1. Multi-objective Bayesian optimization for Likelihood-Free inference in sequential sampling models of decision making
- Author
-
Chen, David, Li, Xinwei, Kim, Eui-Jin, Bansal, Prateek, and Nott, David
- Subjects
Statistics - Methodology ,Statistics - Applications - Abstract
Joint modeling of different data sources in decision-making processes is crucial for understanding decision dynamics in consumer behavior models. Sequential Sampling Models (SSMs), grounded in neuro-cognitive principles, provide a systematic approach to combining information from multi-source data, such as those based on response times and choice outcomes. However, parameter estimation of SSMs is challenging due to the complexity of joint likelihood functions. Likelihood-Free inference (LFI) approaches enable Bayesian inference in complex models with intractable likelihoods, like SSMs, and only require the ability to simulate synthetic data from the model. Extending a popular approach to simulation efficient LFI for single-source data, we propose Multi-objective Bayesian Optimization for Likelihood-Free Inference (MOBOLFI) to estimate the parameters of SSMs calibrated using multi-source data. MOBOLFI models a multi-dimensional discrepancy between observed and simulated data, using a discrepancy for each data source. Multi-objective Bayesian Optimization is then used to ensure simulation efficient approximation of the SSM likelihood. The use of a multivariate discrepancy allows for approximations to individual data source likelihoods in addition to the joint likelihood, enabling both the detection of conflicting information and a deeper understanding of the importance of different data sources in estimating individual SSM parameters. We illustrate the advantages of our approach in comparison with the use of a single discrepancy in a simple synthetic data example and an SSM example with real-world data assessing preferences of ride-hailing drivers in Singapore to rent electric vehicles. Although we focus on applications to SSMs, our approach applies to the Likelihood-Free calibration of other models using multi-source data., Comment: 42 pages, 17 figures
- Published
- 2024