9 results on '"B V Rackham"'
Search Results
2. Mass and density of the transiting hot and rocky super-EarthLHS 1478 b (TOI-1640 b)
- Author
-
M. G. Soto, G. Anglada-Escudé, S. Dreizler, K. Molaverdikhani, J. Kemmer, C. Rodríguez-López, J. Lillo-Box, E. Pallé, N. Espinoza, J. A. Caballero, A. Quirrenbach, I. Ribas, A. Reiners, N. Narita, T. Hirano, P. J. Amado, V. J. S. Béjar, P. Bluhm, C. J. Burke, D. A. Caldwell, D. Charbonneau, R. Cloutier, K. A. Collins, M. Cortés-Contreras, E. Girardin, P. Guerra, H. Harakawa, A. P. Hatzes, J. Irwin, J. M. Jenkins, E. Jensen, K. Kawauchi, T. Kotani, T. Kudo, M. Kunimoto, M. Kuzuhara, D. W. Latham, D. Montes, J. C. Morales, M. Mori, R. P. Nelson, M. Omiya, S. Pedraz, V. M. Passegger, B. V. Rackham, A. Rudat, J. E. Schlieder, P. Schöfer, A. Schweitzer, A. Selezneva, C. Stockdale, M. Tamura, T. Trifonov, R. Vanderspek, and D. Watanabe
- Subjects
Astronomy ,Astrophysics - Abstract
One of the main objectives of the Transiting Exoplanet Survey Satellite (TESS) mission is the discovery of small rocky planets around relatively bright nearby stars. Here, we report the discovery and characterization of the transiting super-Earth planet orbiting LHS 1478 (TOI-1640). The star is an inactive red dwarf (J∼9.6mag and spectral type m3 V) with mass and radius estimates of 0.20±0.01 M and 0.25±0.01R, respectively, and an effective temperature of 3381±54K. It was observed by TESS in four sectors. These data revealed a transit-like feature with a period of 1.949 days. We combined the TESS data with three ground-based transit measurements, 57 radial velocity (RV) measurements from CARMENES, and 13 RV measurements from IRD, determining that the signal is produced by a planet with a mass of 2.33+0.20−0.20M and a radius of 1.24+0.05−0.05R. The resulting bulk density of this planet is 6.67 g cm−3, which is consistent with a rocky planet with an Fe- and MgSiO3-dominated composition. Although the planet would be too hot to sustain liquid water on its surface (its equilibrium temperature is about ∼595 K, suggesting a Venus-like atmosphere), spectroscopic metrics based on the capabilities of the forthcomingJames WebbSpace Telescope and the fact that the host star is rather inactive indicate that this is one of the most favorable known rocky exoplanets for atmospheric characterization.
- Published
- 2021
- Full Text
- View/download PDF
3. A super-Earth and a mini-Neptune near the 2:1 MMR straddling the radius valley around the nearby mid-M dwarf TOI-2096
- Author
-
F. J. Pozuelos, M. Timmermans, B. V. Rackham, L. J. Garcia, A. J. Burgasser, S. R. Kane, M. N. Günther, K. G. Stassun, V. Van Grootel, M. Dévora-Pajares, R. Luque, B. Edwards, P. Niraula, N. Schanche, R. D. Wells, E. Ducrot, S. Howell, D. Sebastian, K. Barkaoui, W. Waalkes, C. Cadieux, R. Doyon, R. P. Boyle, J. Dietrich, A. Burdanov, L. Delrez, B.-O. Demory, J. de Wit, G. Dransfield, M. Gillon, Y. Gómez Maqueo Chew, M. J. Hooton, E. Jehin, C. A. Murray, P. P. Pedersen, D. Queloz, S. J. Thompson, A. H. M. J. Triaud, S. Zúñiga-Fernández, K. A. Collins, M. M Fausnaugh, C. Hedges, K. M. Hesse, J. M. Jenkins, M. Kunimoto, D. W. Latham, A. Shporer, E. B. Ting, G. Torres, P. Amado, J. R. Rodón, C. Rodríguez-López, J. C. Suárez, R. Alonso, Z. Benkhaldoun, Z. K. Berta-Thompson, P. Chinchilla, M. Ghachoui, M. A. Gómez-Muñoz, R. Rebolo, L. Sabin, U. Schroffenegger, E. Furlan, C. Gnilka, K. Lester, N. Scott, C. Aganze, R. Gerasimov, C. Hsu, C. Theissen, D. Apai, W. P. Chen, P. Gabor, T. Henning, and L. Mancini
