1. π−pinteractions at 205 GeV/c: Multiplicities of charged and neutral particles; production of neutral particles
- Author
-
D.M. Chew, F. R. Huson, F. C. Winkelmann, G. H. Trilling, W. M. Smart, George P Yost, Gerson Goldhaber, C. Pascaud, L. Stutte, A. D. Johnson, S. M. Pruss, W.R. Graves, S. Kahn, J. A. Kadyk, D. Bogert, R. Hanft, H. H. Bingham, W.B. Fretter, B.Y. Daugeras, and D. Ljung
- Subjects
Physics ,Particle physics ,Incident energy ,Multiplicity (mathematics) ,Hydrogen bubble ,Atomic physics ,Lambda ,Charged particle - Abstract
A study of 205-GeV/c ${\ensuremath{\pi}}^{\ensuremath{-}}p$ interactions has been made with a 48 800-picture exposure in the bare Fermilab 30-inch hydrogen bubble chamber. The average number of charged particles produced per inelastic interaction is 7.99\ifmmode\pm\else\textpm\fi{}0.06. The elastic cross section is 3.18\ifmmode\pm\else\textpm\fi{}0.13 mb and the total cross section is 24.19\ifmmode\pm\else\textpm\fi{}0.44 mb. The inclusive cross sections for neutral-particle production are: $\ensuremath{\sigma}(\ensuremath{\gamma})=171.3\ifmmode\pm\else\textpm\fi{}15.3$ mb, $\ensuremath{\sigma}({K}_{S}^{0})=3.64\ifmmode\pm\else\textpm\fi{}0.61$ mb ($xl0.3$), $\ensuremath{\sigma}(\ensuremath{\Lambda})=1.71\ifmmode\pm\else\textpm\fi{}0.34$ mb ($xl0.3$), and $\ensuremath{\sigma}(\overline{\ensuremath{\Lambda}})=0.59\ifmmode\pm\else\textpm\fi{}0.23$ mb ($xl0.1$). The average number of ${\ensuremath{\pi}}^{0}'\mathrm{s}$ produced per inelastic collision is consistent with a linear rise with the number of charged particles, and about equal to the number of produced ${\ensuremath{\pi}}^{\ensuremath{-}}$ or ${\ensuremath{\pi}}^{+}$. The average number of ${K}^{0}'\mathrm{s}$, $\ensuremath{\Lambda}'\mathrm{s}$, and $\overline{\ensuremath{\Lambda}}'\mathrm{s}$ is consistent with very little dependence on the number of charged particles. General characteristics of neutral-particle production are presented and compared with other experiments. For each topology the produced neutral energy is $\ensuremath{\sim}\frac{1}{3}$ of the incident energy.
- Published
- 1977
- Full Text
- View/download PDF