22 results on '"Baptiste Mayjonade"'
Search Results
2. First whole genome assembly and annotation of a European common bean cultivar using PacBio HiFi and Iso-Seq data
- Author
-
Sébastien Carrère, Baptiste Mayjonade, David Lalanne, Sylvain Gaillard, Jérôme Verdier, and Nicolas W.G. Chen
- Subjects
Whole genome sequencing ,Phaseolus ,Legume ,PacBio ,Annotation ,Flavert ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Science (General) ,Q1-390 - Abstract
Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human consumption worldwide. Flageolet bean originates from France and presents typical organoleptic properties, including the remarkable feature of having small pale green colored seeds. Here, we report the whole-genome data, assembly and annotation of the flageolet bean accession ‘Flavert’. High molecular weight DNA and RNA were extracted and subjected to long-read sequencing using PacBio Sequel II platform. The genome consisted of 566,238,753 bp assembled in 13 molecules, including 11 chromosomes plus the mitochondrial and chloroplastic genomes. Annotation predicted 29,549 protein coding genes and 6,958 non-coding RNA. This high-quality genome (99.2% BUSCO completeness) represents a valuable data set for further genomic and genetic studies on common bean and more generally on legumes. To our knowledge, this is the first whole-genome sequence of a common bean accession originating from Europe.
- Published
- 2023
- Full Text
- View/download PDF
3. Investigating genetic diversity within the most abundant and prevalent non-pathogenic leaf-associated bacteria interacting with Arabidopsis thaliana in natural habitats
- Author
-
Daniela Ramírez-Sánchez, Chrystel Gibelin-Viala, Baptiste Mayjonade, Rémi Duflos, Elodie Belmonte, Vincent Pailler, Claudia Bartoli, Sébastien Carrere, Fabienne Vailleau, and Fabrice Roux
- Subjects
microbiota ,commensal bacteria ,genomic diversity ,plant growth promotion ,growth kinetics ,seed inoculation ,Microbiology ,QR1-502 - Abstract
Microbiota modulates plant health and appears as a promising lever to develop innovative, sustainable and eco-friendly agro-ecosystems. Key patterns of microbiota assemblages in plants have been revealed by an extensive number of studies based on taxonomic profiling by metabarcoding. However, understanding the functionality of microbiota is still in its infancy and relies on reductionist approaches primarily based on the establishment of representative microbial collections. In Arabidopsis thaliana, most of these microbial collections include one strain per OTU isolated from a limited number of habitats, thereby neglecting the ecological potential of genetic diversity within microbial species. With this study, we aimed at estimating the extent of genetic variation between strains within the most abundant and prevalent leaf-associated non-pathogenic bacterial species in A. thaliana located south-west of France. By combining a culture-based collection approach consisting of the isolation of more than 7,000 bacterial colonies with an informative-driven approach, we isolated 35 pure strains from eight non-pathogenic bacterial species. We detected significant intra-specific genetic variation at the genomic level and for growth rate in synthetic media. In addition, significant host genetic variation was detected in response to most bacterial strains in in vitro conditions, albeit dependent on the developmental stage at which plants were inoculated, with the presence of both negative and positive responses on plant growth. Our study provides new genetic and genomic resources for a better understanding of the plant-microbe ecological interactions at the microbiota level. We also highlight the need of considering genetic variation in both non-pathogenic bacterial species and A. thaliana to decipher the genetic and molecular mechanisms involved in the ecologically relevant dialog between hosts and leaf microbiota.
- Published
- 2022
- Full Text
- View/download PDF
4. Low-Input High-Molecular-Weight DNA Extraction for Long-Read Sequencing From Plants of Diverse Families
- Author
-
Alessia Russo, Baptiste Mayjonade, Daniel Frei, Giacomo Potente, Roman T. Kellenberger, Léa Frachon, Dario Copetti, Bruno Studer, Jürg E. Frey, Ueli Grossniklaus, and Philipp M. Schlüter
- Subjects
DNA extraction ,DNA sequencing ,nanopore sequencing ,Circulomics ,plant genome ,ONT long read sequencing ,Plant culture ,SB1-1110 - Abstract
Long-read DNA sequencing technologies require high molecular weight (HMW) DNA of adequate purity and integrity, which can be difficult to isolate from plant material. Plant leaves usually contain high levels of carbohydrates and secondary metabolites that can impact DNA purity, affecting downstream applications. Several protocols and kits are available for HMW DNA extraction, but they usually require a high amount of input material and often lead to substantial DNA fragmentation, making sequencing suboptimal in terms of read length and data yield. We here describe a protocol for plant HMW DNA extraction from low input material (0.1 g) which is easy to follow and quick (2.5 h). This method successfully enabled us to extract HMW from four species from different families (Orchidaceae, Poaceae, Brassicaceae, Asteraceae). In the case of recalcitrant species, we show that an additional purification step is sufficient to deliver a clean DNA sample. We demonstrate the suitability of our protocol for long-read sequencing on the Oxford Nanopore Technologies PromethION® platform, with and without the use of a short fragment depletion kit.
- Published
- 2022
- Full Text
- View/download PDF
5. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules
- Author
-
Baptiste Mayjonade, Jérôme Gouzy, Cécile Donnadieu, Nicolas Pouilly, William Marande, Caroline Callot, Nicolas Langlade, and Stéphane Muños
- Subjects
DNA extraction ,long-read sequencing ,PacBio ,Biology (General) ,QH301-705.5 - Abstract
De novo sequencing of complex genomes is one of the main challenges for researchers seeking high-quality reference sequences. Many de novo assemblies are based on short reads, producing fragmented genome sequences. Third-generation sequencing, with read lengths >10 kb, will improve the assembly of complex genomes, but these techniques require high-molecular-weight genomic DNA (gDNA), and gDNA extraction protocols used for obtaining smaller fragments for short-read sequencing are not suitable for this purpose. Methods of preparing gDNA for bacterial artificial chromosome (BAC) libraries could be adapted, but these approaches are time-consuming, and commercial kits for these methods are expensive. Here, we present a protocol for rapid, inexpensive extraction of high-molecular-weight gDNA from bacteria, plants, and animals. Our technique was validated using sunflower leaf samples, producing a mean read length of 12.6 kb and a maximum read length of 80 kb.