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,stars ,TOI-2096 ,planets and satellites ,Settore FIS/05 ,FOS: Physical sciences ,Astronomy and Astrophysics ,techniques ,photometric ,low-mass ,individual ,Space and Planetary Science ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Several planetary formation models have been proposed to explain the observed abundance and variety of compositions of super-Earths and mini-Neptunes. In this context, multitransiting systems orbiting low-mass stars whose planets are close to the radius valley are benchmark systems, which help to elucidate which formation model dominates. We report the discovery, validation, and initial characterization of one such system, TOI-2096, composed of a super-Earth and a mini-Neptune hosted by a mid-type M dwarf located 48 pc away. We first characterized the host star by combining different methods. Then, we derived the planetary properties by modeling the photometric data from TESS and ground-based facilities. We used archival data, high-resolution imaging, and statistical validation to support our planetary interpretation. We found that TOI-2096 corresponds to a dwarf star of spectral type M4. It harbors a super-Earth (R$\sim1.2 R_{\oplus}$) and a mini-Neptune (R$\sim1.90 R_{\oplus}$) in likely slightly eccentric orbits with orbital periods of 3.12 d and 6.39 d, respectively. These orbital periods are close to the first-order 2:1 mean-motion resonance (MMR), which may lead to measurable transit timing variations (TTVs). We computed the expected TTVs amplitude for each planet and found that they might be measurable with high-precision photometry delivering mid-transit times with accuracies of $\lesssim$2 min. Moreover, measuring the planetary masses via radial velocities (RVs) is also possible. Lastly, we found that these planets are among the best in their class to conduct atmospheric studies using the James Webb Space Telescope (JWST). The properties of this system make it a suitable candidate for further studies, particularly for mass determination using RVs and/or TTVs, decreasing the scarcity of systems that can be used to test planetary formation models around low-mass stars., 25 pages, 21 figures. Aceptted for publication in Astronomy & Astrophysics
- Published
- 2023
4. Precise near-infrared photometry, accounting for precipitable water vapour at SPECULOOS Southern Observatory
- Author
-
Peter P Pedersen, C A Murray, D Queloz, M Gillon, B O Demory, A H M J Triaud, J de Wit, L Delrez, G Dransfield, E Ducrot, L J Garcia, Y Gómez Maqueo Chew, M N Günther, E Jehin, J McCormac, P Niraula, F J Pozuelos, B V Rackham, N Schanche, D Sebastian, S J Thompson, M Timmermans, and R Wells
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The variability induced by precipitable water vapour (PWV) can heavily affect the accuracy of time-series photometric measurements gathered from the ground, especially in the near-infrared. We present here a novel method of modelling and mitigating this variability, as well as open-sourcing the developed tool -- Umbrella. In this study, we evaluate the extent to which the photometry in three common bandpasses (r', i', z'), and SPECULOOS' primary bandpass (I+z'), are photometrically affected by PWV variability. In this selection of bandpasses, the I+z' bandpass was found to be most sensitive to PWV variability, followed by z', i', and r'. The correction was evaluated on global light curves of nearby late M- and L-type stars observed by SPECULOOS' Southern Observatory (SSO) with the I+z' bandpass, using PWV measurements from the LHATPRO and local temperature/humidity sensors. A median reduction in RMS of 1.1% was observed for variability shorter than the expected transit duration for SSO's targets. On timescales longer than the expected transit duration, where long-term variability may be induced, a median reduction in RMS of 53.8% was observed for the same method of correction., Accepted for publication in MNRAS, 10 pages, 7 figures, 3 tables
- Published
- 2022
5. TOI-2257 b: A highly eccentric long-period sub-Neptune transiting a nearby M dwarf
- Author
-
