Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS, Toledo-Teixeira DA, de Souza GF, Muraro SP, Parise PL, Barbosa PP, Bispo-Dos-Santos K, Mofatto LS, Simeoni CL, Claro IM, Duarte ASS, Coletti TM, Zangirolami AB, Costa-Lima C, Gomes ABSP, Buscaratti LI, Sales FC, Costa VA, Franco LAM, Candido DS, Pybus OG, de Jesus JG, Silva CAM, Ramundo MS, Ferreira GM, Pinho MC, Souza LM, Rocha EC, Andrade PS, Crispim MAE, Maktura GC, Manuli ER, Santos MNN, Camilo CC, Angerami RN, Moretti ML, Spilki FR, Arns CW, Addas-Carvalho M, Benites BD, Vinolo MAR, Mori MAS, Gaburo N, Dye C, Marques-Souza H, Marques RE, Farias AS, Diamond MS, Faria NR, Sabino EC, Granja F, and Proença-Módena JL
Background: Mutations accrued by SARS-CoV-2 lineage P.1-first detected in Brazil in early January, 2021-include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.1.7 and B.1.351. We aimed to investigate whether isolates of wild-type P.1 lineage SARS-CoV-2 can escape from neutralising antibodies generated by a polyclonal immune response., Methods: We did an immunological study to assess the neutralising effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS-CoV-2. Two specimens (P.1/28 and P.1/30) containing SARS-CoV-2 lineage P.1 (as confirmed by viral genome sequencing) were obtained from nasopharyngeal and bronchoalveolar lavage samples collected from patients in Manaus, Brazil, and compared against an isolate of SARS-CoV-2 lineage B (SARS.CoV2/SP02.2020) recovered from a patient in Brazil in February, 2020. Isolates were incubated with plasma samples from 21 blood donors who had previously had COVID-19 and from a total of 53 recipients of the chemically inactivated SARS-CoV-2 vaccine CoronaVac: 18 individuals after receipt of a single dose and an additional 20 individuals (38 in total) after receipt of two doses (collected 17-38 days after the most recent dose); and 15 individuals who received two doses during the phase 3 trial of the vaccine (collected 134-230 days after the second dose). Antibody neutralisation of P.1/28, P.1/30, and B isolates by plasma samples were compared in terms of median virus neutralisation titre (VNT 50 , defined as the reciprocal value of the sample dilution that showed 50% protection against cytopathic effects)., Findings: In terms of VNT 50 , plasma from individuals previously infected with SARS-CoV-2 had an 8·6 times lower neutralising capacity against the P.1 isolates (median VNT 50 30 [IQR <20-45] for P.1/28 and 30 [<20-40] for P.1/30) than against the lineage B isolate (260 [160-400]), with a binominal model showing significant reductions in lineage P.1 isolates compared with the lineage B isolate (p≤0·0001). Efficient neutralisation of P.1 isolates was not seen with plasma samples collected from individuals vaccinated with a first dose of CoronaVac 20-23 days earlier (VNT 50 s below the limit of detection [<20] for most plasma samples), a second dose 17-38 days earlier (median VNT 50 24 [IQR <20-25] for P.1/28 and 28 [<20-25] for P.1/30), or a second dose 134-260 days earlier (all VNT 50 s below limit of detection). Median VNT 50 s against the lineage B isolate were 20 (IQR 20-30) after a first dose of CoronaVac 20-23 days earlier, 75 (<20-263) after a second dose 17-38 days earlier, and 20 (<20-30) after a second dose 134-260 days earlier. In plasma collected 17-38 days after a second dose of CoronaVac, neutralising capacity against both P.1 isolates was significantly decreased (p=0·0051 for P.1/28 and p=0·0336 for P.1/30) compared with that against the lineage B isolate. All data were corroborated by results obtained through plaque reduction neutralisation tests., Interpretation: SARS-CoV-2 lineage P.1 might escape neutralisation by antibodies generated in response to polyclonal stimulation against previously circulating variants of SARS-CoV-2. Continuous genomic surveillance of SARS-CoV-2 combined with antibody neutralisation assays could help to guide national immunisation programmes., Funding: São Paulo Research Foundation, Brazilian Ministry of Science, Technology and Innovation and Funding Authority for Studies, Medical Research Council, National Council for Scientific and Technological Development, National Institutes of Health., Translation: For the Portuguese translation of the abstract see Supplementary Materials section., Competing Interests: MSD is a consultant for Inbios, Vir Biotechnology, NGM Biopharmaceuticals, and Carnival Corporation, and on the Scientific Advisory Boards of Moderna and Immunome. MSD is the principal investigator of a laboratory that has received funding support in sponsored research agreements from Moderna, Vir Biotechnology, and Emergent BioSolutions., (© 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license.)