1. Modélisation locale et régionale du régime thermique des rivières.
- Author
-
Souaissi, Zina and Souaissi, Zina
- Abstract
La température extrême de l’eau influence de nombreuses propriétés physiques, chimiques et biologiques des rivières. l ’ évaluation de l ’ Une prédiction précise de la température de l’eau est importante pour impact environnemental. Dans ce cadre, différents modèles ont été utilisés pour estimer les températures de l ’ linéaires simp eau à différentes échelles spatiales et temporelles, allant des méthodes les pour déterminer l’incertitude à des modèles sophistiqués non linéaires. Cependant, cette variable primordiale n’a pas été traitée dans un contexte probabiliste (ou fréquentiste). Donc, l’estimation des évènements extrêmes thermiques à l’aide des approc hes d’analyse fréquentielle locale (AFL) est importante. Lors de l’estimation des extrêmes thermiques, il est crucial de tenir compte de la forme de la distribution de fréquences considérée. Dans la première partie de la thèse , nous nous concentrons sur la sélection de la distribution de probabilité la plus appropriée des températures des rivières. Le critère d critère d ’ ’ information d ’ Akaike (AIC) et le information bayésien (BIC) sont utilisés pour évaluer la qualité de l distributions statis ’ ajustement des tiques. La validation des distributions candidates appropriées est également effectuée en utilisant l ’ approche de diagramme de rapport des L obtenus montrent que la distribution de Weibull (W2) moments (MRD). Les résultats est celle qui semble s’ajuster le données provenant des stations de haute altitude, tandis que les mieux aux séries d’extrêmes provenant des stations situées dans les régions de basse altitude sont bien adaptées avec la distribution normale (N). Ceci correspond au premier article. L a ’ couverture spatiale des données de température des cours d ’ eau est limitée dans de nombreuses régions du monde. Pour cette raison, une analyse fréquentielle régionale (AFR) permettant d estimer les extrêmes de température des rivières sur des sites non jau gés ou mal surveillés est nécessaire. En
- Published
- 2022