- Published
- 2016
- Full Text
- View/download PDF
6. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules
- Author
-
Baptiste Mayjonade, Jérôme Gouzy, Cécile Donnadieu, Nicolas Pouilly, William Marande, Caroline Callot, Nicolas Langlade, and Stéphane Muños
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Protocol Summary Third-generation sequencing, with read lengths >10 kb, will improve the assembly of complex genomes, but these techniques require high-molecular-weight genomic DNA (gDNA), and gDNA extraction protocols used for obtaining smaller fragments for short-read sequencing are not suitable for this purpose. Methods of preparing gDNA for bacterial artificial chromosome (BAC) libraries could be adapted, but these approaches are time-consuming, and commercial kits for these methods are expensive. Here, we present a protocol for rapid, inexpensive extraction of high-molecular-weight gDNA from bacteria, plants, and animals. Our technique was validated using sunflower leaf samples, producing a mean read length of 12.6 kb and a maximum read length of 80 kb.
- Published
- 2017
- Full Text
- View/download PDF
7. A pan-genome of 72 Arabidopsis thaliana accessions reveals a conserved genome structure throughout the global species range
- Author
-
Qichao Lian, Bruno Hüttel, Birgit Walkemeier, Baptiste Mayjonade, Celine Lopez-Roques, Lisa Gil, Fabrice Roux, Korbinian Schneeberger, and Raphael Mercier
- Abstract
Although originally primarily a model for functional biology, the thale cress Arabidopsis thaliana has, owing to its broad geographical distribution and adaptation to diverse abiotic and biotic environments, developed into a powerful model in population genomics. Here, we present chromosome-level genome assemblies of 72 diverse accessions located across the global species range. We found that genomic co-linearity is remarkably conserved, even among geographically and genetically distant accessions. Along chromosome arms, megabase-scale rearrangements are rare, typically present only in a single accession. This indicates that the highly re-arranged karyotype of Arabidopsis thaliana (as compared to other Brassicaceae species), is quasi-fixed and that rearrangements in chromosome arms are counter-selected. In contrast, centromeric regions show much higher structural dynamics, and divergences in core centromeres account for most of the variation in genome size. Pan-genome analyses of the gene space uncovered 40,382 distinct genes, 52% being present in all accessions and 48% appearing to be dispensable, including 23% private to a single accession, indicating a vast unexplored genic diversity. The availability of 72 new Arabidopsis thaliana genome assemblies will empower future genetic research.
- Published
- 2023
- Full Text
- View/download PDF
8. The genomics of linkage drag in inbred lines of sunflower
- Author
-
Kaichi Huang, Mojtaba Jahani, Jérôme Gouzy, Alexandra Legendre, Sébastien Carrere, José Miguel Lázaro-Guevara, Eric Gerardo González Segovia, Marco Todesco, Baptiste Mayjonade, Nathalie Rodde, Stéphane Cauet, Isabelle Dufau, S. Evan Staton, Nicolas Pouilly, Marie-Claude Boniface, Camille Tapy, Brigitte Mangin, Alexandra Duhnen, Véronique Gautier, Charles Poncet, Cécile Donnadieu, Tali Mandel, Sariel Hübner, John M. Burke, Sonia Vautrin, Arnaud Bellec, Gregory L. Owens, Nicolas Langlade, Stéphane Muños, and Loren H. Rieseberg
- Subjects
Multidisciplinary - Abstract
Crop wild relatives represent valuable sources of alleles for crop improvement, including adaptation to climate change and emerging diseases. However, introgressions from wild relatives might have deleterious effects on desirable traits, including yield, due to linkage drag. Here, we analyzed the genomic and phenotypic impacts of wild introgressions in inbred lines of cultivated sunflower to estimate the impacts of linkage drag. First, we generated reference sequences for seven cultivated and one wild sunflower genotype, as well as improved assemblies for two additional cultivars. Next, relying on previously generated sequences from wild donor species, we identified introgressions in the cultivated reference sequences, as well as the sequence and structural variants they contain. We then used a ridge-regression best linear unbiased prediction (BLUP) model to test the effects of the introgressions on phenotypic traits in the cultivated sunflower association mapping population. We found that introgression has introduced substantial sequence and structural variation into the cultivated sunflower gene pool, including >3,000 new genes. While introgressions reduced genetic load at protein-coding sequences, they mostly had negative impacts on yield and quality traits. Introgressions found at high frequency in the cultivated gene pool had larger effects than low-frequency introgressions, suggesting that the former likely were targeted by artificial selection. Also, introgressions from more distantly related species were more likely to be maladaptive than those from the wild progenitor of cultivated sunflower. Thus, breeding efforts should focus, as far as possible, on closely related and fully compatible wild relatives.
