484 results on '"BERGAUD A"'
Search Results
2. Hollow ring-like flexible electrode architecture enabling subcellular multi-directional neural interfacing
- Author
-
Vajrala, Venkata Suresh, Elkhoury, Kamil, Pautot, Sophie, Bergaud, Christian, and Maziz, Ali
- Published
- 2023
- Full Text
- View/download PDF
3. Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer
- Author
-
Cointe, Clement, Laborde, Adrian, Nowak, Lionel G., Arvanitis, Dina N., Bourrier, David, Bergaud, Christian, and Maziz, Ali
- Published
- 2022
- Full Text
- View/download PDF
4. Progress in conducting polymers for biointerfacing and biorecognition applications
- Author
-
Maziz, Ali, Özgür, Erdoğan, Bergaud, Christian, and Uzun, Lokman
- Published
- 2021
- Full Text
- View/download PDF
5. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity.
- Author
-
Kistamás, Kornél, Lamberto, Federica, Vaiciuleviciute, Raminta, Leal, Filipa, Muenthaisong, Suchitra, Marte, Luis, Subías-Beltrán, Paula, Alaburda, Aidas, Arvanitis, Dina N., Zana, Melinda, Costa, Pedro F., Bernotiene, Eiva, Bergaud, Christian, and Dinnyés, András
- Subjects
INDUCED pluripotent stem cells ,TOXICITY testing ,CARDIOVASCULAR diseases ,CARDIOTOXICITY ,ANIMAL models in research - Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing
- Author
-
Saunier, Valentin, Flahaut, Emmanuel, Blatché, Marie-Charline, Bergaud, Christian, and Maziz, Ali
- Published
- 2020
- Full Text
- View/download PDF
7. Recording local field potential and neuronal activity with tetrodes in epileptic patients
- Author
-
Despouy, Elodie, Curot, Jonathan, Reddy, Leila, Nowak, Lionel G., Deudon, Martin, Sol, Jean-Christophe, Lotterie, Jean-Albert, Denuelle, Marie, Maziz, Ali, Bergaud, Christian, Thorpe, Simon J., Valton, Luc, and Barbeau, Emmanuel J.
- Published
- 2020
- Full Text
- View/download PDF
8. HiPSC-derived cardiomyocyte cultivation and measurement of electrophysiological properties on gelatine/glucose/polypyrrole scaffold
- Author
-
Vaiciuleviciute, R, primary, Alaburda, A, additional, Shelest, A, additional, Elkhoury, K, additional, Maziz, A, additional, Bergaud, C, additional, Schubert, M, additional, Guan, K, additional, Uzieliene, I, additional, and Bernotiene, E, additional
- Published
- 2024
- Full Text
- View/download PDF
9. Tixagevimab-cilgavimab (AZD7442) for the treatment of patients hospitalized with COVID-19 (DisCoVeRy): A phase 3, randomized, double-blind, placebo-controlled trial
- Author
-
Hites, Maya, primary, Massonnaud, Clément R., additional, Lapique, Eva Larranaga, additional, Belhadi, Drifa, additional, Jamard, Simon, additional, Goehringer, François, additional, Danion, François, additional, Reignier, Jean, additional, de Castro, Nathalie, additional, Garot, Denis, additional, Lacombe, Karine, additional, Tolsma, Violaine, additional, Faure, Emmanuel, additional, Malvy, Denis, additional, Staub, Thérèse, additional, Courjon, Johan, additional, Cazenave-Roblot, France, additional, Dyrhol Riise, Anne Ma, additional, Leturnier, Paul, additional, Martin-Blondel, Guillaume, additional, Roger, Claire, additional, Akinosoglou, Karolina, additional, Moing, Vincent Le, additional, Piroth, Lionel, additional, Sellier, Pierre, additional, Lescure, Xavier, additional, Trøseid, Marius, additional, Clevenbergh, Philippe, additional, Dalgard, Olav, additional, Gallien, Sébastien, additional, Gousseff, Marie, additional, Loubet, Paul, additional, Vardon-Bounes, Fanny, additional, Visée, Clotilde, additional, Belkhir, Leila, additional, Botelho-Nevers, Élisabeth, additional, Cabié, André, additional, Kotanidou, Anastasia, additional, Lanternier, Fanny, additional, Rouveix-Nordon, Elisabeth, additional, Silva, Susana, additional, Thiery, Guillaume, additional, Poignard, Pascal, additional, Carcelain, Guislaine, additional, Diallo, Alpha, additional, Mercier, Noémie, additional, Terzic, Vida, additional, Bouscambert-Duchamp, Maude, additional, Gaymard, Alexandre, additional, Trabaud, Mary-Anne, additional, Destras, Grégory, additional, Josset, Laurence, additional, Billard, Nicolas, additional, Han, Thi-Hong-Lien, additional, Guedj, Jérémie, additional, Couffin-Cadiergues, Sandrine, additional, Dechanet, Aline, additional, Delmas, Christelle, additional, Esperou, Hélène, additional, Fougerou-Leurent, Claire, additional, Mestre, Soizic Le, additional, Métois, Anabelle, additional, Noret, Marion, additional, Bally, Isabelle, additional, Dergan-Dylon, Sebastián, additional, Tubiana, Sarah, additional, Kalif, Ouifiya, additional, Bergaud, Nathalie, additional, Leveau, Benjamin, additional, Eustace, Joe, additional, Greil, Richard, additional, Hajdu, Edit, additional, Halanova, Monika, additional, Paiva, Jose-Artur, additional, Piekarska, Anna, additional, Rodriguez Baño, Jesus, additional, Tonby, Kristian, additional, Trojánek, Milan, additional, Tsiodras, Sotirios, additional, Unal, Serhat, additional, Burdet, Charles, additional, Costagliola, Dominique, additional, Yazdanpanah, Yazdan, additional, Peiffer-Smadja, Nathan, additional, Mentré, France, additional, and Ader, Florence, additional
- Published
- 2024
- Full Text
- View/download PDF
10. Unprecedented switching endurance affords for high-resolution surface temperature mapping using a spin-crossover film
- Author
-
Karl Ridier, Alin-Ciprian Bas, Yuteng Zhang, Lucie Routaboul, Lionel Salmon, Gábor Molnár, Christian Bergaud, and Azzedine Bousseksou
- Subjects
Science - Abstract
Developing novel thermometry techniques for nanoscale temperature measurements are vital for realizing efficient thermal management of nanoscale devices. Here, the authors report thermally stable spin-crossover material-based nanothermometers for high-resolution surface temperature mapping.
