer, M. O., Beal, L. M., Cunningham, S. A., Kanzow, T., Bryden, H. L., Hirschi, J. J. M., Marotzke, J., Meinen, C. S., Shaw, B., and Curry, R.
- Published
- 2011
3. Seasonal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N
- Author
-
Kanzow, T., Cunningham, S. A., Johns, W. E., Hirschi, J. J.-M., Marotzke, J., Baringer, M. O., Meinen, C. S., Chidichimo, M. P., Atkinson, C., Beal, L. M., Bryden, H. L., and Collins, J.
- Published
- 2010
4. STATE OF THE CLIMATE IN 2008
- Author
-
Peterson, T. C. and Baringer, M. O.
- Published
- 2009
5. State of the climate in 2016
- Author
-
Aaron-Morrison, A. P., Ackerman, S. A., Adams, N. G., Adler, R. F., Albanil, A., Alfaro, E. J., Allan, R., Alves, L. M., Amador, J. A., Andreassen, L. M., Arendt, A., Arévalo, J., Arndt, D. S., Arzhanova, N. M., Aschan, M. M., Azorin-Molina, C., Banzon, V., Bardin, M. U., Barichivich, J., Baringer, M. O., Barreira, S., Baxter, S., Bazo, J., Becker, A., Bedka, K. M., Behrenfeld, M. J., Bell, G. D., Belmont, M., Benedetti, A., Bernhard, G., Berrisford, P., Berry, D. I., Bettolli, M. L., Bhatt, U. S., Bidegain, M., Bill, B. D., Billheimer, S., Bissolli, P., Blake, E. S., Blunden, J., Bosilovich, M. G., Boucher, O., Boudet, D., Box, J. E., Boyer, T., Braathen, G. O., Bromwich, D. H., Brown, R., Bulygina, O. N., Burgess, D., Calderón, B., Camargo, S. J., Campbell, J. D., Cappelen, J., Carrasco, G., Carter, B. R., Chambers, D. P., Chandler, E., Christiansen, H. H., Christy, J. R., Chung, D., Chung, E. S., Cinque, K., Clem, K. R., Coelho, C. A., Cogley, J. G., Coldewey-Egbers, M., Colwell, S., Cooper, O. R., Copland, L., Cosca, C. E., Cross, J. N., Crotwell, M. J., Crouch, J., Davis, S. M., Eyto, E., Jeu, R. A. M., Laat, J., Degasperi, C. L., Degenstein, D., Demircan, M., Derksen, C., Destin, D., Di Girolamo, L., Di Giuseppe, F., Diamond, H. J., Dlugokencky, E. J., Dohan, K., Dokulil, M. T., Dolgov, A. V., Dolman, A. J., Domingues, C. M., Donat, M. G., Dong, S., Dorigo, W. A., Dortch, Q., Doucette, G., Drozdov, D. S., Ducklow, H., Dunn, R. J. H., Durán-Quesada, A. M., Dutton, G. S., Ebrahim, A., Elkharrim, M., Elkins, J. W., Espinoza, J. C., Etienne-Leblanc, S., Evans, T. E., Famiglietti, J. S., Farrell, S., Fateh, S., Fausto, R. S., Fedaeff, N., Feely, R. A., Feng, Z., Fenimore, C., Fettweis, X., Fioletov, V. E., Flemming, J., Fogarty, C. T., Fogt, R. L., Folland, C., Fonseca, C., Fossheim, M., Foster, M. J., Fountain, A., Francis, S. D., Franz, B. A., Frey, R. A., Frith, S. M., Froidevaux, L., Ganter, C., Garzoli, S., Gerland, S., Gobron, N., Goldenberg, S. B., Gomez, R. S., Goni, G., Goto, A., Grooß, J. U., Gruber, A., Guard, C. C., Gugliemin, M., Gupta, S. K., Gutiérrez, J. M., Hagos, S., Hahn, S., Haimberger, L., Hakkarainen, J., Hall, B. D., Halpert, M. S., Hamlington, B. D., Hanna, E., Hansen, K., Hanssen-Bauer, I., Harris, I., Heidinger, A. K., Heikkilä, A., Heil, A., Heim, R. R., Hendricks, S., Hernández, M., Hidalgo, H. G., Hilburn, K., Ho, S. P. B., Holmes, R. M., Hu, Z. Z., Huang, B., Huelsing, H. K., Huffman, G. J., Hughes, C., Hurst, D. F., Ialongo, I., Ijampy, J. A., Ingvaldsen, R. B., Inness, A., Isaksen, K., Ishii, M., Jevrejeva, S., Jiménez, C., Jin, X., Johannesen, E., John, V., Johnsen, B., Johnson, B., Johnson, G. C., Jones, P. D., Joseph, A. C., Jumaux, G., Kabidi, K., Kaiser, J. W., Kato, S., Kazemi, A., Keller, L. M., Kendon, M., Kennedy, J., Kerr, K., Kholodov, A. L., Khoshkam, M., Killick, R., Kim, H., Kim, S. J., Kimberlain, T. B., Klotzbach, P. J., Knaff, J. A., Kobayashi, S., Kohler, J., Korhonen, J., Korshunova, N. N., Kovacs, K. M., Kramarova, N., Kratz, D. P., Kruger, A., Kruk, M. C., Kudela, R., Kumar, A., Lakatos, M., Lakkala, K., Lander, M. A., Landsea, C. W., Lankhorst, M., Lantz, K., Lazzara, M. A., Lemons, P., Leuliette, E., L’heureux, M., Lieser, J. L., Lin, I. I., Liu, H., Liu, Y., Locarnini, R., Loeb, N. G., Lo Monaco, C., Long, C. S., López Álvarez, L. A., Lorrey, A. M., Loyola, D., Lumpkin, R., Luo, J. J., Luojus, K., Lydersen, C., Lyman, J. M., Maberly, S. C., Maddux, B. C., Malheiros Ramos, A., Malkova, G. V., Manney, G., Marcellin, V., Marchenko, S. S., Marengo, J. A., Marra, J. J., Marszelewski, W., Martens, B., Martínez-Güingla, R., Massom, R. A., Mata, M. M., Mathis, J. T., May, L., Mayer, M., Mazloff, M., Mcbride, C., Mccabe, M. F., Mccarthy, M., Mcclelland, J. W., Mcgree, S., Mcvicar, T. R., Mears, C. A., Meier, W., Meinen, C. S., Mekonnen, A., Menéndez, M., Mengistu Tsidu, G., Menzel, W. P., Merchant, C. J., Meredith, M. P., Merrifield, M. A., Metzl, N., Minnis, P., Miralles, D. G., Mistelbauer, T., Mitchum, G. T., Monselesan, D., Monteiro, P., Montzka, S. A., Morice, C., Mote, T., Mudryk, L., Mühle, J., Mullan, A. B., Nash, E. R., Naveira-Garabato, A. C., Nerem, R. S., Newman, P. A., Nieto, J. J., Noetzli, J., O’neel, S., Osborn, T. J., Overland, J., Oyunjargal, L., Parinussa, R. M., Park, E. H., Parker, D., Parrington, M., Parsons, A. R., Pasch, R. J., Pascual-Ramírez, R., Paterson, A. M., Paulik, C., Pearce, P. R., Pelto, M. S., Peng, L., Perkins-Kirkpatrick, S. E., Perovich, D., Petropavlovskikh, I., Pezza, A. B., Phillips, D., Pinty, B., Pitts, M. C., Pons, M. R., Porter, A. O., Primicerio, R., Proshutinsky, A., Quegan, S., Quintana, J., Rahimzadeh, F., Rajeevan, M., Randriamarolaza, L., Razuvaev, V. N., Reagan, J., Reid, P., Reimer, C., Rémy, S., Renwick, J. A., Revadekar, J. V., Richter-Menge, J., Riffler, M., Rimmer, A., Rintoul, S., Robinson, D. A., Rodell, M., Rodríguez Solís, J. L., Romanovsky, V. E., Ronchail, J., Rosenlof, K. H., Roth, C., Rusak, J. A., Sabine, C. L., Sallée, J. B., Sánchez-Lugo, A., Santee, M. L., Sawaengphokhai, P., Sayouri, A., Scambos, T. A., Schemm, J., Schladow, S. G., Schmid, C., Schmid, M., Schmidtko, S., Schreck, C. J., Selkirk, H. B., Send, U., Sensoy, S., Setzer, A., Sharp, M., Shaw, A., Shi, L., Shiklomanov, A. I., Shiklomanov, N. I., Siegel, D. A., Signorini, S. R., Sima, F., Simmons, A. J., Smeets, C. J. P. P., Smith, S. L., Spence, J. M., Srivastava, A. K., Stackhouse, P. W., Stammerjohn, S., Steinbrecht, W., Stella, J. L., Stengel, M., Stennett-Brown, R., Stephenson, T. S., Strahan, S., Streletskiy, D. A., Sun-Mack, S., Swart, S., Sweet, W., Talley, L. D., Tamar, G., Tank, S. E., Taylor, M. A., Tedesco, M., Teubner, K., Thoman, R. L., Thompson, P., Thomson, L., Timmermans, M. L., Maxim Timofeyev, Tirnanes, J. A., Tobin, S., Trachte, K., Trainer, V. L., Tretiakov, M., Trewin, B. C., Trotman, A. R., Tschudi, M., As, D., Wal, R. S. W., A, R. J., Schalie, R., Schrier, G., Werf, G. R., Meerbeeck, C. J., Velicogna, I., Verburg, P., Vigneswaran, B., Vincent, L. A., Volkov, D., Vose, R. S., Wagner, W., Wåhlin, A., Wahr, J., Walsh, J., Wang, C., Wang, J., Wang, L., Wang, M., Wang, S. H., Wanninkhof, R., Watanabe, S., Weber, M., Weller, R. A., Weyhenmeyer, G. A., Whitewood, R., Wijffels, S. E., Wilber, A. C., Wild, J. D., Willett, K. M., Williams, M. J. M., Willie, S., Wolken, G., Wong, T., Wood, E. F., Woolway, R. I., Wouters, B., Xue, Y., Yamada, R., Yim, S. Y., Yin, X., Young, S. H., Yu, L., Zahid, H., Zambrano, E., Zhang, P., Zhao, G., Zhou, L., Ziemke, J. R., Love-Brotak, S. E., Gilbert, K., Maycock, T., Osborne, S., Sprain, M., Veasey, S. W., Ambrose, B. J., Griffin, J., Misch, D. J., Riddle, D. B., Young, T., Macias Fauria, M, Blunden, J, Arndt, D, Earth and Climate, Faculty of Earth and Life Sciences, Clinical Developmental Psychology, Climate Change and Landscape Dynamics, and Molecular Cell Physiology
- Subjects
Meteor (satellite) ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,02 engineering and technology ,01 natural sciences ,020801 environmental engineering ,Geography ,13. Climate action ,Climatology ,SDG 13 - Climate Action ,SDG 14 - Life Below Water ,0105 earth and related environmental sciences - Abstract
In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
- Published
- 2017
- Full Text
- View/download PDF
6. The North Atlantic Ocean Is in a State of Reduced Overturning
- Author
-
Smeed, D. A., primary, Josey, S. A., additional, Beaulieu, C., additional, Johns, W. E., additional, Moat, B. I., additional, Frajka‐Williams, E., additional, Rayner, D., additional, Meinen, C. S., additional, Baringer, M. O., additional, Bryden, H. L., additional, and McCarthy, G. D., additional
- Published
- 2018
- Full Text
- View/download PDF
7. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography
- Author
-
Talley, L. D., Feely, R. A., Sloyan, B. M., Wanninkhof, R., Baringer, M. O., Bullister, J. L., Carlson, C. A., Doney, S. C., Fine, R. A., Firing, E., Gruber, N., Hansell, D .A., Ishii, M., Johnson, G. C., Katsumata, K., Key, R. M., Kramp, M., Langdon, C., Macdonald, A. M., Mathis, J. T., McDonagh, E. L., Mecking, S., Millero, F. J., Mordy, C. W., Nakano, T., Sabine, C. L., Smethie, W. M., Swift, J. H., Tanhua, Toste, Thurnherr, A. M., Warner, M. J., Zhang, J.-Z., Talley, L. D., Feely, R. A., Sloyan, B. M., Wanninkhof, R., Baringer, M. O., Bullister, J. L., Carlson, C. A., Doney, S. C., Fine, R. A., Firing, E., Gruber, N., Hansell, D .A., Ishii, M., Johnson, G. C., Katsumata, K., Key, R. M., Kramp, M., Langdon, C., Macdonald, A. M., Mathis, J. T., McDonagh, E. L., Mecking, S., Millero, F. J., Mordy, C. W., Nakano, T., Sabine, C. L., Smethie, W. M., Swift, J. H., Tanhua, Toste, Thurnherr, A. M., Warner, M. J., and Zhang, J.-Z.