- Published
- 2023
- Full Text
- View/download PDF
9. Unraveling the genetic architecture of the adaptive potential of Arabidopsis thaliana to face the bacterial pathogen Pseudomonas syringae in the context of global change
- Author
-
Claudia Bartoli, Mylène Rigal, Baptiste Mayjonade, Fabrice Roux, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Université de Rennes (UR)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Région Midi-Pyrénées (CLIMARES project), ANR-10-LABX-0041,TULIP,Towards a Unified theory of biotic Interactions: the roLe of environmental(2010), and ANR-10-INBS-0009,France-Génomique,Organisation et montée en puissance d'une Infrastructure Nationale de Génomique(2010)
- Subjects
[SDV]Life Sciences [q-bio] - Abstract
Phytopathogens are a continuous threat for global food production and security. Emergence or re-emergence of plant pathogens is highly dependent on the environmental conditions affecting pathogen spread and survival. Under climate change, a geographic expansion of pathogen distribution poleward has been observed, potentially resulting in disease outbreaks on crops and wild plants. Therefore, estimating the adaptive potential of plants to novel epidemics and describing its underlying genetic architecture, is a primary need to propose agricultural management strategies reducing pathogen outbreaks and to breed novel plant cultivars adapted to pathogens that might spread in novel habitats under climate change. To address this challenge, we inoculated Pseudomonas syringae strains isolated from Arabidopsis thaliana populations located in south-west of France on the highly genetically polymorphic TOU-A A. thaliana population located east-central France. While no adaptive potential was identified in response to most P. syringae strains, the TOU-A population displays a variable disease response to the P. syringae strain JACO-CL belonging to the phylogroup 7 (PG7). This strain carried a reduced T3SS characteristic of the PG7 as well as flexible genomic traits and potential novel effectors. GWA mapping on 192 TOU-A accessions inoculated with JACO-CL revealed a polygenic architecture. The main QTL region encompasses two R genes and the AT5G18310 gene encoding for ubiquitin hydrolase, a target of the AvrRpt2 P. syringae effector. Altogether, our results pave the way for a better understanding of the genetic and molecular basis of the adaptive potential in an ecologically relevant A. thaliana – P. syringae pathosystem.
- Published
- 2022
10. The genomics of linkage drag in sunflower
- Author
-
Kaichi Huang, Mojtaba Jahani, Jérôme Gouzy, Alexandra Legendre, Sebastien Carrere, José Miguel Lázaro-Guevara, Eric Gerardo González Segovia, Marco Todesco, Baptiste Mayjonade, Nathalie Rodde, Stéphane Cauet, Isabelle Dufau, S Evan Staton, Nicolas Pouilly, Marie-Claude Boniface, Camille Tapy, Brigitte Mangin, Alexandra Duhnen, Véronique Gautier, Charles Poncet, Cécile Donnadieu, Tali Mandel, Sariel Hübner, John M. Burke, Sonia Vautrin, Arnaud Bellec, Gregory L. Owens, Nicolas Langlade, Stéphane Muños, and Loren H. Rieseberg
- Abstract
Crop wild relatives represent valuable sources of alleles for crop improvement, including adaptation to climate change and emerging diseases. However, introgressions from wild relatives might have deleterious effects on desirable traits, including yield, due to linkage drag. Here we comprehensively analyzed the genomic and phenotypic impacts of wild introgressions into cultivated sunflower to estimate the impacts of linkage drag. First, we generated new reference sequences for seven cultivated and one wild sunflower genotype, as well as improved assemblies for two additional cultivars. Next, relying on previously generated sequences from wild donor species, we identified introgressions in the cultivated reference sequences, as well as the sequence and structural variants they contain. We then used a ridge regression model to test the effects of the introgressions on phenotypic traits in the cultivated sunflower association mapping population. We found that introgression has introduced substantial sequence and structural variation into the cultivated sunflower gene pool, including > 3,000 new genes. While introgressions reduced genetic load at protein-coding sequences and positively affected traits associated with abiotic stress resistance, they mostly had negative impacts on yield and quality traits. Introgressions found at high frequency in the cultivated gene pool had larger effects than low frequency introgressions, suggesting that the former likely were targeted by artificial selection. Also, introgressions from more distantly related species were more likely to be maladaptive than those from the wild progenitor of cultivated sunflower. Thus, pre-breeding efforts should focus, as far as possible, on closely related and fully compatible wild relatives.
- Published
- 2022
- Full Text
- View/download PDF
11. An atypical NLR gene confers bacterial wilt susceptibility in Arabidopsis
- Author
-
Choghag Demirjian, Narjes Razavi, Gang Yu, Baptiste Mayjonade, Lu Zhang, Fabien Lonjon, Fabien Chardon, Sébastien Carrere, Jérome Gouzy, Stéphane Genin, Alberto P. Macho, Fabrice Roux, Richard Berthomé, and Fabienne Vailleau
- Subjects
Cell Biology ,Plant Science ,Molecular Biology ,Biochemistry ,Biotechnology - Published
- 2023
- Full Text
- View/download PDF
12. APOK3, a pollen killer antidote in Arabidopsis thaliana
- Author
-
Baptiste Mayjonade, Nathalie Vrielynck, Christine Camilleri, Roxane Boyer, Stéphanie Durand, Jérôme Gouzy, Matthieu Simon, Fabrice Roux, Anthony Ricou, and Françoise Budar
- Subjects
Investigation ,Genetics ,Antidotes ,Mutant ,Arabidopsis ,Locus (genetics) ,Biology ,biology.organism_classification ,medicine.disease_cause ,Poisons ,medicine.anatomical_structure ,Genotype ,Heredity ,medicine ,Pollen ,Arabidopsis thaliana ,Gamete ,Allele ,Gene ,Alleles - Abstract
The principles of heredity state that the two alleles carried by a heterozygote are equally transmitted to the progeny. However, genomic regions that escape this rule have been reported in many organisms. It is notably the case of genetic loci referred to as gamete killers, where one allele enhances its transmission by causing the death of the gametes that do not carry it. Gamete killers are of great interest, particularly to understand mechanisms of evolution and speciation. Although being common in plants, only a few, all in rice, have so far been deciphered to the causal genes. Here, we studied a pollen killer found in hybrids between two accessions of Arabidopsis thaliana. Exploring natural variation, we observed this pollen killer in many crosses within the species. Genetic analyses revealed that three genetically linked elements are necessary for pollen killer activity. Using mutants, we showed that this pollen killer works according to a poison-antidote model, where the poison kills pollen grains not producing the antidote. We identified the gene encoding the antidote, a chimeric protein addressed to mitochondria. De novo genomic sequencing in 12 natural variants with different behaviors regarding the pollen killer revealed a hyper variable locus, with important structural variations particularly in killer genotypes, where the antidote gene recently underwent duplications. Our results strongly suggest that the gene has newly evolved within A. thaliana. Finally, we identified in the protein sequence polymorphisms related to its antidote activity.