- Published
- 2020
- Full Text
- View/download PDF
11. Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing
- Author
-
Venkata Suresh Vajrala, Valentin Saunier, Lionel G. Nowak, Emmanuel Flahaut, Christian Bergaud, and Ali Maziz
- Subjects
PEDOT-Carbon ,carbon nanofibers ,porous composite ,flexible neural interfaces ,electrophysiological recording ,neural stimulation ,Biotechnology ,TP248.13-248.65 - Abstract
In this study, we report a flexible implantable 4-channel microelectrode probe coated with highly porous and robust nanocomposite of poly (3,4-ethylenedioxythiophene) (PEDOT) and carbon nanofiber (CNF) as a solid doping template for high-performance in vivo neuronal recording and stimulation. A simple yet well-controlled deposition strategy was developed via in situ electrochemical polymerization technique to create a porous network of PEDOT and CNFs on a flexible 4-channel gold microelectrode probe. Different morphological and electrochemical characterizations showed that they exhibit remarkable and superior electrochemical properties, yielding microelectrodes combining high surface area, low impedance (16.8 ± 2 MΩ µm2 at 1 kHz) and elevated charge injection capabilities (7.6 ± 1.3 mC/cm2) that exceed those of pure and composite PEDOT layers. In addition, the PEDOT-CNF composite electrode exhibited extended biphasic charge cycle endurance and excellent performance under accelerated lifetime testing, resulting in a negligible physical delamination and/or degradation for long periods of electrical stimulation. In vitro testing on mouse brain slices showed that they can record spontaneous oscillatory field potentials as well as single-unit action potentials and allow to safely deliver electrical stimulation for evoking field potentials. The combined superior electrical properties, durability and 3D microstructure topology of the PEDOT-CNF composite electrodes demonstrate outstanding potential for developing future neural surface interfacing applications.
- Published
- 2021
- Full Text
- View/download PDF
12. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer‐based Approaches
- Author
-
Elkhoury, Kamil, primary, Kodeih, Sacha, additional, Enciso‐Martínez, Eduardo, additional, Maziz, Ali, additional, and Bergaud, Christian, additional
- Published
- 2024
- Full Text
- View/download PDF
13. Editorial: Short-Term Versus Long-Term Challenges in Functional Biomaterials Interfacing Living Systems: Two Sides of the Coin
- Author
-
Valentina Castagnola, Elisa Castagnola, Christian Bergaud, and Davide Ricci
- Subjects
functional biomaterial ,nanomedicine ,nanoparticle ,neural interface devices ,drug delivery & targeting ,Biotechnology ,TP248.13-248.65 - Published
- 2021
- Full Text
- View/download PDF
14. In vitro and in vivo biostability assessment of chronically-implanted Parylene C neural sensors
- Author
-
Lecomte, Aziliz, Degache, Amélie, Descamps, Emeline, Dahan, Lionel, and Bergaud, Christian
- Published
- 2017
- Full Text
- View/download PDF
15. Deep plasma etching of Parylene C patterns for biomedical applications
- Author
-
Lecomte, Aziliz, Lecestre, Aurélie, Bourrier, David, Blatché, Marie-Charline, Jalabert, Laurent, Descamps, Emeline, and Bergaud, Christian
- Published
- 2017
- Full Text
- View/download PDF
16. Highly Stable Low-Strain Flexible Sensors Based on Gold Nanoparticles/Silica Nanohelices
- Author
-
Amestoy, Antoine, primary, Rangra, Aarushee, additional, Mansard, Vincent, additional, Saya, Daisuke, additional, Pouget, Emilie, additional, Mazaleyrat, Estelle, additional, Severac, Fabrice, additional, Bergaud, Christian, additional, Oda, Reiko, additional, and Delville, Marie-Hélène, additional
- Published
- 2023
- Full Text
- View/download PDF
17. Microelectrodes from PEDOT-carbon nanofiber composite for high performance neural recording, stimulation and neurochemical sensing
- Author
-
Valentin Saunier, Emmanuel Flahaut, Marie-Charline Blatché, Christian Bergaud, and Ali Maziz
- Subjects
Electrochemical synthesis of PEDOT:CNF composite on microelectrodes arrays ,Science - Abstract
This present method describes a versatile approach for the electrochemical synthesis of a composite material of Poly (3,4-ethylenedioxythiophene) (PEDOT) and Carbon Nanofibers (CNFs) for neural interfaces and biosensing applications. Oxidized CNFs were utilized as dopants of PEDOT to prepare the composite coating through electrochemical deposition on microelectrodes arrays (MEA). The experimental results of this study showed that PEDOT:CNF microelectrodes exhibit remarkable electrochemical properties, combining low impedance, high surface area, high charge injection capability and reliable neurotransmitters monitoring using amperometric techniques. Taken together, these results suggest the great potential of PEDOT:CNF composite for developing next-generation multifunctional microelectrodes for applications in neural therapies. • A simple approach for the electrochemical synthesis of PEDOT:CNF composite material on microelectrodes for neural interfaces and neurochemical sensing. • PEDOT:CNF microelectrodes exhibit remarkable electrochemical properties, combining low impedance and high charge injection capabilities. • PEDOT:CNF microelectrodes allowed the reliable detection of neurotransmitters with improved sensitivity.
