1. Invariant tori for commuting Hamiltonian PDEs
- Author
-
Bambusi, D. and Bardelle, C.
- Subjects
Mathematics - Functional Analysis ,Mathematics - Dynamical Systems ,37K55 - Abstract
We generalize to some PDEs a theorem by Nekhoroshev on the persistence of invariant tori in Hamiltonian systems with $r$ integrals of motion and $n$ degrees of freedom, $r\leq n$. The result we get ensures the persistence of an $r$-parameter family of $r$-dimensional invariant tori. The parameters belong to a Cantor-like set. The proof is based on the Lyapunof-Schmidt decomposition and on the standard implicit function theorem. Some of the persistent tori are resonant. We also give an application to the nonlinear wave equation with periodic boundary conditions on a segment and to a system of coupled beam equations. In the first case we construct 2 dimensional tori, while in the second case we construct 3 dimensional tori.
- Published
- 2008