1. Self-stabilizing repeated balls-into-bins
- Author
-
Emanuele Natale, Gustavo Posta, Francesco Pasquale, Andrea E. F. Clementi, Luca Becchetti, Centre National de la Recherche Scientifique (CNRS), Combinatorics, Optimization and Algorithms for Telecommunications (COATI), COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], and Università degli Studi di Roma Tor Vergata [Roma]
- Subjects
FOS: Computer and information sciences ,Computer Networks and Communications ,Self-stabilizing systems ,Self-stabilization ,0102 computer and information sciences ,02 engineering and technology ,01 natural sciences ,Bin ,Balls into bins ,Markov chains ,Parallel resource assignment ,Theoretical Computer Science ,Hardware and Architecture ,Computational Theory and Mathematics ,Combinatorics ,Balls into bins Markov chains ,0202 electrical engineering, electronic engineering, information engineering ,Analysis of Algorithmsand ,Problem Complexity ,Theory ,Algorithms ,Computer communication networks ,Time complexity ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,High probability ,Markov chain ,Settore INF/01 - Informatica ,Complete graph ,020206 networking & telecommunications ,Binary logarithm ,Settore MAT/06 - Probabilita' e Statistica Matematica ,Computer Science - Distributed, Parallel, and Cluster Computing ,010201 computation theory & mathematics ,Bounded function ,Theory of computation ,Ball (bearing) ,Distributed, Parallel, and Cluster Computing (cs.DC) ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Algorithm - Abstract
We study the following synchronous process that we call repeated balls-into-bins. The process is started by assigning n balls to n bins in an arbitrary way. Then, in every subsequent round, one ball is chosen according to some fixed strategy (random, FIFO, etc) from each non-empty bin, and re-assigned to one of the n bins uniformly at random. This process corresponds to a non-reversible Markov chain and our aim is to study its self-stabilization properties with respect to the maximum(bin) load and some related performance measures. We define a configuration (i.e., a state) legitimate if its maximum load is O(log n). We first prove that, starting from any legitimate configuration, the process will only take on legitimate configurations over a period of length bounded by any polynomial in n, with high probability (w.h.p.). Further we prove that, starting from any configuration, the process converges to a legitimate configuration in linear time, w.h.p. This implies that the process is self-stabilizing w.h.p. and, moreover, that every ball traverses all bins in O(n log2n) rounds, w.h.p. The latter result can also be interpreted as an almost tight bound on the cover time for the problem of parallel resource assignment in the complete graph.
- Published
- 2019
- Full Text
- View/download PDF