- Published
- 2020
- Full Text
- View/download PDF
18. Towards inkjet printable conducting polymer artificial muscles
- Author
-
Simaite, Aiva, Mesnilgrente, Fabien, Tondu, Bertrand, Souères, Philippe, and Bergaud, Christian
- Published
- 2016
- Full Text
- View/download PDF
19. Biostability Assessment of Flexible Parylene C-based Implantable Sensor in Wireless Chronic Neural Recording
- Author
-
Lecomte, A., Degache, A., Descamps, E., Dahan, L., and Bergaud, C.
- Published
- 2016
- Full Text
- View/download PDF
20. Application of Ambient Pressure-Driven Pumping Technology towards Ultra Low-Power Underwater Sensing
- Author
-
Fukuba, Tatsuhiro, primary, Fujiwara, Akira, additional, Nishiguchi, Katsuhiko, additional, Bergaud, Massami, additional, Grall, Simon, additional, Li, Shuo, additional, Kim, Soo-Hyeon, additional, and Clément, Nicolas, additional
- Published
- 2023
- Full Text
- View/download PDF
21. Joule heated metallic microwire devices for sub-microsecond T-jump experiments
- Author
-
Quintero, Carlos M., Kraieva, Olena, Carcenac, Franck, Lagrange, Denis, Yaremchuk, Nina A., Molnár, Gábor, and Bergaud, Christian
- Published
- 2015
- Full Text
- View/download PDF
22. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording
- Author
-
Castagnola, V., Descamps, E., Lecestre, A., Dahan, L., Remaud, J., Nowak, L.G., and Bergaud, C.
- Published
- 2015
- Full Text
- View/download PDF
23. Application of Ambient Pressure-Driven Pumping Technology towards Ultra Low-Power Underwater Sensing
- Author
-
Tatsuhiro Fukuba, Akira Fujiwara, Katsuhiko Nishiguchi, Massami Bergaud, Simon Grall, Shuo Li, Soo-Hyeon Kim, and Nicolas Clément
- Published
- 2023
- Full Text
- View/download PDF
24. Hollow Ring-Like Flexible Electrode Architecture Enabling Subcellular Multi-Directional Neural Interfacing
- Author
-
Vajrala, Venkata Suresh, primary, Elkhoury, Kamil, additional, Pautot, Sophie, additional, Bergaud, Christian, additional, and Maziz, Ali, additional
- Published
- 2023
- Full Text
- View/download PDF
25. Hollow ring-like flexible electrode architecture enabling subcellular multi-directional neural interfacing
- Author
-
Venkata Suresh Vajrala, Kamil Elkhoury, Sophie Pautot, Christian Bergaud, and Ali Maziz
- Subjects
Electrochemistry ,Biomedical Engineering ,Biophysics ,General Medicine ,Biotechnology - Abstract
Implantable neural microelectrodes for recording and stimulating neural activity are critical for research in neuroscience and clinical neuroprosthetic applications. A current need exists for developing new technological solutions for obtaining highly selective and stealthy electrodes that provide reliable neural integration and maintain neuronal viability. This paper reports a novel Hollow Ring-like type electrode to sense and/or stimulate neural activity from three-dimensional neural networks. Due to its unique design, the ring electrode architecture enables easy and reliable access of the electrode to three-dimensional neural networks with reduced pressure on the biological tissue, while providing improved electrical interface with cells. The Hollow ring electrodes, particularly when coated with the conducting polymer PEDOT:PSS, show improved electrical properties with extremely low impedance and high charge injection capabilities, when compared to traditional planar disk-type electrodes. The ring design also serves as an optimal architecture for cell gowth to create an optimal subcellular electrical– neural interface. In addition, we demonstrated that the quality of recorded neural signals by the ring electrode was higher than recordings from a traditional disk-type electrode in terms of signal-to-noise ratio (SNR) and burst detection from 3D neuronal networksin vitro. Overall, our results suggest the great potential of the hollow ring design for developing next-generation microelectrodes for applications in neural interfaces used in physiological studies and neuromodulation applications.
