1. Quasielastic12C(e,e′p)reaction at high momentum transfer
- Author
-
D. J. Margaziotis, J. E. Wise, Shalev Gilad, H. Baghaei, R. W. Lourie, M. Epstein, Konrad A. Aniol, C. C. Chang, J. M. Finn, E. J. Winhold, B. H. Cottman, Larry Weinstein, William Bertozzi, J. Glickman, J. R. Calarco, P. E. Ulmer, V. A. Punjabi, C. E. Hyde-Wright, L. Ghedira, Nasser Kalantar-Nayestanaki, C. F. Perdrisat, P. Boberg, J. Morrison, D. Zhang, and S. Penn
- Subjects
Nuclear reaction ,Physics ,Nuclear and High Energy Physics ,Missing energy ,Valence (chemistry) ,Nuclear Theory ,Momentum transfer ,Omega ,High momentum ,Parallel kinematics ,Nuclear physics ,Inelastic electron scattering ,Atomic physics ,Nuclear Experiment - Abstract
We measured the ${}^{12}\mathrm{C}{(e,e}^{\ensuremath{'}}p)$ cross section as a function of missing energy in parallel kinematics for $(q,\ensuremath{\omega})=(970 \mathrm{MeV}/c, 330 \mathrm{MeV})$ and $(990 \mathrm{MeV}/c, 475 \mathrm{MeV}).$ At $\ensuremath{\omega}=475 \mathrm{MeV},$ at the maximum of the quasielastic peak, there is a large continuum ${(E}_{m}g50 \mathrm{MeV})$ cross section extending out to the deepest missing energy measured, amounting to almost 50% of the measured cross section. The ratio of data to distorted-wave impulse approximation (DWIA) calculation is 0.4 for both p and s shells. At $\ensuremath{\omega}=330 \mathrm{MeV},$ well below the maximum of the quasielastic peak, the continuum cross section is much smaller and the ratio of data to DWIA calculation is 0.85 for the p shell and 1.0 for the s shell. We infer that one or more mechanisms that increase with $\ensuremath{\omega}$ transform some of the single-nucleon knockouts into a multinucleon knockout, decreasing the valence knockout cross section and increasing the continuum cross section.
- Published
- 1999
- Full Text
- View/download PDF