N. Schanche, F. J. Pozuelos, M. N. Günther, R. D. Wells, A. J. Burgasser, P. Chinchilla, L. Delrez, E. Ducrot, L. J. Garcia, Y. Gómez Maqueo Chew, E. Jofré, B. V. Rackham, D. Sebastian, K. G. Stassun, D. Stern, M. Timmermans, K. Barkaoui, A. Belinski, Z. Benkhaldoun, W. Benz, A. Bieryla, F. Bouchy, A. Burdanov, D. Charbonneau, J. L. Christiansen, K. A. Collins, B.-O. Demory, M. Dévora-Pajares, J. de Wit, D. Dragomir, G. Dransfield, E. Furlan, M. Ghachoui, M. Gillon, C. Gnilka, M. A. Gómez-Muñoz, N. Guerrero, M. Harris, K. Heng, C. E. Henze, K. Hesse, S. B. Howell, E. Jehin, J. Jenkins, E. L. N. Jensen, M. Kunimoto, D. W. Latham, K. Lester, K. K. McLeod, I. Mireles, C. A. Murray, P. Niraula, P. P. Pedersen, D. Queloz, E. V. Quintana, G. Ricker, A. Rudat, L. Sabin, B. Safonov, U. Schroffenegger, N. Scott, S. Seager, I. Strakhov, A. H. M. J. Triaud, R. Vanderspek, M. Vezie, and J. Winn
- Subjects
010504 meteorology & atmospheric sciences ,530 Physics ,media_common.quotation_subject ,FOS: Physical sciences ,Orbital eccentricity ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,individual: TIC 198485881 [Stars] ,individual: TOI-2257 [Stars] ,Neptune ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Transit (astronomy) ,Eccentricity (behavior) ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,media_common ,QB ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,520 Astronomy ,4. Education ,photometric [Techniques] ,Astronomy and Astrophysics ,500 Science ,620 Engineering ,Orbital period ,Exoplanet ,Stars ,detection [Planets and satellites] ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
N.S., R.W. and B.-O.D. acknowledge support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). M.N.G. acknowledges support from MIT's Kavli Institute as a Juan Carlos Torres Fellow and from the European Space Agency (ESA) as an ESA Research Fellow. A.A.B., B.S.S.and I.A.S. acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780 (N13.1902.21.0039). L.D. is an F.R.S.-FNRS Postdoctoral Researcher. B.V.R. thanks the Heising-Simons Foundation for support. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. and E.J. acknowledges DGAPA for his postdoctoral fellowship. Y.G.M.C. acknowledges support from UNAM-DGAPA PAPIIT BG-101321. D.D. acknowledges support from the TESS Guest Investigator Program grant 80NSSC19K1727 and NASA Exoplanet Research Program grant 18-2XRP18_2-0136. We acknowledge support from the Centre for Space and Habitability (CSH) of the University of Bern. Part of this work received support from the National Centre for Competence in Research PlanetS, supported by the Swiss National Science Foundation (SNSF). Funding for the TESS mission is provided by NASA's Science Mission Directorate. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). This work is based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra de San Pedro Martir (OAN-SPM), Baja California, Mexico. We warmly thank the entire technical staff of the Observatorio Astronomico Nacional at San Pedro Martir in Mexico for their unfailing support to SAINT-EX operations, namely: E. Cadena, T. Calvario, E. Colorado, F. Diaz, A. Franco, B. Garcia, C. Guerrero, G. Guisa, F. Guillen, A. Landa, L. Figueroa, B. Hernandez, J. Herrera, E. Lopez, E. Lugo, B. Martinez, G. Melgoza, F. Montalvo, J.M. Nunez, J.L. Ochoa, I. Plauchu, F. Quiroz, H. Riesgo, H. Serrano, T. Verdugo, I. Zavala. The research leading to these results has received funding from the European Research Council (ERC) under the FP/2007-2013 ERC grant agreement nffi 336480, and under the European Union's Horizon 2020 research and innovation programme (grants agreements nffi 679030 and 803193/BEBOP); from an Actions de Recherche Concertee (ARC) grant, financed by the Wallonia-Brussels Federation, from the Balzan Prize Foundation, from the BEL-SPO/BRAIN2.0 research program (PORTAL project), from the Science and Technology Facilities Council (STFC; grant nffi ST/S00193X/1), and from F.R.S-FNRS (Research Project ID T010920F). This work was also partially supported by a grant from the Simons Foundation (PI: Queloz, grant number 327127), as well as by the MERAC foundation (PI: Triaud). PI: Gillon is F.R.S.-FNRS Senior Research Associate. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant PDR T.0120.21, with the participation of the Swiss National Science Fundation (SNF). M.G. and E.J. are F.R.S.