- Published
- 2022
- Full Text
- View/download PDF
26. Hollow ring-like flexible electrode architecture enabling subcellular multi-directional neural interfacing
- Author
-
Vajrala, Venkata Suresh, primary, Elkhoury, Kamil, additional, Pautot, Sophie, additional, Bergaud, Christian, additional, and Maziz, Ali, additional
- Published
- 2022
- Full Text
- View/download PDF
27. Scanning Thermal Microscopy with Fluorescent Nanoprobes
- Author
-
Aigouy, Lionel, Samson, Benjamin, Saїdi, Elika, Löw, Peter, Bergaud, Christian, Labéguerie-Egéa, Jessica, Lasbrugnas, Carine, Mortier, Michel, and Volz, Sebastian, editor
- Published
- 2009
- Full Text
- View/download PDF
28. Molecular Probes for Thermometry in Microfluidic Devices
- Author
-
Gosse, Charlie, Bergaud, Christian, Löw, Peter, and Volz, Sebastian, editor
- Published
- 2009
- Full Text
- View/download PDF
29. Ionic Electrochemical Actuators
- Author
-
Maziz, A., primary, Simaite, A., additional, and Bergaud, C., additional
- Published
- 2017
- Full Text
- View/download PDF
30. Design and fabrication of arrays of nanoelectromechanical resonators for parallel detection of biomolecular interactions.
- Author
-
Christian Bergaud, Emeline Cocheteau, Matthieu Guirardel, Liviu Nicu, and Benoit Belier
- Published
- 2001
- Full Text
- View/download PDF
31. Formation of ultra-shallow p+/n junctions using BF2 implantation for the fabrication of improved piezoresistive cantilevers
- Author
-
Cocheteau, E., Bergaud, C., Belier, B., Bary, L., Plana, R., and Obermeier, Ernst, editor
- Published
- 2001
- Full Text
- View/download PDF
32. Flexible and Hollow Micro Ring Electrode Arrays for Multi-Directional Monitoring of 3D Neuronal Networks
- Author
-
Suresh Vajrala, Venkata, Eddarir, Asma, Pautot, Sophie, Bergaud, Christian, Maziz, Ali, Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Équipe Microsystèmes électromécaniques (LAAS-MEMS), and Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
- Subjects
[SPI]Engineering Sciences [physics] - Abstract
Three-dimensional (3D) cell culture based in vitro models shown great promise and able to replicate partially the development and complexity of in vivo nerve tissue. The functional characterization of 3D cell cultures is challenging. Because, most of the in vitro neural interfacing technologies are developed for 2D cell cultures, where it limits the access to the networks within the cultures. Hence, high-performance electrophysiological platforms that allow seamless integration with soft and stable tissue system, and multi-directional bio interfacing capabilities for long term are required.In this context, we report for the first time the fabrication of ‘Stargate’ look alike flexible and hollow micro-ring electrode array (SG MEA) with hole at the centre (40-μm to 150-μm diameter). The SG MEA was microfabricated on a 20-μm thick layer of flexible and biocompatible parylene C configured with 4 to 6 electrode sites. All gold electrode rings were coated with the conducting polymer poly(3,4-ethylenedioxythio-phene):poly(styrene-sulfonate) (PEDOT:PSS) to lower the impedance (5-8 kΩ) and obtain a better signal-to-noise ratio during extracellular recordings. The hollow ring shape of SG electrode architectures, with geometrical surface area of 289 μm2 to 1299 μm2 were designed specifically in such a way that it offers more freedom to the internal dynamics of cell cultures and multidirectional sensing of neuron activities within the 3D neuronal network, from both front and back-end of the SG MEA.
- Published
- 2022
33. HP26: Electrophysiological properties of electrical brain stimulations and their impact on neuronal activity during stereoelectroencephalography in epilepsy
- Author
-
Calvel, A., primary, Barbeau, E., additional, Sol, J.C., additional, Lotterie, J.A., additional, Guines, K., additional, Denuelle, M., additional, Bergaud, C., additional, Ali, M., additional, Valton, L., additional, and Curot, J., additional
- Published
- 2022
- Full Text
- View/download PDF
34. Digital self-calibration method for MEMS sensors.
- Author
-
éric Colinet, Jérôme Juillard, Liviu Nicu, and Christian Bergaud
- Published
- 2005
- Full Text
- View/download PDF
35. A Top-Down Fabrication Approach For Delivering Implantable and Ultrathin Flexible Brain Probes
- Author
-
Clement Cointe, Asma Eddarir, Dina N Arvanitis, Christian Bergaud, Ali Maziz, Équipe Microsystèmes électromécaniques (LAAS-MEMS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
[SDV.BIO]Life Sciences [q-bio]/Biotechnology - Abstract
International audience; For long-term performance, chronically implanted brain probes need to be further reduced in size with a low mechanical mismatch to meet that of the surrounding neural tissue. However, the fabrication of these complaint devices has brought up insertion issues due to the lack of rigidity that brings additional complications in assembling and surgery. To address this challenge, this paper reports a novel and versatile batch fabrication approach to deliver ultra-thin and flexible penetrating probes utilizing biodegradable and programmable sacrificial layers. The innovative and yet robust batch fabrication technology allows complete design freedom of the neural probe in terms of materials, size, shape and stiffness. These results provide a novel technological solution for implanting flexible and ultrathin devices, which possesses great potential for brain research.