- Abstract
Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth’s climate system, is taking up most of Earth’s excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean’s overturning circulation.
- Published
- 2016
- Full Text
- View/download PDF
8. Compensation between meridional flow components of the Atlantic MOC at 26° N
- Author
-
Frajka-Williams, E., primary, Meinen, C. S., additional, Johns, W. E., additional, Smeed, D. A., additional, Duchez, A., additional, Lawrence, A. J., additional, Cuthbertson, D. A., additional, McCarthy, G. D., additional, Bryden, H. L., additional, Baringer, M. O., additional, Moat, B. I., additional, and Rayner, D., additional
- Published
- 2016
- Full Text
- View/download PDF
9. Global oceans: Meridional overturning circulation observations in the subtropical North Atlantic
- Author
-
Baringer, M. O., Cunningham, S. A., Meinen, C. S., Garzoli, S., Willis, J., Lankhorst, M., Macdonald, A., Send, Uwe, Hobbs, W. R., Frajka-Williams, E., Kanzow, Torsten, Rayner, D., Johns, W. E., and Marotzke, J.
- Published
- 2012
10. STATE OF THE CLIMATE IN 2011 Special Supplement to the Bulletin of the American Meteorological Society Vol. 93, No. 7, July 2012
- Author
-
Arndt, D. S., Blunden, J., Willett, K. M., Dolman, A. J., Hall, B. D., Thorne, P. W., Gregg, M. C., Newlin, M. L., Xue, Y., Hu, Z., Kumar, A., Banzon, V., Smith, T. M., Rayner, N. A., Jeffries, M. O., Richter-Menge, J., Overland, J., Bhatt, U., Key, J., Liu, Y., Walsh, J., Wang, M., Fogt, R. L., Scambos, T. A., Wovrosh, A. J., Barreira, S., Sanchez-Lugo, A., Renwick, J. A., Thiaw, W. M., Weaver, S. J., Whitewood, R., Phillips, D., Achberger, C., Ackerman, S. A., Ahmed, F. H., Albanil-Encarnacion, A., Alfaro, E. J., Alves, L. M., Allan, R., Amador, J. A., Ambenje, P., Antoine, M. D., Antonov, J., Arevalo, J., Ashik, I., Atheru, Z., Baccini, A., Baez, J., Baringer, M. O., Barriopedro, D. E., Bates, J. J., Becker, A., Behrenfeld, M. J., Bell, G. D., Benedetti, A., Bernhard, G., Berrisford, P., Berry, D. I., Beszczynska-Moeller, A., Bhatt, U. S., Bidegain, M., Bieniek, P., Birkett, C., Bissolli, P., Blake, E. S., Boudet-Rouco, D., Box, J. E., Boyer, T., Braathen, G. O., Brackenridge, G. R., Brohan, P., Bromwich, D. H., Brown, L., Brown, R., Bruhwiler, L., Bulygina, O. N., Burrows, J., Calderon, B., Camargo, S. J., Cappellen, J., Carmack, E., Carrasco, G., Chambers, D. P., Christiansen, H. H., Christy, J., Chung, D., Ciais, P., Coehlo, C. A. S., Colwell, S., Comiso, J., Cretaux, J. F., Crouch, J., Cunningham, S. A., Jeu, R. A. M., Demircan, M., Derksen, C., Diamond, H. J., Dlugokencky, E. J., Dohan, K., Dorigo, W. A., Drozdov, D. S., Duguay, C., Dutton, E., Dutton, G. S., Elkins, J. W., Epstein, H. E., Famiglietti, J. S., Fanton D Andon, O. H., Feely, R. A., Fekete, B. M., Fenimore, C., Fernandez-Prieto, D., Fields, E., Fioletov, V., Folland, C., Foster, M. J., Frajka-Williams, E., Franz, B. A., Frey, K., Frith, S. H., Frolov, I., Frost, G. V., Ganter, C., Garzoli, S., Gitau, W., Gleason, K. L., Gobron, N., Goldenberg, S. B., Goni, G., Gonzalez-Garcia, I., Gonzalez-Rodriguez, N., Good, S. A., Goryl, P., Gottschalck, J., Gouveia, C. M., Griffiths, G. M., Grigoryan, V., Grooss, J. U., Guard, C., Guglielmin, M., Halpert, M. S., Heidinger, A. K., Heikkila, A., Heim, R. R., Hennon, P. A., Hidalgo, H. G., Hilburn, K., Ho, S. P., Hobbs, W. R., Holgate, S., Hook, S. J., Hovsepyan, A., Hu, Z. Z., Hugony, S., Hurst, D. F., Ingvaldsen, R., Itoh, M., Jaimes, E., Jeffries, M., Johns, W. E., Johnsen, B., Johnson, B., Johnson, G. C., Jones, L. T., Jumaux, G., Kabidi, K., Kaiser, J. W., Kang, K. K., Kanzow, T. O., Kao, H. Y., Keller, L. M., Kendon, M., Kennedy, J. J., Kervankiran, S., Khatiwala, S., Kholodov, A. L., Khoshkam, M., Kikuchi, T., Kimberlain, T. B., King, D., Knaff, J. A., Korshunova, N. N., Koskela, T., Kratz, D. P., Krishfield, R., Kruger, A., Kruk, M. C., Lagerloef, G., Lakkala, K., Lammers, R. B., Lander, M. A., Landsea, C. W., Lankhorst, M., Lapinel-Pedroso, B., Lazzara, M. A., Leduc, S., Lefale, P., Leon, G., Leon-Lee, A., Leuliette, E., Levitus, S., L Heureux, M., Lin, II, Liu, H. X., Liu, Y. J., Lobato-Sanchez, R., Locarnini, R., Loeb, N. G., Loeng, H., Long, C. S., Lorrey, A. M., Lumpkin, R., Myhre, C. L., Jing-Jia Luo, Lyman, J. M., Maccallum, S., Macdonald, A. M., Maddux, B. C., Manney, G., Marchenko, S. S., Marengo, J. A., Maritorena, S., Marotzke, J., Marra, J. J., Martinez-Sanchez, O., Maslanik, J., Massom, R. A., Mathis, J. T., Mcbride, C., Mcclain, C. R., Mcgrath, D., Mcgree, S., Mclaughlin, F., Mcvicar, T. R., Mears, C., Meier, W., Meinen, C. S., Menendez, M., Merchant, C., Merrifield, M. A., Miller, L., Mitchum, G. T., Montzka, S. A., Moore, S., Mora, N. P., Morcrette, J. J., Mote, T., Muhle, J., Mullan, A. B., Muller, R., Myhre, C., Nash, E. R., Nerem, R. S., Newman, P. A., Ngari, A., Nishino, S., Njau, L. N., Noetzli, J., Oberman, N. G., Obregon, A., Ogallo, L., Oludhe, C., Oyunjargal, L., Parinussa, R. M., Park, G. H., Parker, D. E., Pasch, R. J., Pascual-Ramirez, R., Pelto, M. S., Penalba, O., Perez-Suarez, R., Perovich, D., Pezza, A. B., Pickart, R., Pinty, B., Pinzon, J., Pitts, M. C., Pour, H. K., Prior, J., Privette, J. L., Proshutinsky, A., Quegan, S., Quintana, J., Rabe, B., Rahimzadeh, F., Rajeevan, M., Rayner, D., Raynolds, M. K., Razuvaev, V. N., Reagan, J., Reid, P., Revadekar, J., Rex, M., Rivera, I. L., Robinson, D. A., Rodell, M., Roderick, M. L., Romanovsky, V. E., Ronchail, J., Rosenlof, K. H., Rudels, B., Sabine, C. L., Santee, M. L., Sawaengphokhai, P., Sayouri, A., Schauer, U., Schemm, J., Schmid, C., Schreck, C., Semiletov, I., Send, U., Sensoy, S., Shakhova, N., Sharp, M., Shiklomanov, N. I., Shimada, K., Shin, J., Siegel, D. A., Simmons, A., Skansi, M., Sokolov, V., Spence, J., Srivastava, A. K., Stackhouse, P. W., Stammerjohn, S., Steele, M., Steffen, K., Steinbrecht, W., Stephenson, T., Stolarski, R. S., Sweet, W., Takahashi, T., Taylor, M. A., Tedesco, M., Thepaut, J. N., Thompson, P., Timmermans, M. L., Tobin, S., Toole, J., Trachte, K., Trewin, B. C., Trigo, R. M., Trotman, A., Tucker, C. J., Ulupinar, Y., Wal, R. S. W., Werf, G. R., Vautard, R., Votaw, G., Wagner, W. W., Wahr, J., Walker, D. A., Wang, C. Z., Wang, J. H., Wang, L., Wang, M. H., Wang, S. H., Wanninkhof, R., Weaver, S., Weber, M., Weingartner, T., Weller, R. A., Wentz, F., Wilber, A. C., Williams, W., Willis, J. K., Wilson, R. C., Wolken, G., Wong, T. M., Woodgate, R., Yamada, R., Yamamoto-Kawai, M., Yoder, J. A., Yu, L. S., Yueh, S., Zhang, L. Y., Zhang, P. Q., Zhao, L., Zhou, X. J., Zimmermann, S., Zubair, L., Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), National Oceanic and Atmospheric Administration (NOAA), Lamont-Doherty Earth Observatory (LDEO), Columbia University [New York], Space Technology Center, European Centre for Medium-Range Weather Forecasts (ECMWF), Climate Research Division [Toronto], Environment and Climate Change Canada, Earth and Space Research Institute [Seattle] (ESR), Department of Hydrology and Geo-Environmental Sciences [Amsterdam], Vrije Universiteit Amsterdam [Amsterdam] (VU), Vienna University of Technology (TU Wien), Instituto Dom Luiz, Universidade de Lisboa = University of Lisbon (ULISBOA), NOAA Earth System Research Laboratory (ESRL), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), Department of Earth System Science [Irvine] (ESS), University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), University of California Center for Hydrologic Modeling [Irvine] (UCCHM), NOAA Pacific Marine Environmental Laboratory [Seattle] (PMEL), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Boulder], University of Colorado [Boulder], Istituto Nazionale di Fisica Nucleare [Pisa] (INFN), Istituto Nazionale di Fisica Nucleare (INFN), NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), University at Albany [SUNY], State University of New York (SUNY), Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin-Madison-NASA-National Oceanic and Atmospheric Administration (NOAA), Peking University [Beijing], National Oceanography Centre [Southampton] (NOC), University of Southampton, NOAA National Environmental Satellite, Data, and Information Service (NESDIS), The University of Texas Medical Branch (UTMB), Institut für Umweltphysik [Bremen] (IUP), Universität Bremen, Department of Meteorology, University of Nairobi (UoN), Climate Prediction and Applications Centre (ICPAC), IGAD, Institute for Environment and Sustainability of the JRC, Partenaires INRAE, Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], Agricultural Information Institute (AII), Chinese Academy of Agricultural Sciences (CAAS), Woods Hole Oceanographic Institution (WHOI), Universitá degli Studi dell’Insubria = University of Insubria [Varese] (Uninsubria), Heilongjiang Institute of Science and Technology, Finnish Meteorological Institute (FMI), Universidad de Costa Rica (UCR), University Corporation for Atmospheric Research (UCAR), NOAA Center for Satellite Applications and Research (STAR), National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA), ESRL Global Monitoring Laboratory [Boulder] (GML), Materials and structures Laboratory, Tokyo Institute of Technology [Tokyo] (TITECH), Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami [Coral Gables], Norwegian Radiation and Nuclear Safety Authority, Direction Interrégionale de Météo-France pour l'océan Indien (DIROI), Météo-France, Department of Earth Sciences [Oxford], University of Oxford, NASA Langley Research Center [Hampton] (LaRC), University of Hawai‘i [Mānoa] (UHM), Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Scripps Institution of Oceanography (SIO - UC San Diego), University of California [San Diego] (UC San Diego), Agroécologie [Dijon], Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Huazhong