-FNRS Senior Research Associate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). M.S.I.P. is funded by NSF. Some of the observations in the paper made use of the High-Resolution Imaging instrument(s) `Alopeke (and/or Zorro). `Alopeke (and/or Zorro) was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Data were reduced using a software pipeline originally written by Elliott Horch and Mark Everett. `Alopeke (and/or Zorro) was mounted on the Gemini North (and/or South) telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigacion y Desarrollo (Chile), Ministerio de Ciencia, Tecnologia e Innovacion (Argentina), Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research made use of exoplanet (Foreman-Mackey et al. 2021a,b) and its dependencies (Agol et al. 2020; Kumar et al. 2019; Astropy Collaboration 2013, 2018; Kipping 2013; Luger et al. 2019; Salvatier et al. 2016; Theano Development Team 2016). Additional use of software packages AstroImageJ (Collins et al. 2017) and TAPIR (Jensen 2013)., Context. Thanks to the relative ease of finding and characterizing small planets around M-dwarf stars, these objects have become cornerstones in the field of exoplanet studies. The current paucity of planets in long-period orbits around M dwarfs makes such objects particularly compelling as they provide clues about the formation and evolution of these systems. Aims. In this study we present the discovery of TOI-2257 b (TIC 198485881), a long-period (35 d) sub-Neptune orbiting an M3 star at 57.8 pc. Its transit depth is about 0.4%, large enough to be detected with medium-size, ground-based telescopes. The long transit duration suggests the planet is in a highly eccentric orbit (e similar to 0.5), which would make it the most eccentric planet known to be transiting an M-dwarf star. Methods. We combined TESS and ground-based data obtained with the 1.0-meter SAINT-EX, 0.60-meter TRAPPIST-North, and 1.2-meter FLWO telescopes to find a planetary size of 2.2 R-circle plus and an orbital period of 35.19 days. In addition, we make use of archival data, high-resolution imaging, and vetting packages to support our planetary interpretation. Results. With its long period and high eccentricity, TOI-2257 b falls into a novel slice of parameter space. Despite the planet's low equilibrium temperature (similar to 256 K), its host star's small size (R-* = 0.311 +/- 0.015) and relative infrared brightness (K-mag = 10.7) make it a suitable candidate for atmospheric exploration via transmission spectroscopy., Swiss National Science Foundation (SNSF), European Commission PP00P2-163967 PP00P2-190080, MIT's Kavli Institute, European Space Agency European Commission, Ministry of Science and Higher Education of the Russian Federation 075-15-2020-780 (N13.1902.21.0039), Heising-Simons Foundation, French Community of Belgium, DGAPA, Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) Universidad Nacional Autonoma de Mexico BG-101321, TESS Guest Investigator Program 80NSSC19K1727, NASA Exoplanet Research Program 18-2XRP18_2-0136, Centre for Space and Habitability (CSH) of the University of Bern, European Research Council (ERC) 336480, Actions de Recherche Concertee (ARC) grant - Wallonia-Brussels Federation, UK Research & Innovation (UKRI), Science & Technology Facilities Council (STFC), Science and Technology Development Fund (STDF) ST/S00193X/1, Fonds de la Recherche Scientifique - FNRS T010920F, Simons Foundation 327127, MERAC foundation, Fonds de la Recherche Scientifique - FNRS PDR T.0120.21, National Science Foundation (NSF), NASA Exoplanet Exploration Program NASA's Science Mission Directorate, European Research Council (ERC) 679030 803193/BEBOP, Balzan Prize Foundation BEL-SPO/BRAIN2.0 research program (PORTAL project)
- Published
- 2022
6. Two temperate super-Earths transiting a nearby late-type M dwarf
- Author
-