- Published
- 2021
- Full Text
- View/download PDF
13. Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association
- Author
-
Joël Piquemal, Stéphane Muños, Baptiste Mayjonade, Jérôme Gouzy, Thierry André, Patrick Vincourt, Sébastien Carrère, Nicolas B. Langlade, Brigitte Mangin, Marion Laporte, Marie-Claude Boniface, Eléna Cadic, Nicolas Blanchet, Marie Coque, Pierre Casadebaig, Nicolas Pouilly, and Ludovic Legrand
- Subjects
2. Zero hunger ,0106 biological sciences ,0301 basic medicine ,Abiotic component ,Phenotypic plasticity ,Physiology ,fungi ,food and beverages ,Plant Science ,Quantitative genetics ,15. Life on land ,Quantitative trait locus ,Plasticity ,Biology ,01 natural sciences ,Sunflower ,Crop ,03 medical and health sciences ,030104 developmental biology ,Agronomy ,13. Climate action ,010606 plant biology & botany ,Hybrid - Abstract
Understanding the genetic basis of phenotypic plasticity is crucial for predicting and managing climate change effects on wild plants and crops. Here, we combined crop modeling and quantitative genetics to study the genetic control of oil yield plasticity for multiple abiotic stresses in sunflower. First we developed stress indicators to characterize 14 environments for three abiotic stresses (cold, drought and nitrogen) using the SUNFLO crop model and phenotypic variations of three commercial varieties. The computed plant stress indicators better explain yield variation than descriptors at the climatic or crop levels. In those environments, we observed oil yield of 317 sunflower hybrids and regressed it with three selected stress indicators. The slopes of cold stress norm reaction were used as plasticity phenotypes in the following genome-wide association study. Among the 65,534 tested SNP, we identified nine QTL controlling oil yield plasticity to cold stress. Associated SNP are localized in genes previously shown to be involved in cold stress responses: oligopeptide transporters, LTP, cystatin, alternative oxidase, or root development. This novel approach opens new perspectives to identify genomic regions involved in genotype-by-environment interaction of a complex traits to multiple stresses in realistic natural or agronomical conditions.
- Published
- 2017
- Full Text
- View/download PDF
14. RNA expression dataset of 384 sunflower hybrids in field condition
- Author
-
Nicolas Blanchet, Marion Larroque, Charlotte Penouilh-Suzette, Brigitte Mangin, Xavier Heudelot, Baptiste Mayjonade, Romain Dinis, Simon de Givry, Marion Laporte, Louise Gody, Christopher J. Grassa, Nicolas B. Langlade, Lise Pomiès, Céline Brouard, Harold Duruflé, Gwenola Marage, Fanny Bonnafous, Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), innolea, Groupe RAGT (RAGT), ANR-11-BTBR-0005,SUNRISE,Ressources génétiques de tournesol pour l'amélioration de la stabilité de production d'huile sous c(2011), and ANR-11-IDEX-0002,UNITI,Université Fédérale de Toulouse(2011)
- Subjects
0106 biological sciences ,sunflower ,Heterosis ,[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy ,lcsh:TP670-699 ,drought ,Biology ,01 natural sciences ,Biochemistry ,génétique ,génomique ,03 medical and health sciences ,Anthesis ,Genotype ,Gene expression ,genetics ,030304 developmental biology ,Hybrid ,sécheresse ,2. Zero hunger ,0303 health sciences ,Genetic diversity ,RNA ,[SDV.SA.AEP]Life Sciences [q-bio]/Agricultural sciences/Agriculture, economy and politics ,Sunflower ,tournesol ,Horticulture ,gene expression ,lcsh:Oils, fats, and waxes ,Agronomy and Crop Science ,010606 plant biology & botany ,Food Science - Abstract
This article describes how RNA expression data of 173 genes were produced on 384 sunflowerhybrids grown infield conditions. Sunflower hybrids were selected to represent genetic diversity withincultivated sunflower. The RNA was extracted from mature leaves at one time seven days after anthesis.These data allow to differentiate the different genotype behaviours and constitute a valuable resource to thecommunity to study the adaptation of crops tofield conditions and the molecular basis of heterosis. It isavailable on data.inra.fr repository.; Cet article décrit la production des niveaux d’expression de 173 gènes dans 384 hybrides de tournesol cultivés en conditions de champ. Les hybrides sont issus de parents choisis pour représenter la diversité génétique dans le tournesol cultivé. Les ARN ont été extraits à partir de feuilles matures environ sept jours après la floraison. Ces données permettent de différencier les comportements des différents génotypes et constituent une ressource importante pour les chercheurs intéressés dans l’adaptation des espèces cultivées aux conditions agronomiques et aux bases moléculaires de l’hétérosis. Elles sont disponibles sur le portail Data INRAE : data.inra.fr.