Agricultural University [Wuhan] (HZAU), NOAA National Weather Service (NWS), Department of Oceanography, Florida State University [Tallahassee] (FSU), Norwegian Institute for Air Research (NILU), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), NorthWest Research Associates (NWRA), Department of Physics [Socorro], New Mexico Institute of Mining and Technology [New Mexico Tech] (NMT), Ocean and Earth Science [Southampton], University of Southampton-National Oceanography Centre (NOC), Australian Antarctic Division (AAD), Australian Government, Department of the Environment and Energy, Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Massachusetts General Hospital [Boston], Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Australian Research Council (ARC), Remote Sensing Systems [Santa Rosa] (RSS), Développement, institutions et analyses de long terme (DIAL), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL), NOAA National Marine Fisheries Service (NMFS), University of California (UC), NMR Laboratory, Université de Mons, Université de Mons (UMons), NASA Goddard Space Flight Center (GSFC), Glaciology, Geomorphodynamics and Geochronology, Department of Geography [Zürich], Universität Zürich [Zürich] = University of Zurich (UZH)-Universität Zürich [Zürich] = University of Zurich (UZH), Chemistry Department [Massachusetts Institute of Technology], Massachusetts Institute of Technology (MIT), Nichols College Dudley, ERDC Cold Regions Research and Engineering Laboratory (CRREL), USACE Engineer Research and Development Center (ERDC), European Commission, Space Science and Engineering Center [Madison] (SSEC), University of Wisconsin-Madison, Lausanne University Hospital, Centro de Ciencias do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais (INPE), University of Sheffield, Hochschule Mannheim - University of Applied Sciences, Laboratoire d'océanographie de Villefranche (LOV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences [India], Woods Hole Research Center, Department of Earth and Environment [Boston], Boston University [Boston] (BU), Centre for Australian Weather and Climate Research (CAWCR), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Génétique et Ecologie des Virus, Génétique des Virus et Pathogénèse des Maladies Virales, Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Botany and Plant Pathology, Oregon State University (OSU), Ctr Ecol & Hydrol, Bangor, Environm Ctr Wales, Biospherical Instruments Inc., Processus de la variabilité climatique tropicale et impacts (PARVATI), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot - Paris 7 (UPD7), Instituto Uruguayo de Meteorología, Javier Barrios Amorín 1488, CP 11200, Montevideo, Uruguay, Science Systems and Applications, Inc. [Hampton] (SSAI), National Snow and Ice Data Center (NSIDC), Naval Postgraduate School (NPS), University of California [Berkeley] (UC Berkeley), Centre de physique moléculaire optique et hertzienne (CPMOH), Université Sciences et Technologies - Bordeaux 1 (UB)-Centre National de la Recherche Scientifique (CNRS), CYRIC, Tohoku University [Sendai], The University of Tennessee [Knoxville], Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, The University Centre in Svalbard (UNIS), Institute of Arctic Alpine Research [University of Colorado Boulder] (INSTAAR), Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Meteorologisches Observatorium Hohenpeißenberg (MOHp), Deutscher Wetterdienst [Offenbach] (DWD), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Universidade de Lisboa (ULISBOA), University of California [Irvine] (UCI), University of California-University of California, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Universitá degli Studi dell’Insubria, University of Costa Rica, Météo France [Sainte-Clotilde], Météo France, University of Oxford [Oxford], Scripps Institution of Oceanography (SIO), Huazhong Agricultural University, University of California, NMR and Molecular Imaging Laboratory [Mons], University of Mons [Belgium] (UMONS), Lausanne University Hospital [Switzerland], Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Diderot - Paris 7 (UPD7), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Berkeley University of California (UC BERKELEY), Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1, and Institute of Arctic and Alpine Research (INSTAAR)
- Subjects
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography - Abstract
International audience; Large-scale climate patterns influenced temperature and weather patterns around the globe in 2011. In particular, a moderate-to-strong La Nina at the beginning of the year dissipated during boreal spring but reemerged during fall. The phenomenon contributed to historical droughts in East Africa, the southern United States, and northern Mexico, as well the wettest two-year period (2010-11) on record for Australia, particularly remarkable as this follows a decade-long dry period. Precipitation patterns in South America were also influenced by La Nina. Heavy rain in Rio de Janeiro in January triggered the country's worst floods and landslides in Brazil's history. The 2011 combined average temperature across global land and ocean surfaces was the coolest since 2008, but was also among the 15 warmest years on record and above the 1981-2010 average. The global sea surface temperature cooled by 0.1 degrees C from 2010 to 2011, associated with cooling influences of La Nina. Global integrals of upper ocean heat content for 2011 were higher than for all prior years, demonstrating the Earth's dominant role of the oceans in the Earth's energy budget. In the upper atmosphere, tropical stratospheric temperatures were anomalously warm, while polar temperatures were anomalously cold. This led to large springtime stratospheric ozone reductions in polar latitudes in both hemispheres. Ozone concentrations in the Arctic stratosphere during March were the lowest for that period since satellite records began in 1979. An extensive, deep, and persistent ozone hole over the Antarctic in September indicates that the recovery to pre-1980 conditions is proceeding very slowly. Atmospheric carbon dioxide concentrations increased by 2.10 ppm in 2011, and exceeded 390 ppm for the first time since instrumental records began. Other greenhouse gases also continued to rise in concentration and the combined effect now represents a 30% increase in radiative forcing over a 1990 baseline. Most ozone depleting substances continued to fall. The global net ocean carbon dioxide uptake for the 2010 transition period from El Nino to La Nina, the most recent period for which analyzed data are available, was estimated to be 1.30 Pg C yr(-1), almost 12% below the 29-year long-term average. Relative to the long-term trend, global sea level dropped noticeably in mid-2010 and reached a local minimum in 2011. The drop has been linked to the La Nina conditions that prevailed throughout much of 2010-11. Global sea level increased sharply during the second half of 2011. Global tropical cyclone activity during 2011 was well-below average, with a total of 74 storms compared with the 1981-2010 average of 89. Similar to 2010, the North Atlantic was the only basin that experienced above-normal activity. For the first year since the widespread introduction of the Dvorak intensity-estimation method in the 1980s, only three tropical cyclones reached Category 5 intensity level-all in the Northwest Pacific basin. The Arctic continued to warm at about twice the rate compared with lower latitudes. Below-normal summer snowfall, a decreasing trend in surface albedo, and above-average surface and upper air temperatures resulted in a continued pattern of extreme surface melting, and net snow and ice loss on the Greenland ice sheet. Warmer-than-normal temperatures over the Eurasian Arctic in spring resulted in a new record-low June snow cover extent and spring snow cover duration in this region. In the Canadian Arctic, the mass loss from glaciers and ice caps was the greatest since GRACE measurements began in 2002, continuing a negative trend that began in 1987. New record high temperatures occurred at 20 m below the land surface at all permafrost observatories on the North Slope of Alaska, where measurements began in the late 1970s. Arctic sea ice extent in September 2011 was the second-lowest on record, while the extent of old ice (four and five years) reached a new record minimum that was just 19% of normal. On the opposite pole, austral winter and spring temperatures were more than 3 degrees C above normal over much of the Antarctic continent. However, winter temperatures were below normal in the northern Antarctic Peninsula, which continued the downward trend there during the last 15 years. In summer, an all-time record high temperature of -12.3 degrees C was set at the South Pole station on 25 December, exceeding the previous record by more than a full degree. Antarctic sea ice extent anomalies increased steadily through much of the year, from briefly setting a record low in April, to well above average in December. The latter trend reflects the dispersive effects of low pressure on sea ice and the generally cool conditions around the Antarctic perimeter.
- Published
- 2012
- Full Text
- View/download PDF
11. Meridional overturning circulation observations in the subtropical North Atlantic
- Author
-
Baringer, M. O., Meinen, C. S., Johnson, G. C., Kanzow, Torsten, Cunningham, S. A., Johns, W. E., Beal, L. M., Hirschi, J. J.-M., Rayner, D., Longworth, H. R., Bryden, H. L., and Marotzke, J.
- Published
- 2011
12. The meridional overturning circulation
- Author
-
Baringer, M. O., Kanzow, Torsten, Meinen, C. S., Cunningham, S. A., Rayner, D., Johns, W. E., Bryden, H. L., Hirschi, J. J.-M., Beal, L. M., and Marotzke, J.
