1. Quantitative studies on biological water oxidation: a novel mechanism of T cells and antibodies.
- Author
-
Trobaugh DW, Balcavage WX, Hughes EF, Waite LR, and Waite GN
- Subjects
- Antibodies immunology, Cell Membrane immunology, Computer Simulation, Humans, Hydrogen Peroxide immunology, Jurkat Cells, Oxidation-Reduction, Signal Transduction physiology, T-Lymphocytes immunology, Antibodies metabolism, Body Water metabolism, Cell Membrane metabolism, Hydrogen Peroxide metabolism, Models, Biological, T-Lymphocytes metabolism, Water metabolism
- Abstract
Prior studies show that purified T cell receptors (TCRs) and antibodies catalyze the oxidation of water to H2O2 in the presence of singlet oxygen, but the comparative efficiencies of TCRs and antibodies in this process have not been reported. Since H2O2 has been shown to activate TCRs and selectively regulate redox sensitive TCR signaling pathways, it is important to understand the physiological significance of these recently uncovered processes. This new information might be used to develop new therapeutic tools for immune and inflammatory diseases. In this paper, we present data showing that under equivalent conditions Jurkat T cell membranes produce H2O2 at a rate of 457 pM/min/mg protein/muW/cm2 while IgG antibodies produce H2O2 at a rate of 192 pM/min/mg protein/muW/cm2. Taking into account the number of catalytic sites in a milligram of T cell membranes and IgGs, we calculate that TCRs catalyze H2O2 production at a specific rate that is about 10(6) times greater than the rate of IgGs. Based on these observations and calculations, we conclude that the comparatively high rate of H2O2 production by TCRs makes it more likely that this is a physiologically relevant process than the H2O2 production by IgGs. In addition, the catalytic rate for H2O2 production by TCRs is comparable to the rates of other physiologically important processes, such as catalysis by enzymes. This suggests that singlet oxygen-dependent, TCR mediated, H2O2 production is likely to be physiologically important, perhaps as H2O2 being a small molecule regulator of TCR signal transduction or a modulator of T cell gene transcription.
- Published
- 2006