L. Delrez, C. A. Murray, F. J. Pozuelos, N. Narita, E. Ducrot, M. Timmermans, N. Watanabe, A. J. Burgasser, T. Hirano, B. V. Rackham, K. G. Stassun, V. Van Grootel, C. Aganze, M. Cointepas, S. Howell, L. Kaltenegger, P. Niraula, D. Sebastian, J. M. Almenara, K. Barkaoui, T. A. Baycroft, X. Bonfils, F. Bouchy, A. Burdanov, D. A. Caldwell, D. Charbonneau, D. R. Ciardi, K. A. Collins, T. Daylan, B.-O. Demory, J. de Wit, G. Dransfield, S. B. Fajardo-Acosta, M. Fausnaugh, A. Fukui, E. Furlan, L. J. Garcia, C. L. Gnilka, Y. Gómez Maqueo Chew, M. A. Gómez-Muñoz, M. N. Günther, H. Harakawa, K. Heng, M. J. Hooton, Y. Hori, M. Ikoma, E. Jehin, J. M. Jenkins, T. Kagetani, K. Kawauchi, T. Kimura, T. Kodama, T. Kotani, V. Krishnamurthy, T. Kudo, V. Kunovac, N. Kusakabe, D. W. Latham, C. Littlefield, J. McCormac, C. Melis, M. Mori, F. Murgas, E. Palle, P. P. Pedersen, D. Queloz, G. Ricker, L. Sabin, N. Schanche, U. Schroffenegger, S. Seager, B. Shiao, S. Sohy, M. R. Standing, M. Tamura, C. A. Theissen, S. J. Thompson, A. H. M. J. Triaud, R. Vanderspek, S. Vievard, R. D. Wells, J. N. Winn, Y. Zou, S. Zúñiga-Fernández, M. Gillon, Ministerio de Ciencia e Innovación (España), European Commission, European Research Council, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Stars: individual: SPECULOOS-2 ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Stars: individual: TOI-4306 ,530 Physics ,520 Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Planets and satellites: detection ,500 Science ,stars: individual: TIC 44898913 ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Stars: individual: LP 890-9 ,Techniques: photometric ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Full list of authors: Delrez, L.; Murray, C. A.; Pozuelos, F. J.; Narita, N.; Ducrot, E.; Timmermans, M.; Watanabe, N.; Burgasser, A. J.; Hirano, T.; Rackham, B., V; Stassun, K. G.; Van Grootel, V.; Aganze, C.; Cointepas, M.; Howell, S.; Kaltenegger, L.; Niraula, P.; Sebastian, D.; Almenara, J. M.; Barkaoui, K.; Baycroft, T. A.; Bonfils, X.; Bouchy, F.; Burdanov, A.; Caldwell, D. A.; Charbonneau, D.; Ciardi, D. R.; Collins, K. A.; Daylan, T.; Demory, B-O; Guenther, N.; de Wit, J.; Dransfield, G.; Fajardo-Acosta, S. B.; Fausnaugh, M.; Fukui, A.; Furlan, E.; Garcia, L. J.; Gnilka, C. L.; Chew, Y. Gomez Maqueo; Gomez-Munoz, M. A.; Harakawa, H.; Heng, K.; Hooton, M. J.; Hori, Y.; Ikoma, M.; Jehin, E.; Jenkins, J. M.; Kagetani, T.; Kawauchi, K.; Kimura, T.; Kodama, T.; Kotani, T.; Krishnamurthy, V; Kudo, T.; Kunovac, V; Kusakabe, N.; Latham, D. W.; Littlefield, C.; McCormac, J.; Melis, C.; Mori, M.; Murgas, F.; Palle, E.; Pedersen, P. P.; Queloz, D.; Ricker, G.; Sabin, L.; Schanche, N.; Schroffenegger, U.; Seager, S.; Shiao, B.; Sohy, S.; Standing, M. R.; Tamura, M.; Theissen, C. A.; Thompson, S. J.; Triaud, A. H. M. J.; Vanderspek, R.; Vievard, S.; Wells, R. D.; Winn, J. N.; Zou, Y.; Zuniga-Fernandez, S.; Gillon, M.--This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. In the age of JWST, temperate terrestrial exoplanets transiting nearby late-type M dwarfs provide unique opportunities for characterising their atmospheres, as well as searching for biosignature gases. In this context, the benchmark TRAPPIST-1 planetary system has garnered the interest of a broad scientific community. Aims. We report here the discovery and validation of two temperate super-Earths transiting LP 890-9 (TOI-4306, SPECULOOS-2), a relatively low-activity nearby (32 pc) M6V star. The inner planet, LP 890-9 b, was first detected by TESS (and identified as TOI-4306.01) based on four sectors of data. Intensive photometric monitoring of the system with the SPECULOOS Southern Observatory then led to the discovery of a second outer transiting planet, LP 890-9 c (also identified as SPECULOOS-2 c), previously undetected by TESS. The orbital period of this second planet was later confirmed by MuSCAT3 follow-up observations. Methods. We first inferred the properties of the host star by analyzing its Lick/Kast optical and IRTF/SpeX near-infrared spectra, as well as its broadband spectral energy distribution, and Gaia parallax. We then derived the properties of the two planets by modelling multi-colour transit photometry from TESS, SPECULOOS-South, MuSCAT3, ExTrA, TRAPPIST-South, and