- Published
- 2022
- Full Text
- View/download PDF
36. A Top-Down Fabrication Approach For Delivering Implantable and Ultrathin Flexible Brain Probes
- Author
-
Cointe, Clement, primary, Eddarir, Asma, additional, Arvanitis, Dina N, additional, Bergaud, Christian, additional, and Maziz, Ali, additional
- Published
- 2022
- Full Text
- View/download PDF
37. Scalable Batch Fabrication of Ultrathin Flexible Neural Probes using Bioresorbable Silk Layer
- Author
-
David Bourrier, Clement Cointe, Ali Maziz, Adrian Laborde, Christian Bergaud, Lionel G. Nowak, Équipe Microsystèmes électromécaniques (LAAS-MEMS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Service Techniques et Équipements Appliqués à la Microélectronique (LAAS-TEAM), Centre de recherche cerveau et cognition (CERCO), Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Flexibility (engineering) ,Computer science ,Brain research ,Nanotechnology ,02 engineering and technology ,Brain tissue ,021001 nanoscience & nanotechnology ,03 medical and health sciences ,chemistry.chemical_compound ,[SPI]Engineering Sciences [physics] ,0302 clinical medicine ,SILK ,Parylene ,chemistry ,Scalability ,Batch fabrication ,0210 nano-technology ,Layer (electronics) ,030217 neurology & neurosurgery - Abstract
Flexible deep brain probes have been the focus of many research works and aims at achieving better compliance with the surrounding brain tissue while maintaining minimal rejection. Strategies have been explored to find the best way to implant a flexible probe in the brain, while maintaining its flexibility once positioned in the cortex. Here, we present a novel and versatile scalable batch fabrication approach to deliver ultra-thin and flexible penetrating neural probe consisting of a silk-parylene bilayer. The biodegradable silk layer provides a temporary and programmable stiffener to ensure ease of insertion of the ultrathin parylene-based flexible devices. The innovative and yet robust batch fabrication technology allows complete design freedom of the neural probe in terms of materials, size, shape and thickness. These results provide a novel technological solution for implanting ultra-flexible and ultrathin devices, which possesses great potential for brain research.
- Published
- 2021
38. Progress in conducting polymers for biointerfacing and biorecognition applications
- Author
-
Ali Maziz, Erdoğan Özgür, Christian Bergaud, Lokman Uzun, Équipe Microsystèmes électromécaniques (LAAS-MEMS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Hacettepe University = Hacettepe Üniversitesi, Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), and Université de Toulouse (UT)
- Subjects
Conductive polymers ,Materials science ,QA71-90 ,Biocompatibility ,Mechanotransduction ,[SDV]Life Sciences [q-bio] ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Instruments and machines ,[SPI]Engineering Sciences [physics] ,Computer Science (miscellaneous) ,Tissue engineering ,Electrical and Electronic Engineering ,Instrumentation ,Conductive polymer ,Bioelectronics ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Molecularly imprinted polymers ,Surface modification ,0210 nano-technology ,Neural interface ,Biosensor ,Electronic materials - Abstract
International audience; Conducting polymers are an exciting class of organic electronic materials, which have attracted an increasing interest in the fields of bioelectronics and their biomedical applications. Their unique features such as mixed ionic-electronic conductivity, good biocompatibility, as well as mechanical softness make them favored candidates for an effective conduit between the worlds of electronics and biology. In addition, the facile synthesis, simple functionalization, and ability to electronically control a range of physical and chemical properties of these materials has enabled considerable development for biorecognition and biosensors devices. In this review, we have turned our attention to recent progress in the tailoring of the conducting polymers functionalities, focusing especially on neural interfaces, molecularly imprinted conducting polymers for biorecognition and bioactive scaffolds for mechanotransduction in living cells.
- Published
- 2021
- Full Text
- View/download PDF
39. Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing
- Author
-
Ali Maziz, Valentin Saunier, Lionel G. Nowak, Christian Bergaud, Emmanuel Flahaut, Venkata Suresh Vajrala, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), This project was financially supported by the CNRS ('Centre National de la Recherche Scientifique') and the ANR ('Agence Nationale pour la Recherche', project 3D-Brain (ANR-19-CE19-0002-01).The technological realisations and associated research works were 486 partly supported by the French RENATECH network., ANR-19-CE19-0002,3-DBrain,Développement d'électrodes implantables multidimensionnelles pour la détection électrochimique de biomarqueurs des troubles du cerveau(2019), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Centre de recherche cerveau et cognition (CERCO UMR5549), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Équipe Microsystèmes électromécaniques (LAAS-MEMS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
- Subjects
porous composite ,electrophysiological recording ,Histology ,Materials science ,Matériaux ,Composite number ,Biomedical Engineering ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,03 medical and health sciences ,0302 clinical medicine ,Carbon nanofibers ,PEDOT:PSS ,Electrophysiologicalrecording ,neural stimulation ,Original Research ,Nanocomposite ,Porous composite ,Flexible neural interfaces ,business.industry ,Carbon nanofiber ,Delamination ,Bioengineering and Biotechnology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Microstructure ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Microelectrode ,Electrophysiological recording ,Electrode ,carbon nanofibers ,Optoelectronics ,PEDOT-Carbon ,flexible neural interfaces ,Neural stimulation ,0210 nano-technology ,business ,TP248.13-248.65 ,030217 neurology & neurosurgery ,Biotechnology - Abstract
In this study, we report a flexible implantable 4-channel microelectrode probe coated with highly porous and robust nanocomposite of poly (3,4-ethylenedioxythiophene) (PEDOT) and carbon nanofiber (CNF) as a solid doping template for high-performance in vivo neuronal recording and stimulation. A simple yet well-controlled deposition strategy was developed via in situ electrochemical polymerization technique to create a porous network of PEDOT and CNFs on a flexible 4-channel gold microelectrode probe. Different morphological and electrochemical characterizations showed that they exhibit remarkable and superior electrochemical properties, yielding microelectrodes combining high surface area, low impedance (16.8 ± 2 MΩ µm2 at 1 kHz) and elevated charge injection capabilities (7.6 ± 1.3 mC/cm2) that exceed those of pure and composite PEDOT layers. In addition, the PEDOT-CNF composite electrode exhibited extended biphasic charge cycle endurance and excellent performance under accelerated lifetime testing, resulting in a negligible physical delamination and/or degradation for long periods of electrical stimulation. In vitro testing on mouse brain slices showed that they can record spontaneous oscillatory field potentials as well as single-unit action potentials and allow to safely deliver electrical stimulation for evoking field potentials. The combined superior electrical properties, durability and 3D microstructure topology of the PEDOT-CNF composite electrodes demonstrate outstanding potential for developing future neural surface interfacing applications.