- Published
- 2010
13. Basin‐Wide Oceanographic Array Bridges the South Atlantic
- Author
-
Ansorge, I. J., primary, Baringer, M. O., additional, Campos, E. J. D., additional, Dong, S., additional, Fine, R. A., additional, Garzoli, S. L., additional, Goni, G., additional, Meinen, C. S., additional, Perez, R. C., additional, Piola, A. R., additional, Roberts, M. J., additional, Speich, S., additional, Sprintall, J., additional, Terre, T., additional, and Van den Berg, M. A., additional
- Published
- 2014
- Full Text
- View/download PDF
14. Observed decline of the Atlantic meridional overturning circulation 2004–2012
- Author
-
Smeed, D. A., primary, McCarthy, G. D., additional, Cunningham, S. A., additional, Frajka-Williams, E., additional, Rayner, D., additional, Johns, W. E., additional, Meinen, C. S., additional, Baringer, M. O., additional, Moat, B. I., additional, Duchez, A., additional, and Bryden, H. L., additional
- Published
- 2014
- Full Text
- View/download PDF
15. Meridional overturning circulation observations in the North Atlantic Ocean
- Author
-
Baringer, M. O., McCarthy, J., Willis, J., Lankhorst, M., Smeed, D., Send, U., Rayner, D., Johns, W. E., Meinen, C.S., Cunningham, S. A., Kanzow, Torsten, Frajka-Williams, E., Marotzke, J., Baringer, M. O., McCarthy, J., Willis, J., Lankhorst, M., Smeed, D., Send, U., Rayner, D., Johns, W. E., Meinen, C.S., Cunningham, S. A., Kanzow, Torsten, Frajka-Williams, E., and Marotzke, J.
- Published
- 2013
16. State of the climate in 2010
- Author
-
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Ganesan, Anita Lakshmi, Blunden, Jessica, Arndt, Derek, Baringer, M. O., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, Ganesan, Anita Lakshmi, Blunden, Jessica, Arndt, Derek, and Baringer, M. O.
- Abstract
Several large-scale climate patterns influenced climate conditions and weather patterns across the globe during 2010. The transition from a warm El Niño phase at the beginning of the year to a cool La Niña phase by July contributed to many notable events, ranging from record wetness across much of Australia to historically low Eastern Pacific basin and near-record high North Atlantic basin hurricane activity. The remaining five main hurricane basins experienced below- to well-below-normal tropical cyclone activity. The negative phase of the Arctic Oscillation was a major driver of Northern Hemisphere temperature patterns during 2009/10 winter and again in late 2010. It contributed to record snowfall and unusually low temperatures over much of northern Eurasia and parts of the United States, while bringing above-normal temperatures to the high northern latitudes. The February Arctic Oscillation Index value was the most negative since records began in 1950. The 2010 average global land and ocean surface temperature was among the two warmest years on record. The Arctic continued to warm at about twice the rate of lower latitudes. The eastern and tropical Pacific Ocean cooled about 1°C from 2009 to 2010, reflecting the transition from the 2009/10 El Niño to the 2010/11 La Niña. Ocean heat fluxes contributed to warm sea surface temperature anomalies in the North Atlantic and the tropical Indian and western Pacific Oceans. Global integrals of upper ocean heat content for the past several years have reached values consistently higher than for all prior times in the record, demonstrating the dominant role of the ocean in the Earth's energy budget. Deep and abyssal waters of Antarctic origin have also trended warmer on average since the early 1990s. Lower tropospheric temperatures typically lag ENSO surface fluctuations by two to four months, thus the 2010 temperature was dominated by the warm phase El Niño conditions that occurred during the latter half of 2009 and early 20, United States. National Oceanic and Atmospheric Administration, National Science Foundation (U.S.) (grant number ANT-0636873)
- Published
- 2011
17. Sea level variations, in 'State of the Climate in 2010'
- Author
-
Arndt, D. S., Baringer, M. O., Johnson, M. R., Merrifield, M., Mitchum, G., Leuliette, E., Chambers, D., Nerem, S., Woodworth, P., Holgate, S., Miller, L., Gill, S., Arndt, D. S., Baringer, M. O., Johnson, M. R., Merrifield, M., Mitchum, G., Leuliette, E., Chambers, D., Nerem, S., Woodworth, P., Holgate, S., Miller, L., and Gill, S.
- Published
- 2011
18. Sea level variations, in 'State of the Climate in 2009'
- Author
-
Arndt, D. S., Baringer, M. O., Johnson, M. R., Merrifield, M., Gill, S., Leuliette, E., Miller, L., Mitchum, G., Nerem, S., Woodworth, P., Arndt, D. S., Baringer, M. O., Johnson, M. R., Merrifield, M., Gill, S., Leuliette, E., Miller, L., Mitchum, G., Nerem, S., and Woodworth, P.
- Published
- 2010
19. Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N
- Author
-
Kanzow, Torsten, Cunningham, S. A., Johns, W. E., Hirschi, J. J-M., Marotzke, J., Baringer, M. O., Meinen, C. S., Chidichimo, M. P., Atkinson, C., Beal, L. M., Bryden, H. L., Collins, J., Kanzow, Torsten, Cunningham, S. A., Johns, W. E., Hirschi, J. J-M., Marotzke, J., Baringer, M. O., Meinen, C. S., Chidichimo, M. P., Atkinson, C., Beal, L. M., Bryden, H. L., and Collins, J.
- Abstract
The Atlantic meridional overturning circulation (AMOC) makes the strongest oceanic contribution to the meridional redistribution of heat. Here, an observation-based, forty-eight-month-long time series of the vertical structure and strength of the AMOC at 26.5°N is presented. From April 2004 to April 2008 the AMOC had a mean strength of 18.7 ±2.1 Sv with fluctuations of 4.8 Sv rms. The best guess of the peak-to-peak amplitude of the AMOC seasonal cycle is 6.7 Sv, with a maximum strength in autumn and a minimum in spring. While seasonality in the AMOC was commonly thought to be dominated by the northward Ekman transport, this study reveals that fluctuations of the geostrophic mid-ocean and Gulf Stream transports of 2.2 Sv and 1.7 Sv rms, respectively, are substantially larger than those of the Ekman component (1.2 Sv rms). A simple model based on linear dynamics suggests that the seasonal cycle is dominated by wind stress curl forcing at the eastern boundary of the Atlantic. Seasonal geostrophic AMOC anomalies might represent an important and previously underestimated component of meridional transport and storage of heat in the subtropical North Atlantic. There is evidence that the seasonal cycle observed here is representative of much longer intervals. Previously, hydrographic snapshot estimates between 1957 and 2004 had suggested a long-term decline of the AMOC by 8 Sv. This study suggests that aliasing of seasonal AMOC anomalies might have accounted for a large part of the inferred slowdown.
- Published
- 2010
- Full Text
- View/download PDF
20. Variability of Shallow and Deep Western Boundary Currents off the Bahamas during 2004–05: Results from the 26°N RAPID–MOC Array
- Author
-
Johns, W. E., Beal, L. M., Baringer, M. O., Molina, J. R., Cunningham, S. A., Kanzow, Torsten, Rayner, D., Johns, W. E., Beal, L. M., Baringer, M. O., Molina, J. R., Cunningham, S. A., Kanzow, Torsten, and Rayner, D.
- Abstract
Data from an array of six moorings deployed east of Abaco, Bahamas, along 26.5°N during March 2004–May 2005 are analyzed. These moorings formed the western boundary array of a transbasin observing system designed to continuously monitor the meridional overturning circulation and meridional heat flux in the subtropical North Atlantic, under the framework of the joint U.K.–U.S. Rapid Climate Change (RAPID)–Meridional Overturning Circulation (MOC) Program. Important features of the western boundary circulation include the southward-flowing deep western boundary current (DWBC) below 1000 m and the northward-flowing “Antilles” Current in the upper 1000 m. Transports in the western boundary layer are estimated from direct current meter observations and from dynamic height moorings that measure the spatially integrated geostrophic flow between moorings. The results of these methods are combined to estimate the time-varying transports in the upper and deep ocean over the width of the western boundary layer to a distance of 500 km offshore of the Bahamas escarpment. The net southward transport of the DWBC across this region, inclusive of northward deep recirculation, is −26.5 Sv (Sv ≡ 106 m3 s−1), which is divided nearly equally between upper (−13.9 Sv) and lower (−12.6 Sv) North Atlantic Deep Water (NADW). In the top 1000 m, 6.0 Sv flows northward in a thermocline-intensified jet near the western boundary. These transports are found to agree well with historical current meter data in the region collected between 1986 and 1997. Variability in both shallow and deep components of the circulation is large, with transports above 1000 m varying between −15 and +25 Sv and deep transports varying between −60 and +3 Sv. Much of this transport variability, associated with barotropic fluctuations, occurs on relatively short time scales of several days to a few weeks. Upon removal of the barotropic fluctuations, slower baroclinic transport variations are revealed, including a temporary
- Published
- 2008
- Full Text
- View/download PDF
21. A prototype system for observing the Atlantic Meridional Overturning Circulation - scientific basis, measurement and risk mitigation strategies, and first results
- Author
-
Kanzow, Torsten, Hirschi, J. J.-M., Meinen, C., Rayner, D., Cunningham, S. A., Marotzke, J., Johns, W. E., Bryden, H. L., Beal, L. M., Baringer, M. O., Kanzow, Torsten, Hirschi, J. J.-M., Meinen, C., Rayner, D., Cunningham, S. A., Marotzke, J., Johns, W. E., Bryden, H. L., Beal, L. M., and Baringer, M. O.
- Abstract
The Atlantic Meridional Overturning Circulation (MOC) carries up to one quarter of the global northward heat transport in the Subtropical North Atlantic. A system monitoring the strength of the MOC volume transport has been operating since April 2004. The core of this system is an array of moored sensors measuring density, bottom pressure and ocean currents. A strategy to mitigate risks of possible partial failures of the array is presented, relying on backup and complementary measurements. The MOC is decomposed into five components, making use of the continuous moored observations, and of cable measurements across the Straits of Florida, and wind stress data. The components compensate for each other, indicating that the system is working reliably. The year-long average strength of the MOC is 18.7±5.6 Sv, with wind-driven and density-inferred transports contributing equally to the variability. Numerical simulations suggest that the surprisingly fast density changes at the western boundary are partially linked to westward propagating planetary waves
- Published
- 2008
- Full Text
- View/download PDF
22. Observed decline of the Atlantic Meridional Overturning Circulation 2004 to 2012
- Author
-
Smeed, D. A., primary, McCarthy, G., additional, Cunningham, S. A., additional, Frajka-Williams, E., additional, Rayner, D., additional, Johns, W. E., additional, Meinen, C. S., additional, Baringer, M. O., additional, Moat, B. I., additional, Duchez, A., additional, and Bryden, H. L., additional
- Published
- 2013
- Full Text
- View/download PDF
23. Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5 N
- Author
-
Cunningham, S. A., Kanzow, Torsten, Rayner, D., Baringer, M. O., Johns, W. E., Marotzke, J., Longworth, H. R., Grant, E. M., Hirschi, J. J.-M., Beal, L. M., Meinen, C. S., Bryden, H. L., Cunningham, S. A., Kanzow, Torsten, Rayner, D., Baringer, M. O., Johns, W. E., Marotzke, J., Longworth, H. R., Grant, E. M., Hirschi, J. J.-M., Beal, L. M., Meinen, C. S., and Bryden, H. L.