SAINT-EX. Archival imaging, Gemini-South/Zorro high-resolution imaging, and Subaru/IRD radial velocities also support our planetary interpretation. Results. With a mass of 0.118 ± 0.002 M⊙, a radius of 0.1556 ± 0.0086 R⊙, and an effective temperature of 2850 ± 75 K, LP 890-9 is the second-coolest star found to host planets, after TRAPPIST-1. The inner planet has an orbital period of 2.73 d, a radius of 1.320 −0.027+0.053 R⊕, and receives an incident stellar flux of 4.09 ± 0.12 S⊕. The outer planet has a similar size of 1.367 −0.039+0.055R⊕ and an orbital period of 8.46 d. With an incident stellar flux of 0.906 ± 0.026 S⊕, it is located within the conservative habitable zone, very close to its inner limit (runaway greenhouse). Although the masses of the two planets remain to be measured, we estimated their potential for atmospheric characterisation via transmission spectroscopy using a mass-radius relationship and found that, after the TRAPPIST-1 planets, LP 890-9 c is the second-most favourable habitable-zone terrestrial planet known so far (assuming for this comparison a similar atmosphere for all planets). Conclusions. The discovery of this remarkable system offers another rare opportunity to study temperate terrestrial planets around our smallest and coolest neighbours. © L. Delrez et al. 2022., Funding for the TESS mission is provided by NASA’s Science Mission Directorate. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). The research leading to these results has received funding from the European Research Council (ERC) under the FP/2007-2013 ERC grant agreement no 336480, and under the European Union’s Horizon 2020 research and innovation programme (grants agreements no 679030 & 803193/BEBOP); from an Action de Recherche Concertée (ARC) grant, financed by the Wallonia-Brussels Federation, from the Balzan Prize Foundation, from the BELSPO/BRAIN2.0 research program (PORTAL project), from the Science and Technology Facilities Council (STFC; grants no ST/S00193X/1, ST/00305/1, and ST/W000385/1), and from F.R.S-FNRS (Research Project ID T010920F). This work was also partially supported by a grant from the Simons Foundation (PI: Queloz, grant number 327127), as well as by the MERAC foundation (PI: Triaud). TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant PDR T.0120.21, with the participation of the Swiss National Science Fundation (SNF). This work is partly supported by MEXT/JSPS KAKENHI Grant Numbers JP15H02063, JP17H04574, JP18H05439, JP18H05442, JP19K14783, JP21H00035, JP21K13975, JP21K20376, JP22000005, Grant-in-Aid for JSPS Fellows Grant Number JP20J21872, JST CREST Grant Number JPMJCR1761, the Astrobiology Center of National Institutes of Natural Sciences (NINS) (Grant Numbers AB031010, AB031014), and Social welfare juridical person SHIYUKAI (chairman MASAYUKI KAWASHIMA). This paper is based on data collected at the Subaru Telescope, which is located atop Maunakea and operated by the National Astronomical Observatory of Japan (NAOJ). We wish to recognise and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. This paper is based on observations made with the MuSCAT3 instrument, developed by the Astrobiology Center and under financial supports by JSPS KAKENHI (JP18H05439) and JST PRESTO (JPMJPR1775), at Faulkes Telescope North on Maui, HI, operated by the Las Cumbres Observatory. Some of the observations in the paper made use of the High-Resolution Imaging instrument Zorro obtained under Gemini LLP Proposal Number: GN/S-2021A-LP-105. Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Zorro was mounted on the Gemini North (and/or South) telescope of the international Gemini Observatory, a program of NSF s OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). We acknowledge funding from the European Research Council under the ERC Grant Agreement n. 3 37591-ExTrA. This work has been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation. This work is based upon observations carried out at the Observatorio Astronómico Nacional at the Sierra de San Pedro Mártir (OAN-SPM), Baja California, México. We warmly thank the entire technical staff of the Observatorio Astronómico Nacional at San Pedro Mártir for their unfailing support to SAINT-EX operations. Research at Lick Observatory is partially supported by a generous gift from Google. L.D. is an F.R.S.