- Published
- 2021
- Full Text
- View/download PDF
40. Chapter 15. Thermometry in Micro and Nanofluidics
- Author
-
Bergaud, C., primary
- Published
- 2015
- Full Text
- View/download PDF
41. Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing
- Author
-
Vajrala, Venkata Suresh, primary, Saunier, Valentin, additional, Nowak, Lionel G., additional, Flahaut, Emmanuel, additional, Bergaud, Christian, additional, and Maziz, Ali, additional
- Published
- 2021
- Full Text
- View/download PDF
42. Carbon Nanofiber/PEDOT Based Macro-Porous Composite for High Performance Multifunctional Neural Microelectrode
- Author
-
Vajrala, Venkata suresh, primary, Saunier, Valentin, additional, Nowak, Lionel, additional, Flahaut, Emmanuel, additional, Bergaud, Christian, additional, and Maziz, Ali, additional
- Published
- 2021
- Full Text
- View/download PDF
43. Contact force control of piezoresistive cantilevers with in-plane nanotips for femtoliter droplet deposition
- Author
-
Saya, Daisuke, Leïchlé, Thierry, Pourciel, Jean-Bernard, Mathieu, Fabrice, Bergaud, Christian, and Nicu, Liviu
- Published
- 2008
- Full Text
- View/download PDF
44. Assembly of CdSe/ZnS nanocrystals on microwires and nanowires for temperature sensing
- Author
-
Löw, Peter, Le Pioufle, Bruno, Kim, Beomjoon, and Bergaud, Christian
- Published
- 2008
- Full Text
- View/download PDF
45. Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer
- Author
-
Cointe, Clement, Laborde, Adrian, Nowak, Lionel, Arvanitis, Dina, Bourrier, David, Bergaud, Christian, Maziz, Ali, Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Centre de recherche cerveau et cognition (CERCO), Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Équipe Microsystèmes électromécaniques (LAAS-MEMS), Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse Capitole (UT Capitole), Service Techniques et Équipements Appliqués à la Microélectronique (LAAS-TEAM), Centre de recherche cerveau et cognition (CERCO UMR5549), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), ANR-19-CE19-0002,3-DBrain,Développement d'électrodes implantables multidimensionnelles pour la détection électrochimique de biomarqueurs des troubles du cerveau(2019), ANR-15-CE19-0006,NeuroMeddle,Développement d'implants Cérébraux Stables sur le Long Terme(2015), Maziz, Ali, Développement d'électrodes implantables multidimensionnelles pour la détection électrochimique de biomarqueurs des troubles du cerveau - - 3-DBrain2019 - ANR-19-CE19-0002 - AAPG2019 - VALID, Développement d'implants Cérébraux Stables sur le Long Terme - - NeuroMeddle2015 - ANR-15-CE19-0006 - AAPG2015 - VALID, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
[SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,Materials Science (miscellaneous) ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials ,Condensed Matter Physics ,Industrial and Manufacturing Engineering ,Atomic and Molecular Physics, and Optics - Abstract
Flexible intracerebral probes for neural recording and electrical stimulation have been the focus of many research works to achieve better compliance with the surrounding tissue while minimizing rejection. Strategies have been explored to find the best way to insert flexible probes into the brain while maintaining their flexibility once positioned. Here, we present a novel and versatile scalable batch fabrication approach to deliver ultrathin and flexible probes consisting of a silk-parylene bilayer. The biodegradable silk layer, whose degradation time is programmable, provides a temporary and programmable stiffener to allow the insertion of ultrathin parylene-based flexible devices. Our innovative and robust batch fabrication technology allows complete freedom over probe design in terms of materials, size, shape, and thickness. We demonstrate successful ex vivo insertion of the probe with acute high-fidelity recordings of epileptic seizures in field potentials as well as single-unit action potentials in mouse brain slices. Our novel technological solution for implanting ultraflexible devices in the brain while minimizing rejection risks shows high potential for use in both brain research and clinical therapies.