- Published
- 2020
- Full Text
- View/download PDF
15. HMW DNA extraction from diverse plants species for PacBio and Nanopore sequencing v1
- Author
-
Alessia Russo, Giacomo Potente, and Baptiste Mayjonade
- Subjects
chemistry.chemical_compound ,genomic DNA ,Lysis ,Chromatography ,chemistry ,Bio Techniques ,Plant species ,Nanopore sequencing ,Biology ,DNA extraction ,DNA - Abstract
Modified from the protocol of Baptiste Mayjonade, Jérome Gouzy, Cécile Donnadieu, Nicolas Pouilly, William Marande, Caroline Callot, Nicolas Langlade and Stéphane Munos, High molecular weight gDNA extraction, Bio Techniques, Vol. 61, No. 4, October 2016, pp. 203-205. BioTechniques 61:203-205 (October 2016) doi 10.2144/000114460 https://www.future-science.com/doi/10.2144/000114460 The original protocol failed to extract High Molecular Weight genomic DNA from orchids samples (poor yield and low purity). Therefore modifications (mainly/mostly BME addition during the lysis step and a Phenol:Chloroform purification step) were made to create a new version of this protocol. This new version allowed to successfully extract DNA from orchid samples. This DNA was then sequenced on a Nanopore PromethION platform and good results in term of total yield and read length were obtained. This protocol was also successfully applied to a wide range of plant species (See attached document/excel sheet). ACKNOWLEDGEMENT Sequencing of the Arabidopsis thaliana samples listed in the attached reports was performed in collaboration with the GeT core facility, Toulouse, France (http://get.genotoul.fr), and was supported by France Génomique National infrastructure, funded as part of “Investissement d’avenir” program managed by Agence Nationale pour la Recherche (contract ANR-10-INBS-09). We particularly want to thank Lisa Gil and Céline Lopez-Roques for the sequencing part and Roxane Boyer for the data processing. Sampling and DNA Extraction for the Ophrys sphegodes samples were financially supported by the University of Zürich Research Priority Programme URPP "Evolution in Action" (PMS/AR). Sequencing was performed by Daniel Frei in the Department of Molecular Diagnostics, Genomics and Bioinformatics, Agroscope Wädenswil, Switzerland. We are thankful to Jürg E. Frey, Agroscope, for financial support. We are grateful to Philipp M. Schlüter and Ueli Grossniklaus for support and helpful discussion. Sequencing of Lolium multiflorium was performed in Agroscope by Daniel Frei. We thank Daniel, Jürg E. Frei, Dario Copetti and Bruno Studer, Department of Environmental Systems Science, ETH Zürich, for sharing the sequencing results. Sequencing of Brassica incana was performed at FGCZ Zürich. We are thankful to Léa Frachon, Department of Systematic and Evolutionary Botany, UZH Zürich, to share the data. DNA extraction of Gorteria diffusa was performed by Roman T. Kellenberger, Department of Plant Sciences, University of Cambridge. We wish to thank him for sharing his sequencing results.
- Published
- 2019
- Full Text
- View/download PDF
16. Adaptation to plant communities across the genome of Arabidopsis thaliana
- Author
-
Claudia Bartoli, Baptiste Mayjonade, Nina-Coralie Hautekèete, Fabrice Roux, Léa Frachon, Laboratoire des interactions plantes micro-organismes (LIPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Università degli studi di Napoli Federico II, University of Zürich [Zürich] (UZH), Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, AGROCAMPUS OUEST [Le Rheu], Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 (Evo-Eco-Paléo), Université de Lille-Centre National de la Recherche Scientifique (CNRS), University of Zurich, Wright, Stephen, Roux, Fabrice, Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes, International Society for Molecular Plant-Microbe Interactions (IS-MPMI). INT., Dipartimento di Biologia, Department of Systematic and Evolutionary Botany, University of Vienna [Vienna], Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Lille, Region Midi-Pyrenees (CLIMARES project), LABEX TULIP : ANR-10-LABX-41, ANR-11-IDEX-0002-02, University of Naples Federico II = Università degli studi di Napoli Federico II, Universität Zürich [Zürich] = University of Zurich (UZH), Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST, AGROCAMPUS OUEST, Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 (Evo-Eco-Paléo (EEP)), and ANR-10-LABX-0041,TULIP,Towards a Unified theory of biotic Interactions: the roLe of environmental(2010)
- Subjects
0106 biological sciences ,Evolution ,plant-plant interactions ,Adaptation, Biological ,Arabidopsis ,Context (language use) ,Biology ,580 Plants (Botany) ,010603 evolutionary biology ,01 natural sciences ,03 medical and health sciences ,1311 Genetics ,Behavior and Systematics ,Interaction network ,1312 Molecular Biology ,Genetics ,Arabidopsis thaliana ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,10211 Zurich-Basel Plant Science Center ,Molecular Biology ,Ecology, Evolution, Behavior and Systematics ,Ecosystem ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,Local adaptation ,2. Zero hunger ,Abiotic component ,0303 health sciences ,[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,Community ,Ecology ,fungi ,food and beverages ,Plant community ,15. Life on land ,biology.organism_classification ,10121 Department of Systematic and Evolutionary Botany ,1105 Ecology, Evolution, Behavior and Systematics ,Evolutionary biology ,Genome-Environment Association ,France ,Adaptation ,Genome, Plant ,local adaptation ,community ecology - Abstract
Associate Editor: Stephen Wright; International audience; Despite the importance of plant-plant interactions on plant community dynamics and crop yield, our understanding of the adaptive genetics underlying these interactions is still limited and deserves to be investigated in the context of complex and diffuse interactions occurring in plant assemblages. Here, based on 145 natural populations of Arabidopsis thaliana located in south-west of France and characterized for plant communities, we conducted a Genome-Environment Association analysis to finely map adaptive genomic regions of A. thaliana associated with plant community descriptors. To control for correlated abiotic environment effects, we also characterized the populations for a set of biologically meaningful climate and soil variables. A nonnegligible fraction of top single nucleotide polymorphisms was associated with both plant community descriptors and abiotic variables, highlighting the importance of considering the actual abiotic drivers of plant communities to disentangle genetic variants for biotic adaptation from genetic variants for abiotic adaptation. The adaptive loci associated with species abundance were highly dependent on the identity of the neighboring species suggesting a high degree of biotic specialization of A. thaliana to members of its plant interaction network. Moreover, the identification of adaptive loci associated with a-diversity and composition of plant communities supports the ability of A. thaliana to interact simultaneously with multiple plant neighbors, which in turn can help to understand the role of community-wide selection. Altogether, our study highlights that dissecting the genetic basis underlying plant-plant interactions at a regional scale while controlling for abiotic confounding factors can help understanding the adaptive mechanisms modulating natural plant assemblages.