- Abstract
The vigor of Atlantic meridional overturning circulation (MOC) is thought to be vulnerable to global warming, but its short-term temporal variability is unknown so changes inferred from sparse observations on the decadal time scale of recent climate change are uncertain. We combine continuous measurements of the MOC (beginning in 2004) using the purposefully designed transatlantic Rapid Climate Change array of moored instruments deployed along 26.5°N, with time series of Gulf Stream transport and surface-layer Ekman transport to quantify its intra-annual variability. The year-long average overturning is 18.7 ± 5.6 sverdrups (Sv) (range: 4.0 to 34.9 Sv, where 1 Sv = a flow of ocean water of 106 cubic meters per second).
- Published
- 2007
- Full Text
- View/download PDF
24. Observed Flow Compensation Associated with the MOC at 26.5 N in the Atlantic
- Author
-
Kanzow, Torsten, Cunningham, S. A., Rayner, D., Hirschi, J. J.-M., Johns, W. E., Baringer, M. O., Bryden, H. L., Beal, L. M., Meinen, C. S., Marotzke, J., Kanzow, Torsten, Cunningham, S. A., Rayner, D., Hirschi, J. J.-M., Johns, W. E., Baringer, M. O., Bryden, H. L., Beal, L. M., Meinen, C. S., and Marotzke, J.
- Abstract
The Atlantic meridional overturning circulation (MOC), which provides one-quarter of the global meridional heat transport, is composed of a number of separate flow components. How changes in the strength of each of those components may affect that of the others has been unclear because of a lack of adequate data. We continuously observed the MOC at 26.5°N for 1 year using end-point measurements of density, bottom pressure, and ocean currents; cable measurements across the Straits of Florida; and wind stress. The different transport components largely compensate for each other, thus confirming the validity of our monitoring approach. The MOC varied over the period of observation by ±5.7 × 106 cubic meters per second, with density-inferred and wind-driven transports contributing equally to it. We find evidence for depth-independent compensation for the wind-driven surface flow.
- Published
- 2007
- Full Text
- View/download PDF
25. Meridional overturning circulation observations in the North Atlantic Ocean.
- Author
-
Baringer, M. O., Lankhorst, M., Volkov, D., Garzoli, S., Dong, S., Send, U., and Meinen, C. S.
- Subjects
- *
MERIDIONAL overturning circulation , *CLIMATE change , *ECOSYSTEMS , *SEA level - Abstract
The article offers information on the determination of the Atlantic meridional heat transport (AMHT) and the Atlantic meridional overturning circulation (AMOC) through the large-scale ocean circulation. Topics include the impact of AMOC on climate variability and ecosystems, the inverse relation between AMOC transport variation and sea level variation, and the impact of the constant AMHT to the reduction of the trend on the increasing AMHT.
- Published
- 2016
26. Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N
- Author
-
McCarthy, G., primary, Frajka-Williams, E., additional, Johns, W. E., additional, Baringer, M. O., additional, Meinen, C. S., additional, Bryden, H. L., additional, Rayner, D., additional, Duchez, A., additional, Roberts, C., additional, and Cunningham, S. A., additional
- Published
- 2012
- Full Text
- View/download PDF
27. A 1998–1992 comparison of inorganic carbon and its transport across 24.5°N in the Atlantic
- Author
-
MacDonald, A. M., Baringer, M. O., Wanninkhof, R., Lee, K., Wallace, Douglas W.R., MacDonald, A. M., Baringer, M. O., Wanninkhof, R., Lee, K., and Wallace, Douglas W.R.
- Abstract
In January and February 1998, when an unprecedented fourth repetition of the zonal hydrographic transect at 24.5°N in the Atlantic was undertaken, carbon measurements were obtained for the second time in less than a decade. The field of total carbon along this section is compared to that provided by 1992 cruise which followed a similar path (albeit in a different season). Consistent with the increase in atmospheric carbon levels, an increase in anthropogenic carbon concentrations of Full-size image (<1 K) was found in the surface layers. Using an inverse analysis to determine estimates of absolute velocity, the flux of inorganic carbon across 24.5° is estimated to be −0.74±0.91 and Full-size image (<1 K) southward in 1998 and 1992, respectively. Estimates of total inorganic carbon flux depend strongly upon the estimated mass transport, particularly of the Deep Western Boundary Current. The 1998 estimate reduces the large regional divergence in the meridional carbon transport suggested by previous studies and brings into question the idea that the tropical Atlantic constantly outgasses carbon, while the subpolar Atlantic sequesters it. Uncertainty in the carbon transports themselves, dominated by the uncertainty in the total mass transport estimates, are a hindrance to determining the “true” picture. The flux of anthropogenic carbon (C★ANTH) across the two transects is estimated as northward at 0.20±0.08 and Full-size image (<1 K) for the 1998 and 1992 sections, respectively. The net transport of C★ANTH across 24.5°N is strongly affected by the difference in concentrations between the northward flowing shallow Florida Current and the mass balancing, interior return flow. The net northward transport of C★ANTH is opposite the net flow of total carbon and suggests, as has been found by others, that the pre-industrial southward transport of carbon within the Atlantic was stronger than it is today. Combining these flux results with estimates of atmospheric and riverine in
- Published
- 2003
- Full Text
- View/download PDF
28. State of the Climate in 2009
- Author
-
Arndt, D. S., primary, Baringer, M. O., additional, and Johnson, M. R., additional
- Published
- 2010
- Full Text
- View/download PDF
29. Variability of Shallow and Deep Western Boundary Currents off the Bahamas during 2004–05: Results from the 26°N RAPID–MOC Array
- Author
-
Johns, W. E., primary, Beal, L. M., primary, Baringer, M. O., additional, Molina, J. R., additional, Cunningham, S. A., additional, Kanzow, T., additional, and Rayner, D., additional
- Published
- 2008
- Full Text
- View/download PDF
30. Cross validating ocean prediction and monitoring systems
- Author
-
Mooers, C. N. K., primary, Meinin, C. S., additional, Baringer, M. O., additional, Bang, I., additional, Rhodes, R., additional, Barron, C. N., additional, and Bub, F., additional
- Published
- 2005
- Full Text
- View/download PDF
31. A continuous record of Florida Current temperature transport at 27°N
- Author
-
Shoosmith, D. R., primary, Baringer, M. O., additional, and Johns, W. E., additional
- Published
- 2005
- Full Text
- View/download PDF
32. Observed decline of the Atlantic Meridional Overturning Circulation 2004 to 2012.
- Author
-
Smeed, D. A., McCarthy, G., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I., Duchez, A., and Bryden, H. L.
- Subjects
ATLANTIC meridional overturning circulation ,EKMAN motion theory ,THERMOCLINES (Oceanography) ,OCEAN currents ,HYDRAULICS - Abstract
The Atlantic Meridional Overturning Circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April 2008 to March 2012 the AMOC was an average of 2.7 Sv weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the subtropical gyre above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of Lower North Atlantic DeepWater below 3000 m. The transport of Lower North Atlantic Deep Water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year). [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
33. h. Meridional overturning circulation observations in the North Atlantic Ocean.
- Author
-
Baringer, M. O., McCarthy, G., Willis, J., Lankhorst, M., Smeed, D. A., Send, U., Rayner, D., Johns, W. E., Meinen, C. S., Cunningham, S. A., Kanzow, T. O., Frajka-Williams, E., and Marotzke, J.
- Subjects
- *
MERIDIONAL overturning circulation , *OCEAN circulation , *OCEAN currents , *OCEANOGRAPHY - Abstract
The article highlights trends in meridional overturning circulation (MOC) in the North Atlantic Ocean in 2013. Topics discussed include the mean variability of the MOC, the variability of transported properties, and the strength of the MOC. The lack of consistent trend in the MOC during the year is noted.
- Published
- 2014
34. i. Meridional oceanic heat transport in the Atlantic Ocean.
- Author
-
Baringer, M. O., Johns, W. E., Garzoli, S., Dong, S., Volkov, D., and Hobbs, W. R.
- Subjects
- *
OCEAN temperature , *HEAT flow (Oceanography) , *HEAT transfer , *MERIDIONAL overturning circulation - Abstract
The article examines the meridional heat transport (MHT) in the Atlantic Ocean in 2013. Topics discussed include the relationship between meridional overturning circulation (MOC) and MHT, the variability and strength of the MHT, and the use of a combination of expendable bathythermograph to estimate the MHT in the North and South Atlantic.
- Published
- 2014
35. A review of the physical oceanography of the Mediterranean outflow
- Author
-
Baringer, M. O. and Price, J. F.
- Published
- 1999
- Full Text
- View/download PDF
36. The present and future system for measuring the Atlantic Meridional overturning circulation and heat transport
- Author
-
Cunningham, S. A., Baringer, M. O., Toole, J., Østerhaus, S., Fischer, J., Piola, A., Elaine McDonagh, Lozier, S., Send, U., Kanzow, T., Marotzke, J., Rhein, M., Garzoli, S. L., Rintoul, S., Speich, S., Wijffels, S., Talley, L., Baehr, J., Meinen, C., Treguier, A. -M, and Lherminier, P.