- Published
- 2021
- Full Text
- View/download PDF
46. Carbon Nanofiber/PEDOT Based Macro-porous Composite For High Performance Multifunctional Neural Microelectrode
- Author
-
Venkata Suresh Vajrala, Christian Bergaud, Ali Maziz, Emmanuel Flahaut, Lionel G. Nowak, Valentin Saunier, Nowak, Lionel, Développement d'implants Cérébraux Stables sur le Long Terme - - NeuroMeddle2015 - ANR-15-CE19-0006 - AAPG2015 - VALID, Développement d'électrodes implantables multidimensionnelles pour la détection électrochimique de biomarqueurs des troubles du cerveau - - 3-DBrain2019 - ANR-19-CE19-0002 - AAPG2019 - VALID, Équipe Microsystèmes électromécaniques (LAAS-MEMS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), ANR-15-CE19-0006,NeuroMeddle,Développement d'implants Cérébraux Stables sur le Long Terme(2015), ANR-19-CE19-0002,3-DBrain,Développement d'électrodes implantables multidimensionnelles pour la détection électrochimique de biomarqueurs des troubles du cerveau(2019), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Centre de recherche cerveau et cognition (CERCO UMR5549), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Centre de recherche cerveau et cognition (CERCO), Institut des sciences du cerveau de Toulouse. (ISCT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Carbon nanofiber ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,05 social sciences ,[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,Nanotechnology ,Porous composite ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Microelectrode ,[SPI]Engineering Sciences [physics] ,PEDOT:PSS ,0502 economics and business ,Macro ,050207 economics ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Brain study methods mainly rely on neurochemical detection and electrophysiology, respectively studying the molecular dynamics and electrical activity in the brain cellular environment. The combined and simultaneous use of both study modes holds great promises for patients and researchers, in line with the treatment research but rely on multifunctional platforms (materials, devices, techniques...) still to be developed. Here, we present a new macro-porous composite material made up of PEDOT and carbon nanofibers (CNFs), coated on a flexible neural microelectrode array. A fully controlled one-shot electrodeposition strategy was developed to coat flexible Au-microelectrode surfaces with macro-porous CNF/PEDOT nanocomposite. The oxidized CNFs were used as a dopant and infused within the conductive PEDOT, electrochemically, in such a way that their excellent electronic, mechanical, chemical properties, and resulting combined performances can be exploited to yield better quality neural recordings, electrical stimulation and neurotransmitter detection.
- Published
- 2021
- Full Text
- View/download PDF
47. Editorial: Short-Term Versus Long-Term Challenges in Functional Biomaterials Interfacing Living Systems: Two Sides of the Coin
- Author
-
Castagnola, Valentina, primary, Castagnola, Elisa, additional, Bergaud, Christian, additional, and Ricci, Davide, additional
- Published
- 2021
- Full Text
- View/download PDF
48. Unprecedented switching endurance affords for high-resolution surface temperature mapping using a spin-crossover film
- Author
-
Azzedine Bousseksou, Christian Bergaud, Alin-Ciprian Bas, Lucie Routaboul, Gábor Molnár, Karl Ridier, Yuteng Zhang, Lionel Salmon, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Équipe Microsystèmes électromécaniques (LAAS-MEMS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), the European Commission - SPINSWITCH project (H2020-MSCA-RISE-2016, Grant Agreement No. 734322), and China Scholarship Council
- Subjects
Work (thermodynamics) ,Fabrication ,Materials science ,Science ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Temperature measurement ,Characterization and analytical techniques ,General Biochemistry, Genetics and Molecular Biology ,Article ,Spin crossover ,Thermal ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Thin film ,lcsh:Science ,Nanoscopic scale ,Multidisciplinary ,business.industry ,Resolution (electron density) ,General Chemistry ,021001 nanoscience & nanotechnology ,Sensors and biosensors ,0104 chemical sciences ,Optoelectronics ,lcsh:Q ,0210 nano-technology ,business - Abstract
Temperature measurement at the nanoscale is of paramount importance in the fields of nanoscience and nanotechnology, and calls for the development of versatile, high-resolution thermometry techniques. Here, the working principle and quantitative performance of a cost-effective nanothermometer are experimentally demonstrated, using a molecular spin-crossover thin film as a surface temperature sensor, probed optically. We evidence highly reliable thermometric performance (diffraction-limited sub-µm spatial, µs temporal and 1 °C thermal resolution), which stems to a large extent from the unprecedented quality of the vacuum-deposited thin films of the molecular complex [Fe(HB(1,2,4-triazol-1-yl)3)2] used in this work, in terms of fabrication and switching endurance (>107 thermal cycles in ambient air). As such, our results not only afford for a fully-fledged nanothermometry method, but set also a forthcoming stage in spin-crossover research, which has awaited, since the visionary ideas of Olivier Kahn in the 90’s, a real-world, technological application., Developing novel thermometry techniques for nanoscale temperature measurements are vital for realizing efficient thermal management of nanoscale devices. Here, the authors report thermally stable spin-crossover material-based nanothermometers for high-resolution surface temperature mapping.