- Published
- 2019
- Full Text
- View/download PDF
17. In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana
- Author
-
Léa Frachon, Carine Huard-Chauveau, Matthieu Barret, Claudia Bartoli, Sébastien Carrère, Baptiste Mayjonade, Dominique Roby, Catherine Zanchetta, Olivier Bouchez, Mylene Rigal, Fabrice Roux, Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Horticulture et Semences (IRHS), Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Génome et Transcriptome - Plateforme Génomique (GeT-PlaGe), Institut National de la Recherche Agronomique (INRA)-Plateforme Génome & Transcriptome (GET), Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Département de chirurgie, CRLCC Val d'Aurelle - Paul Lamarque, Region Midi-Pyrenees (CLIMARES project), LABEX TULIP : ANR-10-LABX-41, ANR-11-IDEX-0002-02, Metaprogramme MEM (INRA, Metabar programme), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Laboratoire des Interactions Plantes Micro organismes, Université Fédérale Toulouse Midi-Pyrénées, Centre INRA de Toulouse Midi-Pyrénées, Institut National de la Recherche Agronomique (INRA), GeT PlaGe, Genotoul, Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), and Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
0301 basic medicine ,0106 biological sciences ,In situ ,[SDV]Life Sciences [q-bio] ,Arabidopsis ,Biological pest control ,Context (language use) ,[SDV.BID]Life Sciences [q-bio]/Biodiversity ,Microbiology ,Plant Roots ,01 natural sciences ,Article ,03 medical and health sciences ,Arabidopsis thaliana ,Pathogen ,Ecology, Evolution, Behavior and Systematics ,ComputingMilieux_MISCELLANEOUS ,Plant Diseases ,030304 developmental biology ,0303 health sciences ,Microbial pathogenesis ,Bacteria ,biology ,Ecology ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,Microbiota ,Species diversity ,biology.organism_classification ,Plant Leaves ,030104 developmental biology ,Potential biomarkers ,Host invasion ,France ,Microbiota composition ,010606 plant biology & botany - Abstract
A current challenge in microbial pathogenesis is to identify biological control agents that may prevent and/or limit host invasion by microbial pathogens. In natura, hosts are often infected by multiple pathogens. However, most of the current studies have been performed under laboratory controlled conditions and by taking into account the interaction between a single commensal species and a single pathogenic species. The next step is therefore to explore the relationships between host-microbial communities (microbiota) and microbial members with potential pathogenic behavior (pathobiota) in a realistic ecological context. In the present study, we investigated such relationships within root and leaf associated bacterial communities of 163 ecologically contrasted Arabidopsis thaliana populations sampled across two seasons in South-West of France. In agreement with the theory of the invasion paradox, we observed a significant humped-back relationship between microbiota and pathobiota α-diversity that was robust between both seasons and plant organs. In most populations, we also observed a strong dynamics of microbiota composition between seasons. Accordingly, the potential pathobiota composition was explained by combinations of season-specific microbiota OTUs. This result suggests that the potential biomarkers controlling pathogen’s invasion are highly dynamic.
- Published
- 2018
- Full Text
- View/download PDF
18. Whole-genome landscape of Medicago truncatula symbiotic genes
- Author
-
David Latrasse, Christine Lelandais-Brière, William Marande, Hélène Bergès, Frédéric Debellé, Stéphane Muños, Julia Buitink, Sébastien Carrère, Andreas Niebel, Mohamed Zouine, Pascal Gamas, Jonathan Kreplak, Moussa Benhamed, Olivier Bouchez, Sandra Moreau, Marie-Françoise Jardinaud, Stéphane Cauet, Thomas Blein, Jérôme Gouzy, Carine Satgé, Erika Sallet, Yann Pecrix, Céline Lopez-Roques, Margot Zahm, Baptiste Mayjonade, Aurélie Bérard, Florian Frugier, S. Evan Staton, Martin Crespi, Abdelhafid Bendahmane, Céline Chantry-Darmon, Magali Perez, Laboratoire des interactions plantes micro-organismes (LIPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), University of British Columbia, Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Agroécologie [Dijon], Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC), Centre National de Ressources Génomiques Végétales (CNRGV), Institut National de la Recherche Agronomique (INRA), GeT PlaGe, Genotoul, Etude du Polymorphisme des Génomes Végétaux (EPGV), Institut de Recherche en Horticulture et Semences (IRHS), Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, ANR grants EPISYM (grant no. ANR-15-CE20-0002), NODCCAAT (no. ANR-15-CE20-0012), REGULEG (no. ANR-15-CE20-0001), the ‘Laboratoire d’Excellence (LABEX)’ TULIP (no. ANR-10-LABX-41), the LABEX Saclay Plant Sciences (SPS, no. ANR-10-LABX-40) and the European Research Council (no. ERC-SEXYPARTH), and we made use of data previously generated in the ANR SYMbiMICS (ANR-08-GENO-106) and the INRA SPE EPINOD projects. The sequencing platform was supported by France Génomique National infrastructure (grant no. ANR-10-INBS-09) and by the GET-PACBIO programme (Programme opérationnel FEDER-FSE MIDI-PYRENEES ET GARONNE 2014-2020)., Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Interactions plantes-microorganismes et santé végétale, Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Département de chirurgie, CRLCC Val d'Aurelle - Paul Lamarque, Génomique et Biotechnologie des Fruits (GBF), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Génome et Transcriptome - Plateforme Génomique (GeT-PlaGe), Institut National de la Recherche Agronomique (INRA)-Plateforme Génome & Transcriptome (GET), Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire de Génétique Cellulaire (LGC), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Toulouse (ENVT), INRA - Mathématiques et Informatique Appliquées (Unité MIAJ), Université d'Angers (UA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), ANR-15-CE20-0002,EPISYM,Régulations épigénétiques dans le développement de nodules symbiotiques racinaires chez les légumineuses(2015), ANR-15-CE20-0012,NODCCAAT,Comprendre le mode d'action du facteur de transcription NF-YA1 spécifique de l'intearction symbiotique rhizobium-légumineuses chez Medicago truncatula(2015), ANR-15-CE20-0001,REGULEG,Identification des régulateurs participant à la plasticité d'adaptation des graines de légumineuses aux changements environnementaux(2015), ANR-11-IDEX-0002,UNITI,Université Fédérale de