-FNRS Postdoctoral Researcher. M.G. and E.J. are F.R.S.-FNRS Senior Research Associates. V.V.G. is an F.R.S.-FNRS Research Associate. B.V.R. thanks the Heising-Simons Foundation for support. Y.G.M.C. acknowledges support from UNAM-PAPIIT IG-101321. B.-O.D. acknowledges support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). M.N.G. acknowledges support from the European Space Agency (ESA) as an ESA Research Fellow. A.H.M.J.T acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 803193/BEBOP), from the MERAC foundation, and from the Science and Technology Facilities Council (STFC; grants no ST/S00193X/1, ST/00305/1, and ST/W000385/1). E.D. acknowledges support from the innovation and research Horizon 2020 program in the context of the Marie Sklodowska-Curie subvention 945298. V.K. acknowledges support from NSF award AST2009343. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T., With funding from the Spanish government through the Severo Ochoa Centre of Excellence accreditation SEV-2017-0709.
- Published
- 2022
7. HST/WFC3 transmission spectroscopy of the cold rocky planet TRAPPIST-1h
- Author
-
L. J. Garcia, S. E. Moran, B. V. Rackham, H. R. Wakeford, M. Gillon, J. de Wit, and N. K. Lewis
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Space and Planetary Science ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Aims. TRAPPIST-1 is a nearby ultra-cool dwarf star transited by seven rocky planets. We observed three transits of its outermost planet, TRAPPIST-1h, using the G141 grism of the Wide Field Camera 3 instrument aboard the Hubble Space Telescope to place constraints on its potentially cold atmosphere. Methods. In order to deal with the effect of stellar contamination, we model TRAPPIST-1 active regions as portions of a cooler and a hotter photosphere, and generate multi-temperature models that we compare to the out-of-transit spectrum of the star. Using the inferred spot parameters, we produce corrected transmission spectra for planet h under five transit configurations and compare these data to planetary atmospheric transmission models using the forward model CHIMERA. Results. Our analysis reveals that TRAPPIST-1h is unlikely to host an aerosol-free H/He-dominated atmosphere. While the current data precision limits the constraints we can put on the planetary atmosphere, we find that the likeliest scenario is that of a flat, featureless transmission spectrum in the WFC3/G141 bandpass due to a high mean molecular weight atmosphere (≥1000 × solar), no atmosphere, or an opaque aerosol layer, all in absence of stellar contamination. This work outlines the limitations of modeling active photospheric regions with theoretical stellar spectra, and those brought by our lack of knowledge of the photospheric structure of ultracool dwarf stars. Further characterization of the planetary atmosphere of TRAPPIST-1h would require higher precision measurements over wider wavelengths, which will be possible with the James Webb Space Telescope.
- Published
- 2022
8. SPECULOOS: Ultracool dwarf transit survey
- Author
-
D. Sebastian, M. Gillon, E. Ducrot, F. J. Pozuelos, L. J. Garcia, M. N. Günther, L. Delrez, D. Queloz, B. O. Demory, A. H. M. J. Triaud, A. Burgasser, J. de Wit, A. Burdanov, G. Dransfield, E. Jehin, J. McCormac, C. A. Murray, P. Niraula, P. P. Pedersen, B. V. Rackham, S. Sohy, S. Thompson, V. Van Grootel
- Published
- 2021
- Full Text
- View/download PDF
9. LBT transmission spectroscopy of HAT-P-12b
- Author
-
F. Yan, N. Espinoza, K. Molaverdikhani, Th. Henning, L. Mancini, M. Mallonn, B. V. Rackham, D. Apai, A. Jordán, P. Mollière, G. Chen, L. Carone, A. Reiners
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.