- Published
- 2020
- Full Text
- View/download PDF
49. Microelectrodes from PEDOT-carbon nanofiber composite for high performance neural recording, stimulation and neurochemical sensing
- Author
-
Christian Bergaud, Marie-Charline Blatché, Valentin Saunier, Ali Maziz, Emmanuel Flahaut, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Équipe Microsystèmes électromécaniques (LAAS-MEMS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Service Instrumentation Conception Caractérisation (LAAS-I2C), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and ANR-19-CE19-0002,3-DBrain,Développement d'électrodes implantables multidimensionnelles pour la détection électrochimique de biomarqueurs des troubles du cerveau(2019)
- Subjects
Materials science ,CNF [PEDOT] ,Matériaux ,Clinical Biochemistry ,Composite number ,Nanotechnology ,010501 environmental sciences ,Electrochemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,03 medical and health sciences ,PEDOT:PSS ,Carbon nanofibers ,PEDOT:CNF ,Electrochemical sensing ,Electrochemical synthesis of PEDOT:CNF composite on microelectrodes arrays ,lcsh:Science ,030304 developmental biology ,0105 earth and related environmental sciences ,0303 health sciences ,Dopant ,Carbon nanofiber ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Method Article ,Amperometry ,Medical Laboratory Technology ,Microelectrode ,Electrical stimulation ,lcsh:Q ,Neural interfaces ,Biosensor ,Microelectrodes - Abstract
This present method describes a versatile approach for the electrochemical synthesis of a composite material of Poly (3,4-ethylenedioxythiophene) (PEDOT) and Carbon Nanofibers (CNFs) for neural interfaces and biosensing applications. Oxidized CNFs were utilized as dopants of PEDOT to prepare the composite coating through electrochemical deposition on microelectrodes arrays (MEA). The experimental results of this study showed that PEDOT:CNF microelectrodes exhibit remarkable electrochemical properties, combining low impedance, high surface area, high charge injection capability and reliable neurotransmitters monitoring using amperometric techniques. Taken together, these results suggest the great potential of PEDOT:CNF composite for developing next-generation multifunctional microelectrodes for applications in neural therapies.•A simple approach for the electrochemical synthesis of PEDOT:CNF composite material on microelectrodes for neural interfaces and neurochemical sensing.•PEDOT:CNF microelectrodes exhibit remarkable electrochemical properties, combining low impedance and high charge injection capabilities.•PEDOT:CNF microelectrodes allowed the reliable detection of neurotransmitters with improved sensitivity., Graphical abstract Image, graphical abstract
- Published
- 2020
- Full Text
- View/download PDF
50. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing
- Author
-
Ali Maziz, Emmanuel Flahaut, Valentin Saunier, Marie-Charline Blatché, Christian Bergaud, Équipe Microsystèmes électromécaniques (LAAS-MEMS), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Service Instrumentation Conception Caractérisation (LAAS-I2C), ANR-19-CE19-0002,3-DBrain,Développement d'électrodes implantables multidimensionnelles pour la détection électrochimique de biomarqueurs des troubles du cerveau(2019), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Polymers ,Matériaux ,[SDV]Life Sciences [q-bio] ,Composite number ,Biomedical Engineering ,Biophysics ,Nanofibers ,CNF -Microelectrodes [PEDOT] ,Nanotechnology ,02 engineering and technology ,Biosensing Techniques ,01 natural sciences ,Nanomaterials ,[SPI]Engineering Sciences [physics] ,PEDOT:PSS ,Carbon nanofibers ,PEDOT:CNF ,Electrochemical sensing ,Electrochemistry ,[CHIM]Chemical Sciences ,Carbon nanofiber ,010401 analytical chemistry ,General Medicine ,021001 nanoscience & nanotechnology ,Bridged Bicyclo Compounds, Heterocyclic ,Amperometry ,Carbon ,0104 chemical sciences ,Microelectrode ,Electrical stimulation ,Electrode ,0210 nano-technology ,Neural interfaces ,Biosensor ,Microelectrodes ,Biotechnology - Abstract
International audience; A clear need exists for novel nanostructured materials that are capable to meet the performance criteria of a number of neuronal therapies including neural recording, stimulation and sensing of bioactive molecules at the electrode-tissue interface. By combining Poly (3,4-ethylenedioxythiophene) (PEDOT), with Carbon Nanofibers (CNFs), we demonstrate a versatile approach for the synthesis of a novel composite material PEDOT:CNF with remarkable electrochemical properties, combining low impedance, high surface area, high charge injection capability and reliable neurotransmitters monitoring using amperometric techniques. The oxidized CNFs were utilized as dopants of PEDOT to prepare the composite coatings through electrochemical deposition on neural microelectrodes arrays (MEA). The PEDOT:CNF modified microelectrodes demonstrated the low specific impedance of 1.28 MΩ μm2 at 1 kHz and results in unrivalled charge injection limit of 10.03 mC/cm2 when compared to other reported organic electrode nanomaterials. Furthermore, amperometric detection performances were determined for the neurotransmitters dopamine and serotonin, exhibiting linear concentration range from 0.1 to 9 μM and from 0.06 to 9 μM respectively, high sensitivities (44.54 pA/nM.μm2 and 71.08 pA/nM.μm2, respectively) and low detection limits (0.045 μM and 0.056 μM, respectively). Cell viability was investigated on PEDOT:CNF coated microelectrodes to show that the composite material does not advocate any cytotoxicity. Taken together, these results suggest the great potential of PEDOT:CNF composite for developing next-generation multifunctional microelectrodes for applications in neural therapies.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.