Toulouse(2011), ANR-10-LABX-0044,CEMAM,Center of Excellence in Multifunctional Architectured Materials(2010), ANR-08-GENM-0015,SYMbiMICS,Dissection moléculaire de l'interaction symbiotique rhizobium-légumineuse : une approche combinée de micro-dissection laser et de séquençage massif d?ESTs(2008), ANR-10-INBS-0009,France-Génomique,Organisation et montée en puissance d'une Infrastructure Nationale de Génomique(2010), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA)-Université d'Angers (UA), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, AgroParisTech-Institut National de la Recherche Agronomique (INRA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université d'Angers (UA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse (ENSAT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Toulouse-Institut National Polytechnique (Toulouse) (Toulouse INP), Laboratoire des Interactions Plantes Micro organismes, Université Fédérale Toulouse Midi-Pyrénées, Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA), UR Etude du Polymorphisme des Génomes végétaux, Centre National de Génotypage (CNG), Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université d'Évry-Val-d'Essonne (UEVE)-Institut National de la Recherche Agronomique (INRA), and Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,0301 basic medicine ,Transposable element ,[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] ,RNA, Untranslated ,[SDV]Life Sciences [q-bio] ,Symbiose ,Sequence assembly ,Genomics ,Plant Science ,Computational biology ,01 natural sciences ,Genome ,DNA sequencing ,Epigenesis, Genetic ,F30 - Génétique et amélioration des plantes ,03 medical and health sciences ,Genome-wide analysis of gene expression ,Gene Expression Regulation, Plant ,Medicago truncatula ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Symbiosis ,Gene ,ComputingMilieux_MISCELLANEOUS ,Plant Proteins ,Rhizobial symbiosis ,Whole genome sequencing ,Symbiote ,Génome ,biology ,phytogénétique ,DNA Methylation ,biology.organism_classification ,030104 developmental biology ,RNA, Plant ,Multigene Family ,Next-generation sequencing ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Root Nodules, Plant ,Genome, Plant ,010606 plant biology & botany - Abstract
This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession PSQE00000000.; Advances in deciphering the functional architecture of eukaryotic genomes have been facilitated by recent breakthroughs in sequencing technologies, enabling a more comprehensive representation of genes and repeat elements in genome sequence assemblies, as well as more sensitive and tissue-specific analyses of gene expression. Here we show that PacBio sequencing has led to a substantially improved genome assembly of Medicago truncatula A17, a legume model species notable for endosymbiosis studies1, and has enabled the identification of genome rearrangements between genotypes at a near-base-pair resolution. Annotation of the new M. truncatula genome sequence has allowed for a thorough analysis of transposable elements and their dynamics, as well as the identification of new players involved in symbiotic nodule development, in particular 1,037 upregulated long non-coding RNAs (lncRNAs). We have also discovered that a substantial proportion (~35% and 38%, respectively) of the genes upregulated in nodules or expressed in the nodule differentiation zone colocalize in genomic clusters (270 and 211, respectively), here termed symbiotic islands. These islands contain numerous expressed lncRNA genes and display differentially both DNA methylation and histone marks. Epigenetic regulations and lncRNAs are therefore attractive candidate elements for the orchestration of symbiotic gene expression in the M. truncatula genome.
- Published
- 2018
- Full Text
- View/download PDF
19. Transcriptomic data of leaves from eight sunflower lines and their sixteen hybrids under water deficit
- Author
-
Clément Carré, Brigitte Mangin, Harold Duruflé, Simon de Givry, Nicolas Blanchet, Baptiste Mayjonade, Nicolas B. Langlade, Ludovic Legrand, Stéphane Muños, Louise Gody, Lise Pomiès, Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-11-BTBR-0005,SUNRISE,Ressources génétiques de tournesol pour l'amélioration de la stabilité de production d'huile sous c(2011), and ANR-11-IDEX-0002,UNITI,Université Fédérale de Toulouse(2011)
- Subjects
0106 biological sciences ,abiotic stress ,Heterosis ,[SDV]Life Sciences [q-bio] ,Stress hydrique ,lcsh:TP670-699 ,01 natural sciences ,Biochemistry ,03 medical and health sciences ,Inbred strain ,Helianthus annuus ,Helianthus ,030304 developmental biology ,Hybrid ,2. Zero hunger ,stress abiotique ,0303 health sciences ,Genetic diversity ,biology ,Abiotic stress ,drought stress ,fungi ,food and beverages ,15. Life on land ,biology.organism_classification ,Sunflower ,phenotyping platform ,plateforme de phénotypage ,Horticulture ,lcsh:Oils, fats, and waxes ,Agronomy and Crop Science ,010606 plant biology & botany ,Food Science - Abstract
This article describes how the transcriptomic data were produced on sunflower plants subjected to water deficit. Twenty-four sunflower (Helianthus annuus) genotypes were selected to represent genetic diversity within cultivated sunflower and included both inbred lines and their hybrids. Drought stress was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen. Here, we provide transcriptomic data from sunflower leaves. These data differentiate both plant water status and the different genotypes. They constitute a valuable resource to the community to study adaptation of crops to drought and the transcriptomic basis of heterosis.; Données transcriptomiques de feuilles de huit lignées de tournesol et de leurs 16 hybrides soumis à un stress hydrique. Cet article décrit la production de données transcriptomiques sur des plantes de tournesol soumises à un stress hydrique. Vingt-quatre génotypes de tournesol (Helianthus annuus) ont été sélectionnés pour représenter la diversité génétique parmi le tournesol cultivé et comprennent à la fois des lignées et leurs hybrides. Le stress hydrique a été appliqué sur des plantes en pots au stade végétatif grâce à la plateforme de phénotypage haut-débit Heliaphen. Ici, nous mettons à disposition les données transcritomiques de feuilles de ces plantes. Les données permettent de différencier à la fois le statut hydrique et les différents génotypes. Elles constituent une ressource importante pour la communauté pour étudier l'adaptation des plantes à la sécheresse et les bases de l'hétérosis au niveau transcriptomique.