37. State of the climate in 2017
- Author
-
Abernethy, R., Ackerman, S. A., Adler, R., Albanil Encarnación, A., Aldeco, L. S., Alfaro, E. J., Aliaga-Nestares, V., Allan, R. P., Allan, R., Alves, L. M., Amador, J. A., Anderson, J., Andreassen, L. M., Argüez, A., Armitage, C., Arndt, D. S., Avalos, G., Azorin-Molina, C., Báez, J., Bardin, M. Yu, Barichivich, J., Baringer, M. O., Barreira, S., Baxter, S., Beck, H. E., Becker, A., Bedka, K. M., Behe, C., Bell, G. D., Bellouin, N., Belmont, M., Benedetti, A., Bernhard, G. H., Berrisford, P., Berry, D. I., Bhatt, U. S., Bissolli, P., Bjerke, J., Blake, E. S., Blenkinsop, S., Blunden, J., Bolmgren, K., Bosilovich, M. G., Boucher, O., Bouchon, M., Box, J. E., Boyer, T., Braathen, G. O., Bromwich, D. H., Brown, R., Buehler, S., Bulygina, O. N., Burgess, D., Calderón, B., Camargo, S. J., Campbell, E. C., Campbell, J. D., Cappelen, J., Carrea, L., Carter, B. R., Castro, A., Chambers, D. P., lijing cheng, Christiansen, H. H., Christy, J. R., Chung, E. -S, Clem, K. R., Coelho, C. A. S., Coldewey-Egbers, M., Colwell, S., Cooper, O. R., Copland, L., Costanza, C., Covey, C., Coy, L., Cronin, T., Crouch, J., Cruzado, L., Daniel, R., Davis, S. M., Davletshin, S. G., Eyto, E., Jeu, R. A. M., La Cour, J. L., Laat, J., Gasperi, C. L., Degenstein, D., Deline, P., Demircan, M., Derksen, C., Dewitte, B., Dhurmea, R., Di Girolamo, L., Diamond, H. J., Dickerson, C., Dlugokencky, E. J., Dohan, K., Dokulil, M. T., Dolman, A. J., Domingues, C. M., Domingues, R., Donat, M. G., Dong, S., Dorigo, W. A., Drozdov, D. S., Dunn, R. J. H., Durre, I., Dutton, G. S., Eakin, C. M., El Kharrim, M., Elkins, J. W., Epstein, H. E., Espinoza, J. C., Famiglietti, J. S., Farmer, J., Farrell, S., Fauchald, P., Fausto, R. S., Feely, R. A., Feng, Z., Fenimore, C., Fettweis, X., Fioletov, V. E., Flemming, J., Fogt, R. L., Folland, C., Forbes, B. C., Foster, M. J., Francis, S. D., Franz, B. A., Frey, R. A., Frith, S. M., Froidevaux, L., Ganter, C., Geiger, E. F., Gerland, S., Gilson, J., Gobron, N., Goldenberg, S. B., Gomez, A. M., Goni, G., Grooß, J. U., Gruber, A., Guard, C. P., Gugliemin, M., Gupta, S. K., Gutiérrez, D., Haas, C., Hagos, S., Hahn, S., Haimberger, L., Hall, B. D., Halpert, M. S., Hamlington, B. D., Hanna, E., Hansen, K., Hanssen-Bauer, L., Harris, I., Hartfield, G., Heidinger, A. K., Heim, R. R., Helfrich, S., Hemming, D. L., Hendricks, S., Hernández, R., Hernández, S. M., Heron, S. F., Heuzé, C., Hidalgo, H. G., Ho, S. -P, Hobbs, W. R., Horstkotte, T., Huang, B., Hubert, D., Hueuzé, C., Hurst, D. F., Ialongo, I., Ibrahim, M. M., Ijampy, J. A., Inness, A., Isaac, V., Isaksen, K., Ishii, M., Jacobs, S. J., Jeffries, M. O., Jevrejeva, S., Jiménez, C., Jin, X., John, V., Johns, W. E., Johnsen, B., Johnson, B., Johnson, G. C., Johnson, K. S., Jones, P. D., Jumaux, G., Kabidi, K., Kaiser, J. W., Karaköylü, E. M., Kato, S., Kazemi, A., Keller, L. M., Kennedy, J., Kerr, K., Khan, M. S., Kholodov, A. L., Khoshkam, M., Killick, R., Kim, H., Kim, S. -J, Klotzbach, P. J., Knaff, J. A., Kohler, J., Korhonen, J., Korshunova, N. N., Kramarova, N., Kratz, D. P., Kruger, A., Kruk, M. C., Krumpen, T., Ladd, C., Lakatos, M., Lakkala, K., Lander, M. A., Landschützer, P., Landsea, C. W., Lankhorst, M., Lavado-Casimiro, W., Lazzara, M. A., Lee, S. -E, Lee, T. C., Leuliette, E., L Heureux, M., Li, T., Lieser, J. L., Lin, I. -I, Mears, C. A., Liu, G., Li, B., Liu, H., Locarnini, R., Loeb, N. G., Long, C. S., López, L. A., Lorrey, A. M., Loyola, D., Lumpkin, R., Luo, J. -J, Luojus, K., Luthcke, S., Macias-Fauria, M., Malkova, G. V., Manney, G. L., Marcellin, V., Marchenko, S. S., Marengo, J. A., Marín, D., Marra, J. J., Marszelewski, W., Martens, B., Martin, A., Martínez, A. G., Martínez-Güingla, R., Martínez-Sánchez, O., Marsh, B. L., Lyman, J. M., Massom, R. A., May, L., Mayer, M., Mazloff, M., Mcbride, C., Mccabe, M. F., Mccarthy, M., Meier, W., Meijers, A. J. S., Mekonnen, A., Mengistu Tsidu, G., Menzel, W. P., Merchant, C. J., Meredith, M. P., Merrifield, M. A., Miller, B., Miralles, D. G., Mitchum, G. T., Mitro, S., Moat, B., Mochizuki, Y., Monselesan, D., Montzka, S. A., Mora, N., Morice, C., Mosquera-Vásquez, K., Mostafa, A. E., Mote, T., Mudryk, L., Mühle, J., Mullan, A. B., Müller, R., Myneni, R., Nash, E. R., Nerem, R. S., Newman, L., Newman, P. A., Nielsen-Gammon, J. W., Nieto, J. J., Noetzli, J., Noll, B. E., O Neel, S., Osborn, T. J., Osborne, E., Overland, J., Oyunjargal, L., Park, T., Pasch, R. J., Pascual-Ramírez, R., Pastor Saavedra, M. A., Paterson, A. M., Paulik, C., Pearce, P. R., Peltier, A., Pelto, M. S., Peng, L., Perkins-Kirkpatrick, S. E., Perovich, D., Petropavlovskikh, I., Pezza, A. B., Phillips, C., Phillips, D., Phoenix, G., Pinty, B., Pinzon, J., Po-Chedley, S., Polashenski, C., Purkey, S. G., Quispe, N., Rajeevan, M., Rakotoarimalala, C., Rayner, D., Raynolds, M. K., Reagan, J., Reid, P., Reimer, C., Rémy, S., Revadekar, J. V., Richardson, A. D., Richter-Menge, J., Ricker, R., Rimmer, A., Robinson, D. A., Rodell, M., Rodriguez Camino, E., Romanovsky, V. E., Ronchail, J., Rosenlof, K. H., Rösner, B., Roth, C., Roth, D. M., Rusak, J. A., Rutishäuser, T., Sallée, J. -B, Sánchez-Lugo, A., Santee, M. L., Sasgen, L., Sawaengphokhai, P., Sayad, T. A., Sayouri, A., Scambos, T. A., Scanlon, T., Schenzinger, V., Schladow, S. G., Schmid, C., Schmid, M., Schreck, C. J., Selkirk, H. B., Send, U., Sensoy, S., Sharp, M., Shi, L., Shiklomanov, N. I., Shimaraeva, S. V., Siegel, D. A., Silow, E., Sima, F., Simmons, A. J., Skirving, W. J., Smeed, D. A., Smeets, C. J. P. P., Smith, A., Smith, S. L., Soden, B., Sofieva, V., Sparks, T. H., Spence, J. M., Spillane, S., Srivastava, A. K., Stackhouse, P. W., Stammerjohn, S., Stanitski, D. M., Steinbrecht, W., Stella, J. L., Stengel, M., Stephenson, K., Stephenson, T. S., Strahan, S., Streletskiy, D. A., Strong, A. E., Sun-Mack, S., Sutton, A. J., Swart, S., Sweet, W., Takahashi, K. S., Tamar, G., Taylor, M. A., Tedesco, M., Thackeray, S. J., Thoman, R. L., Thompson, P., Thomson, L., Thorsteinsson, T., Timbal, B., Timmermans, M. -L, Timofeyev, M. A., Tirak, K. V., Tobin, S., Togawa, H., Tømmervik, H., Tourpali, K., Trachte, K., Trewin, B. C., Triñanes, J. A., Trotman, A. R., Tschudi, M., Tucker, C. J., Tye, M. R., As, D., Wal, R. S. W., Ronald, J. A., Schalie, R., Schrier, G., Werf, G. R., Meerbeeck, C. J., Velden, C. S., Velicogna, I., Verburg, P., Vickers, H., Vincent, L. A., Vömel, H., Vose, R. S., Wagner, W., Walker, D. A., Walsh, J., Wang, B., Wang, J., Wang, L., Wang, M., Wang, R., Wang, S. -H, Wanninkhof, R., Watanabe, S., Weber, M., Webster, M., Weller, R. A., Westberry, T. K., Weyhenmeyer, G. A., Whitewood, R., Widlansky, M. J., Wiese, D. N., Wijffels, S. E., Wilber, A. C., Wild, J. D., Willett, K. M., Willis, J. K., Wolken, G., Wong, T., Wood, E. F., Wood, K., Woolway, R. I., Wouters, B., Xue, Y., Yin, X., Yoon, H., York, A., Yu, L., Zambrano, E., Zhang, H. -M, Zhang, P., Zhao, G., Zhao, L., Zhu, Z., Ziel, R., Ziemke, J. R., Ziese, M. G., Griffin, J., Hammer, G., Love-Brotak, S. E., Misch, D. J., Riddle, D. B., Slagle, M., Sprain, M., Veasey, S. W., and Mcvicar, T. R.
