1. Salt-responsive gut commensal modulates TH17 axis and disease
- Author
-
Wilck, Nicola, Matus, Mariana G., Kearney, Sean M., Olesen, Scott W., Forslund, Kristoffer, Bartolomaeus, Hendrik, Haase, Stefanie, Mhler, Anja, Balogh, Andrs, Mark, Lajos, Vvedenskaya, Olga, Kleiner, Friedrich H., Tsvetkov, Dmitry, Klug, Lars, Costea, Paul I., Sunagawa, Shinichi, Maier, Lisa, Rakova, Natalia, Schatz, Valentin, Neubert, Patrick, Frtzer, Christian, Krannich, Alexander, Gollasch, Maik, Grohme, Diana A., Crte-Real, Beatriz F., Gerlach, Roman G., Basic, Marijana, Typas, Athanasios, Wu, Chuan, Titze, Jens M., Jantsch, Jonathan, Boschmann, Michael, Dechend, Ralf, Kleinewietfeld, Markus, Kempa, Stefan, Bork, Peer, Linker, Ralf A., Alm, Eric J., and Mller, Dominik N.
- Subjects
Salt (Food) -- Health aspects ,Microbiota (Symbiotic organisms) -- Physiological aspects ,T cells -- Physiological aspects ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (T[sub.H]17) cells, which can also contribute to hypertension. Induction of T[sub.H]17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating T[sub.H]17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased T[sub.H]17 cells and increased blood pressure. Our results connect high salt intake to the gutimmune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions., Author(s): Nicola Wilck [1, 2, 3, 4, 5]; Mariana G. Matus [6, 7]; Sean M. Kearney [6]; Scott W. Olesen [6]; Kristoffer Forslund [8]; Hendrik Bartolomaeus [1, 2, 3, 4]; [...]
- Published
- 2017
- Full Text
- View/download PDF