- Published
- 2020
- Full Text
- View/download PDF
20. A biomarker based on gene expression indicates plant water status in controlled and natural environments
- Author
-
Philippe Burger, Marie-Claude Boniface, Nicolas Blanchet, Pierre Maury, D. Varès, Fety Andrianasolo Nambinina, Gwenaëlle Marchand, Nicolas B. Langlade, Baptiste Mayjonade, Patrick Vincourt, Philippe Debaeke, and Pierre Casadebaig
- Subjects
2. Zero hunger ,0106 biological sciences ,Abiotic component ,Physiology ,fungi ,food and beverages ,Greenhouse ,04 agricultural and veterinary sciences ,Plant Science ,15. Life on land ,Biology ,01 natural sciences ,Sunflower ,6. Clean water ,Biomarker (cell) ,Transcriptome ,Agronomy ,Soil water ,Helianthus annuus ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Stage (hydrology) ,010606 plant biology & botany - Abstract
Plant or soil water status are required in many scientific fields to understand plant responses to drought. Because the transcriptomic response to abiotic conditions, such as water deficit, reflects plant water status, genomic tools could be used to develop a new type of molecular biomarker. Using the sunflower (Helianthus annuus L.) as a model species to study the transcriptomic response to water deficit both in greenhouse and field conditions, we specifically identified three genes that showed an expression pattern highly correlated to plant water status as estimated by the pre-dawn leaf water potential, fraction of transpirable soil water, soil water content or fraction of total soil water in controlled conditions. We developed a generalized linear model to estimate these classical water status indicators from the expression levels of the three selected genes under controlled conditions. This estimation was independent of the four tested genotypes and the stage (pre- or post-flowering) of the plant. We further validated this gene expression biomarker under field conditions for four genotypes in three different trials, over a large range of water status, and we were able to correct their expression values for a large diurnal sampling period.
- Published
- 2013
- Full Text
- View/download PDF
21. Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association
- Author
-
Brigitte, Mangin, Pierre, Casadebaig, Eléna, Cadic, Nicolas, Blanchet, Marie-Claude, Boniface, Sébastien, Carrère, Jérôme, Gouzy, Ludovic, Legrand, Baptiste, Mayjonade, Nicolas, Pouilly, Thierry, André, Marie, Coque, Joël, Piquemal, Marion, Laporte, Patrick, Vincourt, Stéphane, Muños, and Nicolas B, Langlade
- Subjects
Cold Temperature ,Crops, Agricultural ,Hot Temperature ,Stress, Physiological ,Quantitative Trait Loci ,Chromosome Mapping ,Plant Oils ,Environment ,Models, Theoretical ,Genes, Plant ,Polymorphism, Single Nucleotide ,Genome-Wide Association Study - Abstract
Understanding the genetic basis of phenotypic plasticity is crucial for predicting and managing climate change effects on wild plants and crops. Here, we combined crop modelling and quantitative genetics to study the genetic control of oil yield plasticity for multiple abiotic stresses in sunflower. First, we developed stress indicators to characterize 14 environments for three abiotic stresses (cold, drought and nitrogen) using the SUNFLO crop model and phenotypic variations of three commercial varieties. The computed plant stress indicators better explain yield variation than descriptors at the climatic or crop levels. In those environments, we observed oil yield of 317 sunflower hybrids and regressed it with three selected stress indicators. The slopes of cold stress norm reaction were used as plasticity phenotypes in the following genome-wide association study. Among the 65 534 tested Single Nucleotide Polymorphisms (SNPs), we identified nine quantitative trait loci controlling oil yield plasticity to cold stress. Associated single nucleotide polymorphisms are localized in genes previously shown to be involved in cold stress responses: oligopeptide transporters, lipid transfer protein, cystatin, alternative oxidase or root development. This novel approach opens new perspectives to identify genomic regions involved in genotype-by-environment interaction of a complex traits to multiple stresses in realistic natural or agronomical conditions.
- Published
- 2016
22. A biomarker based on gene expression indicates plant water status in controlled and natural environments
- Author
-
Gwenaëlle, Marchand, Baptiste, Mayjonade, Didier, Varès, Nicolas, Blanchet, Marie-Claude, Boniface, Pierre, Maury, Fety, Nambinina Andrianasolo, Fety Andrianasolo, Nambinina, Philippe, Burger, Philippe, Debaeke, Pierre, Casadebaig, Patrick, Vincourt, and Nicolas B, Langlade
- Subjects
Dehydration ,Genotype ,Gene Expression Profiling ,Reproducibility of Results ,Water ,Plant Transpiration ,Environment ,Genes, Plant ,Circadian Rhythm ,Droughts ,Kinetics ,Soil ,Gene Expression Regulation, Plant ,Linear Models ,Helianthus ,Biomarkers ,Genetic Association Studies - Abstract
Plant or soil water status is required in many scientific fields to understand plant responses to drought. Because the transcriptomic response to abiotic conditions, such as water deficit, reflects plant water status, genomic tools could be used to develop a new type of molecular biomarker. Using the sunflower (Helianthus annuus L.) as a model species to study the transcriptomic response to water deficit both in greenhouse and field conditions, we specifically identified three genes that showed an expression pattern highly correlated to plant water status as estimated by the pre-dawn leaf water potential, fraction of transpirable soil water, soil water content or fraction of total soil water in controlled conditions. We developed a generalized linear model to estimate these classical water status indicators from the expression levels of the three selected genes under controlled conditions. This estimation was independent of the four tested genotypes and the stage (pre- or post-flowering) of the plant. We further validated this gene expression biomarker under field conditions for four genotypes in three different trials, over a large range of water status, and we were able to correct their expression values for a large diurnal sampling period.
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.