- Subjects
Meteor (satellite) ,Atmospheric Science ,Climate Research ,010504 meteorology & atmospheric sciences ,Climate change ,010501 environmental sciences ,01 natural sciences ,SDG 11 - Sustainable Cities and Communities ,Klimatforskning ,El Niño Southern Oscillation ,13. Climate action ,Climatology ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Environmental science ,SDG 14 - Life Below Water ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,0105 earth and related environmental sciences - Abstract
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice core records dating back as far as 800 000 years. The global growth rate of CO2 has nearly quadrupled since the early 1960s. With ENSO-neutral conditions present in the central and eastern equatorial Pacific Ocean during most of the year and weak La Niña conditions notable at the start and end, the global temperature across land and ocean surfaces ranked as the second or third highest, depending on the dataset, since records began in the mid-to-late 1800s. Notably, it was the warmest non-El Niño year in the instrumental record. Above Earth's surface, the annual lower tropospheric temperature was also either second or third highest according to all datasets analyzed. The lower stratospheric temperature was about 0.2°C higher than the record cold temperature of 2016 according to most of the in situ and satellite datasets. Several countries, including Argentina, Uruguay, Spain, and Bulgaria, reported record high annual temperatures. Mexico broke its annual record for the fourth consecutive year. On 27 January, the temperature reached 43.4°C at Puerto Madryn, Argentina-the highest temperature recorded so far south (43°S) anywhere in the world. On 28 May in Turbat, western Pakistan, the high of 53.5°C tied Pakistan's all-time highest temperature and became the world-record highest temperature for May. In the Arctic, the 2017 land surface temperature was 1.6°C above the 1981-2010 average, the second highest since the record began in 1900, behind only 2016. The five highest annual Arctic temperatures have all occurred since 2007. Exceptionally high temperatures were observed in the permafrost across the Arctic, with record values reported in much of Alaska and northwestern Canada. In August, high sea surface temperature (SST) records were broken for the Chukchi Sea, with some regions as warm as +11°C, or 3° to 4°C warmer than the longterm mean (1982-present). According to paleoclimate studies, today's abnormally warm Arctic air and SSTs have not been observed in the last 2000 years. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 7 March, sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, covering 8% less area than the 1981-2010 average. The Arctic sea ice minimum on 13 September was the eighth lowest on record and covered 25% less area than the long-term mean. Preliminary data indicate that glaciers across the world lost mass for the 38th consecutive year on record; the declines are remarkably consistent from region to region. Cumulatively since 1980, this loss is equivalent to slicing 22 meters off the top of the average glacier. Antarctic sea ice extent remained below average for all of 2017, with record lows during the first four months. Over the continent, the austral summer seasonal melt extent and melt index were the second highest since 2005, mostly due to strong positive anomalies of air temperature over most of the West Antarctic coast. In contrast, the East Antarctic Plateau saw record low mean temperatures in March. The year was also distinguished by the second smallest Antarctic ozone hole observed since 1988. Across the global oceans, the overall long-term SST warming trend remained strong. Although SST cooled slightly from 2016 to 2017, the last three years produced the three highest annual values observed; these high anomalies have been associated with widespread coral bleaching. The most recent global coral bleaching lasted three full years, June 2014 to May 2017, and was the longest, most widespread, and almost certainly most destructive such event on record. Global integrals of 0-700-m and 0-2000-m ocean heat content reached record highs in 2017, and global mean sea level during the year became the highest annual average in the 25-year satellite altimetry record, rising to 77 mm above the 1993 average. In the tropics, 2017 saw 85 named tropical storms, slightly above the 1981-2010 average of 82. The North Atlantic basin was the only basin that featured an above-normal season, its seventh most active in the 164-year record. Three hurricanes in the basin were especially notable. Harvey produced record rainfall totals in areas of Texas and Louisiana, including a storm total of 1538.7 mm near Beaumont, Texas, which far exceeds the previous known U.S. tropical cyclone record of 1320.8 mm. Irma was the strongest tropical cyclone globally in 2017 and the strongest Atlantic hurricane outside of the Gulf of Mexico and Caribbean on record with maximum winds of 295 km h-1. Maria caused catastrophic destruction across the Caribbean Islands, including devastating wind damage and flooding across Puerto Rico. Elsewhere, the western North Pacific, South Indian, and Australian basins were all particularly quiet. Precipitation over global land areas in 2017 was clearly above the long-term average. Among noteworthy regional precipitation records in 2017, Russia reported its second wettest year on record (after 2013) and Norway experienced its sixth wettest year since records began in 1900. Across India, heavy rain and flood-related incidents during the monsoon season claimed around 800 lives. In August and September, above-normal precipitation triggered the most devastating floods in more than a decade in the Venezuelan states of Bolívar and Delta Amacuro. In Nigeria, heavy rain during August and September caused the Niger and Benue Rivers to overflow, bringing floods that displaced more than 100 000 people. Global fire activity was the lowest since at least 2003; however, high activity occurred in parts of North America, South America, and Europe, with an unusually long season in Spain and Portugal, which had their second and third driest years on record, respectively. Devastating fires impacted British Columbia, destroying 1.2 million hectares of timber, bush, and grassland, due in part to the region's driest summer on record. In the United States, an extreme western wildfire season burned over 4 million hectares; the total costs of $18 billion tripled the previous U.S. annual wildfire cost record set in 1991.
- Full Text
- View/download PDF
38. State of the climate in 2013
- Author
-
Blunden, J., Arndt, D. S., Willett, K. M., Dolman, A. J., Hurst, D. F., Rennie, J., Thorne, P. W., Donat, M. G., Dunn, R. J. H., Long, C. S., Christy, J. R., Noetzli, J., Christiansen, H. H., Gugliemin, M., Romanovsky, V. E., Shiklomanov, N. I., Smith, S. L., Zhao, L., Robinson, D. A., Pelto, M. S., Mears, C. A., Ho, S.-O. B., Peng, L., Wang, J., Vose, R. S., Hilburn, K., Yin, X., Kruk, M. C., Becker, A., Foster, M. J., Ackerman, S. A., Heidinger, A. K., Maddux, B. C., Stengel, M., Kim, H., Oki, T., Rodell, M., Chambers, D. P., Famiglietti, J. S., Dorigo, W. A., Chung, D., Parinussa, R. M., Reimer, C., Hahn, S., Liu, Y. Y., Wagner, W. W., de Jeu, R. A. M., Paulik, C., Wang, G., Allan, R., Folland, C. K., Tobin, I., Berrisford, P., Vautard, R., McVicar, T. R., Kratz, D. P., Stackhouse, P.W., Wong, T., Sawaengphokhai, P., Wilber, A. C., Gupta, S. K., Loeb, N. G., Lantz, K. O., Dlugokencky, E. J., Hall, B. D., Montzka, S. A., Dutton, G. S., Mühle, J., Elkins, J. W., Benedetti, A., Jones, L. T., Kaiser, J. W., Morcrette, J.-J., Remy, S., Weber, M., Steinbrecht, W., van der A., R. J., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Loyola, D., Wild, J. D., Davis, S. M., Rosenlof, K. H., Cooper, O. R., Ziemke, J., Flemming, J., Inness, A., Quegan, S., Ciais, P., Santoro, M., Pinty, B., Gobron, N., van der Werf, G. R., Newlin, M. L., Gregg, M. C., Xue, Y., Hu, Z.-Z., Kumar, A., Banzon, V., Smith, T. M., Rayner, N. A., Johnson, G. C., Lyman, J. M., Willis, J. K., Boyer, T., Antonov, J., Good, S. A., Domingues, C. M., Bindoff, N., Yu, L., Jin, X., Lagerloef, G. S. E., Kao, H.-Y., Reagan, J., Schmid, C., Locarnini, R., Lumpkin, R., Goni, G., Dohan, K., Baringer, M. O., McCarthy, G., Lankhorst, M., Smeed, D. A., Send, U., Rayner, D., Johns, W. E., Meinen, C. S., Cunningham, S. A., Kanzow, T. O., Frajka-Williams, E., Marotzke, J., Garzoli, S., Dong, S., Volkov, D., Hobbs, W. R., Merrifield, M. A., Thompson, P., Leuliette, E., Nerem, R. S., Hamlington, B., Mitchum, G. T., McInnes, K., Marra, J. J., Menendez, M., Sweet, W., Feely, R. A., Wanninkhof, R., Sabine, C. L., Mathis, J. T., Takahashi, T., Khatiwala, S., Franz, B. A., Behrenfeld, M. J., Siegel, D. A., Werdell, P. J., Diamond, H. J., Bell, G. D., L'Heureux, M., Halpert, M. S., Baxter, S., Gottschalck, J., Landsea, C. W., Goldenberg, S. B., Pasch, R. J., Blake, E. S., Schemm, J., Kimberlain, T. B., Schreck, C. J., Evans, T.E., Camargo, S. J., Gleason, K. L., Trewin, B. C., Lorrey, A. M., Fauchereau, N. C., Chappell, P. R., Ready, S., Goni, G. J., Knaff, J. A., Lin, I.-I., Wang, B., Mullan, A. B., Pezza, A. B., Coelho, C A. S., Wang, C., Fogarty, C. T., Klotzbach, P., Luo, J.-J., Lander, M. A., Guard, C. P. C., Jeffries, M. O., Richter-Menge, J., Overland, J., Key, J., Hanna, E., Hanssen-Bauer, I., Kim, B.-M., Kim, S.-J., Walsh, J., Wang, M., Bhatt, U. S., Liu, Y., Stone, R., Cox, C., Walden, V., Francis, J., Vavrus, S., Tang, Q., Bernhard, G., Manney, G., Grooss, J.-U., Muller, R., Heikkila, A., Johnsen, B., Koskela, T., Lakkala, K., Svendby, T., Dahlback, A., Bruhwiler, L., Laurila, T., Worthy, D., Quinn, P. K., Stohl, A., Baklanov, A., Flanner, M. G., Herber, A., Kupiainen, K., Law, K. S., Schmale, J., Sharma, S., Vestreng, V., Von Salzen, K., Perovich, D., Gerland, S., Hendricks, S., Meier, W., Nicolaus, M., Tschudi, M., Timmermans, M.-L., Ashik, I., Frolov, I., Ha, H. K., Ingvaldsen, R., Kikuchi, T., Kim, T. W., Krishfield, R., Loeng, H., Nishino, S., Pickart, R., Polyakov, I., Rabe, B., Schauer, U., Schlosser, P., Smethie, W. M., Sokolov, V., Steele, M., Toole, J., Williams, W., Woodgate, R., Zimmerman, S., Cross, J. N., Evans, W., Anderson, L., Yamamoto-Kawai, M., Derksen, C., Brown, R., Luojus, K., Sharp, M., Wolken, G., Geai, M.-L., Burgess, D., Arendt, A., Wouters, B., Kohler, J., Andreassen, L. M., Tedesco, M., Box, J. E., Cappelen, J., Fettweis, X., Jensen, T. S., Mote, T., Rennermalm, A. K., Smith, L. C., van de Wal, R. S. W., Wahr, J., Duguay, C. R., Brown, L. C., Kang, K.-K., Kheyrollah Pour, H., Streletskiy, D. A., Drozdov, D. S., Malkova, G. V., Oberman, N. G., Kholodov, A. L., Marchenko, S. S., Fogt, R. L., Scambos, T.A., Clem, K.R., Barreira, S., Colwell, S., Keller, L.M., Lazzara, M.A., Setzer, A., Bromwich, D.H., Wang, S.-H., Wang, L., Liu, H., Wang, S., Shu, S., Massom, R.A., Reid, P., Stammerjohn, S., Lieser, J., Newman, P.A., Kramarova, N., Nash, E.R., Pitts, M.C., Johnson, B.f, Santee, M.L., Braathen, G.O., Campbell, G.G., Pope, A., Haran, T., Sanchez-Lugo, A., Renwick, J.A., Thiaw, W.M., Weaver, S.J., Vincent, L.A., Phillips, D., Whitewood, R., Crouch, J., Heim, Jr., Fenimore, C., Augustine, J., Pascual, R., Albanil, A., Vazquez, J.L., Lobato, R., Amador, J.A., Alfaro, E.J., Hidalgo, H.G., Duran-Quesada, A.M., Calderon, B., Rivera, I.L., Vega, C., Stephenson, T.S., Taylor, M.A., Trotman, A.R., Porter, A.O., Gonzalez, I.T., Spence, J.M., McLean, N., Campbell, J.D., Brown, G., Butler, M., Blenman, R.C., Aaron-Morrison, A.P., Marcellin-Honore, V., Martinez, R., Arevalo, J., Carrasco, G., Euscategui, C., Bazo, J., Nieto, J.J., Zambrano, E., Marengo, J.A., Alves, L.M., Espinoza, J.C., Ronchail, J., Bidegain, M., Stella, J.L., Penalba, O.C., Kabidi, K., Sayouri, A., Ebrahim, A., James, I.A., Dekaa, F.S., Sima, F., Coulibaly, K.A., Gitau, W., Chang'a, L., Oludhe, C.S., Ogallo, L.A., Atheru, Z., Ambenje, P., Kijazi, A., Ng'ongolo, H., Luhunga, P., Levira, P., Kruger, A., McBride, C., Rakotomavo, Z., Jumaux, G., Trachte, K., Bissolli, P., Obregon, A., Nitsche, H., Parker, D., Kennedy, J.J., Kendon, M., Trigo, R., Barriopedro, D., Ramos, A., Sensoy, S., Hovhannisyan, D., Bulygina, O.N., Khoshkam, M., Korshunova, N.N., Oyunjargal, L., Park, E.-H., Rahimzadeh, F., Rajeevan, M., Razuvaev, V.N., Revadekar, J.V., Srivastava, A.K., Yamada, R., Zhang, P., Tanaka, S., Yoshimatsu, K., Ohno, H., Ganter, C., Macara, G.R., McGree, S., Tobin, S., Blunden, J., Arndt, D. S., Willett, K. M., Dolman, A. J., Hurst, D. F., Rennie, J., Thorne, P. W., Donat, M. G., Dunn, R. J. H., Long, C. S., Christy, J. R., Noetzli, J., Christiansen, H. H., Gugliemin, M., Romanovsky, V. E., Shiklomanov, N. I., Smith, S. L., Zhao, L., Robinson, D. A., Pelto, M. S., Mears, C. A., Ho, S.-O. B., Peng, L., Wang, J., Vose, R. S., Hilburn, K., Yin, X., Kruk, M. C., Becker, A., Foster, M. J., Ackerman, S. A., Heidinger, A. K., Maddux, B. C., Stengel, M., Kim, H., Oki, T., Rodell, M., Chambers, D. P., Famiglietti, J. S., Dorigo, W. A., Chung, D., Parinussa, R. M., Reimer, C., Hahn, S., Liu, Y. Y., Wagner, W. W., de Jeu, R. A. M., Paulik, C., Wang, G., Allan, R., Folland, C. K., Tobin, I., Berrisford, P., Vautard, R., McVicar, T. R., Kratz, D. P., Stackhouse, P.W., Wong, T., Sawaengphokhai, P., Wilber, A. C., Gupta, S. K., Loeb, N. G., Lantz, K. O., Dlugokencky, E. J., Hall, B. D., Montzka, S. A., Dutton, G. S., Mühle, J., Elkins, J. W., Benedetti, A., Jones, L. T., Kaiser, J. W., Morcrette, J.-J., Remy, S., Weber, M., Steinbrecht, W., van der A., R. J., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Loyola, D., Wild, J. D., Davis, S. M., Rosenlof, K. H., Cooper, O. R., Ziemke, J., Flemming, J., Inness, A., Quegan, S., Ciais, P., Santoro, M., Pinty, B., Gobron, N., van der Werf, G. R., Newlin, M. L., Gregg, M. C., Xue, Y., Hu, Z.-Z., Kumar, A., Banzon, V., Smith, T. M., Rayner, N. A., Johnson, G. C., Lyman, J. M., Willis, J. K., Boyer, T., Antonov, J., Good, S. A., Domingues, C. M., Bindoff, N., Yu, L., Jin, X., Lagerloef, G. S. E., Kao, H.-Y., Reagan, J., Schmid, C., Locarnini, R., Lumpkin, R., Goni, G., Dohan, K., Baringer, M. O., McCarthy, G., Lankhorst, M., Smeed, D. A., Send, U., Rayner, D., Johns, W. E., Meinen, C. S., Cunningham, S. A., Kanzow, T. O., Frajka-Williams, E., Marotzke, J., Garzoli, S., Dong, S., Volkov, D., Hobbs, W. R., Merrifield, M. A., Thompson, P., Leuliette, E., Nerem, R. S., Hamlington, B., Mitchum, G. T., McInnes, K., Marra, J. J., Menendez, M., Sweet, W., Feely, R. A., Wanninkhof, R., Sabine, C. L., Mathis, J. T., Takahashi, T., Khatiwala, S., Franz, B. A., Behrenfeld, M. J., Siegel, D. A., Werdell, P. J., Diamond, H. J., Bell, G. D., L'Heureux, M., Halpert, M. S., Baxter, S., Gottschalck, J., Landsea, C. W., Goldenberg, S. B., Pasch, R. J., Blake, E. S., Schemm, J., Kimberlain, T. B., Schreck, C. J., Evans, T.E., Camargo, S. J., Gleason, K. L., Trewin, B. C., Lorrey, A. M., Fauchereau, N. C., Chappell, P. R., Ready, S., Goni, G. J., Knaff, J. A., Lin, I.-I., Wang, B., Mullan, A. B., Pezza, A. B., Coelho, C A. S., Wang, C., Fogarty, C. T., Klotzbach, P., Luo, J.-J., Lander, M. A., Guard, C. P. C., Jeffries, M. O., Richter-Menge, J., Overland, J., Key, J., Hanna, E., Hanssen-Bauer, I., Kim, B.-M., Kim, S.-J., Walsh, J., Wang, M., Bhatt, U. S., Liu, Y., Stone, R., Cox, C., Walden, V., Francis, J., Vavrus, S., Tang, Q., Bernhard, G., Manney, G., Grooss, J.-U., Muller, R., Heikkila, A., Johnsen, B., Koskela, T., Lakkala, K., Svendby, T., Dahlback, A., Bruhwiler, L., Laurila, T., Worthy, D., Quinn, P. K., Stohl, A., Baklanov, A., Flanner, M. G., Herber, A., Kupiainen, K., Law, K. S., Schmale, J., Sharma, S., Vestreng, V., Von Salzen, K., Perovich, D., Gerland, S., Hendricks, S., Meier, W., Nicolaus, M., Tschudi, M., Timmermans, M.-L., Ashik, I., Frolov, I., Ha, H. K., Ingvaldsen, R., Kikuchi, T., Kim, T. W., Krishfield, R., Loeng, H., Nishino, S., Pickart, R., Polyakov, I., Rabe, B., Schauer, U., Schlosser, P., Smethie, W. M., Sokolov, V., Steele, M., Toole, J., Williams, W., Woodgate, R., Zimmerman, S., Cross, J. N., Evans, W., Anderson, L., Yamamoto-Kawai, M., Derksen, C., Brown, R., Luojus, K., Sharp, M., Wolken, G., Geai, M.-L., Burgess, D., Arendt, A., Wouters, B., Kohler, J., Andreassen, L. M., Tedesco, M., Box, J. E., Cappelen, J., Fettweis, X., Jensen, T. S., Mote, T., Rennermalm, A. K., Smith, L. C., van de Wal, R. S. W., Wahr, J., Duguay, C. R., Brown, L. C., Kang, K.-K., Kheyrollah Pour, H., Streletskiy, D. A., Drozdov, D. S., Malkova, G. V., Oberman, N. G., Kholodov, A. L., Marchenko, S. S., Fogt, R. L., Scambos, T.A., Clem, K.R., Barreira, S., Colwell, S., Keller, L.M., Lazzara, M.A., Setzer, A., Bromwich, D.H., Wang, S.-H., Wang, L., Liu, H., Wang, S., Shu, S., Massom, R.A., Reid, P., Stammerjohn, S., Lieser, J., Newman, P.A., Kramarova, N., Nash, E.R., Pitts, M.C., Johnson, B.f, Santee, M.L., Braathen, G.O., Campbell, G.G., Pope, A., Haran, T., Sanchez-Lugo, A., Renwick, J.A., Thiaw, W.M., Weaver, S.J., Vincent, L.A., Phillips, D., Whitewood, R., Crouch, J., Heim, Jr., Fenimore, C., Augustine, J., Pascual, R., Albanil, A., Vazquez, J.L., Lobato, R., Amador, J.A., Alfaro, E.J., Hidalgo, H.G., Duran-Quesada, A.M., Calderon, B., Rivera, I.L., Vega, C., Stephenson, T.S., Taylor, M.A., Trotman, A.R., Porter, A.O., Gonzalez, I.T., Spence, J.M., McLean, N., Campbell, J.D., Brown, G., Butler, M., Blenman, R.C., Aaron-Morrison, A.P., Marcellin-Honore, V., Martinez, R., Arevalo, J., Carrasco, G., Euscategui, C., Bazo, J., Nieto, J.J., Zambrano, E., Marengo, J.A., Alves, L.M., Espinoza, J.C., Ronchail, J., Bidegain, M., Stella, J.L., Penalba, O.C., Kabidi, K., Sayouri, A., Ebrahim, A., James, I.A., Dekaa, F.S., Sima, F., Coulibaly, K.A., Gitau, W., Chang'a, L., Oludhe, C.S., Ogallo, L.A., Atheru, Z., Ambenje, P., Kijazi, A., Ng'ongolo, H., Luhunga, P., Levira, P., Kruger, A., McBride, C., Rakotomavo, Z., Jumaux, G., Trachte, K., Bissolli, P., Obregon, A., Nitsche, H., Parker, D., Kennedy, J.J., Kendon, M., Trigo, R., Barriopedro, D., Ramos, A., Sensoy, S., Hovhannisyan, D., Bulygina, O.N., Khoshkam, M., Korshunova, N.N., Oyunjargal, L., Park, E.-H., Rahimzadeh, F., Rajeevan, M., Razuvaev, V.N., Revadekar, J.V., Srivastava, A.K., Yamada, R., Zhang, P., Tanaka, S., Yoshimatsu, K., Ohno, H., Ganter, C., Macara, G.R., McGree, S., and Tobin, S.
- Abstract
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific
39. ABSTRACT.
- Author
-
Baringer, M. O. and Peterson, T. C.
- Subjects
- *
CLIMATOLOGY - Abstract
An abstract regarding the weather and climate events across the world is presented.
- Published
- 2009
40. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography.
- Author
-
Talley LD, Feely RA, Sloyan BM, Wanninkhof R, Baringer MO, Bullister JL, Carlson CA, Doney SC, Fine RA, Firing E, Gruber N, Hansell DA, Ishii M, Johnson GC, Katsumata K, Key RM, Kramp M, Langdon C, Macdonald AM, Mathis JT, McDonagh EL, Mecking S, Millero FJ, Mordy CW, Nakano T, Sabine CL, Smethie WM, Swift JH, Tanhua T, Thurnherr AM, Warner MJ, and Zhang JZ
- Subjects
- Climate, Oceanography instrumentation, Ships, Temperature, Water Movements, Carbon analysis, Seawater chemistry
- Abstract
Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.
- Published
- 2016
- Full Text
- View/download PDF
41. Mediterranean outflow mixing and dynamics.
- Author
-
Price JF, Baringer MO, Lueck RG, Johnson GC, Ambar I, Parrilla G, Cantos A, Kennelly MA, and Sanford TB
- Abstract
The Mediterranean Sea produces a salty, dense outflow that is strongly modified by entrainment as it first begins to descend the continental slope in the eastern Gulf of Cadiz. The current accelerates to 1.3 meters per second, which raises the internal Froude number above 1, and is intensely turbulent through its full thickness. The outflow loses about half of its density anomaly and roughly doubles its volume transport as it entrains less saline North Atlantic Central water. Within 100 kilometers downstream, the current is turned by the Coriolis force until it flows nearly parallel to topography in a damped geostrophic balance. The mixed Mediterranean outflow continues westward, slowly descending the continental slope until it becomes neutrally buoyant in the thermocline where it becomes an important water mass.
- Published
- 1993
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.