23 results on '"B, González-Gaya"'
Search Results
2. Occurrence of emerging contaminants in three river basins impacted by wastewater treatment plant effluents: Spatio-seasonal patterns and environmental risk assessment.
- Author
-
Beltrán de Heredia I, González-Gaya B, Zuloaga O, Garrido I, Acosta T, Etxebarria N, and Ruiz-Romera E
- Subjects
- Risk Assessment, Spain, Seasons, Rivers chemistry, Water Pollutants, Chemical analysis, Wastewater chemistry, Environmental Monitoring, Waste Disposal, Fluid
- Abstract
The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Multitarget and suspect-screening of antimicrobials in vegetables samples: Uptake experiments and identification of transformation products.
- Author
-
Vergara-Luis I, Jin M, Baez-Millán JC, González-Gaya B, Ijurco I, Lacuesta M, Olivares M, and Prieto A
- Subjects
- Humans, Chromatography, Liquid methods, Anti-Bacterial Agents, Soil, Chromatography, High Pressure Liquid methods, Tandem Mass Spectrometry methods, Vegetables chemistry
- Abstract
This work provided an accurate analytical method to perform a multitarget analysis of a variety of antimicrobials (AMs) including sulfonamides, tetracyclines, macrolides, fluoroquinolones and quinolones, one imidazole and one nitroimidazole, one triazole, one diaminopyridine and one derivative of Penicillium stoloniferum in vegetables. The analysis is performed using liquid-chromatography coupled to a low-resolution triple quadrupole mass spectrometer (UHPLC-MS/MS) to detect the target analytesor coupled to a high-resolution q-Orbitrap (HRMS) to monitor the formed transformation products (TPs). Both instruments were compared in terms of limits of quantification and matrix effect at the detection. The method was applied to determine the presence of AMs in organic and non-organic vegetables, where sulfadiazine and mycophenolic acid were detected. On the other hand, the transference of four AMs (trimethoprim, sulfamethazine, enrofloxacin, and chlortetracycline) from soils to lettuces was evaluated through controlled uptake experiments. The choice of AMs was based on the classification into different families, and on the fact that those AM families are the most frequently detected in the environment. In this case, each of the AMs with which the soils were contaminated were found in the exposed lettuces. Moreover, in both studies, specific TPs of the AMs were identified, posing the necessity of assessing their effects in relation to food and human safety., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. High microbiome and metabolome diversification in coexisting sponges with different bio-ecological traits.
- Author
-
Mazzella V, Dell'Anno A, Etxebarría N, González-Gaya B, Nuzzo G, Fontana A, and Núñez-Pons L
- Subjects
- Phylogeny, Biological Evolution, Metabolome, Microbiota, Cyanobacteria genetics
- Abstract
Marine Porifera host diverse microbial communities, which influence host metabolism and fitness. However, functional relationships between sponge microbiomes and metabolic signatures are poorly understood. We integrate microbiome characterization, metabolomics and microbial predicted functions of four coexisting Mediterranean sponges -Petrosia ficiformis, Chondrosia reniformis, Crambe crambe and Chondrilla nucula. Microscopy observations reveal anatomical differences in microbial densities. Microbiomes exhibit strong species-specific trends. C. crambe shares many rare amplicon sequence variants (ASV) with the surrounding seawater. This suggests important inputs of microbial diversity acquired by selective horizontal acquisition. Phylum Cyanobacteria is mainly represented in C. nucula and C. crambe. According to putative functions, the microbiome of P. ficiformis and C. reniformis are functionally heterotrophic, while C. crambe and C. nucula are autotrophic. The four species display distinct metabolic profiles at single compound level. However, at molecular class level they share a "core metabolome". Concurrently, we find global microbiome-metabolome association when considering all four sponge species. Within each species still, sets of microbe/metabolites are identified driving multi-omics congruence. Our findings suggest that diverse microbial players and metabolic profiles may promote niche diversification, but also, analogous phenotypic patterns of "symbiont evolutionary convergence" in sponge assemblages where holobionts co-exist in the same area., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
5. Comparison of conventional and dispersive solid phase extraction clean-up approaches for the simultaneous analysis of tetracyclines and sulfonamides in a variety of fresh vegetables.
- Author
-
Vergara-Luis I, Báez-Millán JC, Baciero I, González-Gaya B, Olivares M, Zuloaga O, and Prieto A
- Subjects
- Humans, Tetracyclines analysis, Anti-Bacterial Agents analysis, Sulfanilamide analysis, Lactuca, Onions, Solid Phase Extraction methods, Chromatography, High Pressure Liquid methods, Vegetables, Sulfonamides analysis
- Abstract
The extensive use of antibiotics in agriculture has led to the occurrence of residual drugs in different vegetables frequently consumed by humans. This could pose a potential threat to human health, not only because of the possible effects after ingestion but also because the transmission of antibiotic-resistant genes could occur. In this work, two accurate sample preparation procedures were developed and validated for the simultaneous analysis of sulfonamides (SAs) and tetracyclines (TCs) in four of the most widely consumed vegetables (lettuce, onion, tomato, and carrot) in Europe. The evaluated protocols were based on QuECHERS for extraction and subsequent clean-up by SPE (solid phase extraction) or dispersive SPE. Parameters affecting both extraction and clean-up were carefully evaluated and selected for accuracy of results and minimal matrix effect. Overall, apparent recoveries were above 70% for most of the target analytes with both analytical procedures, and adequate precision (RSD<30%) was obtained for all the matrices. The procedural limits of quantification (LOQ
PRO ) values for SPE clean-up remained below 4.4 μg kg-1 for TCs in all vegetables except for chlortetracycline (CTC) in lettuce (11.3 μg kg-1 ) and 3.0 μg kg-1 for SAs, with the exception of sulfadiazine (SDZ) in onion (3.9 μg kg-1 ) and sulfathiazole (STZ) in carrot (5.0 μg kg-1 ). Lower LOQPRO values (0.1-3.7 μg kg-1 ) were obtained, in general, when dSPE clean-up was employed. Both methods were applied to twenty-five market vegetable samples from ecological and conventional agriculture and only sulfamethazine (SMZ) and sulfapyridine (SPD) were detected in lettuce at 1.2 μg kg-1 and 0.5 μg kg-1 , respectively., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
6. Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments.
- Author
-
Beltrán de Heredia I, Garbisu C, Alkorta I, Urra J, González-Gaya B, and Ruiz-Romera E
- Subjects
- Seasons, Wastewater, Drug Resistance, Microbial genetics, Anti-Bacterial Agents analysis, Water, Genes, Bacterial, Ecosystem
- Abstract
There is a growing concern about the risk of antibiotic resistance emergence and dissemination in the environment. Here, we evaluated the spatio-seasonal patterns of the impact of wastewater treatment plant (WWTP) effluents on antibiotic resistance in river sediments. To this purpose, sediment samples were collected in three river basins affected by WWTP effluents in wet (high-water period) and dry (low-water period) hydrological conditions at three locations: (i) upstream the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream the WWTPs (500 m downriver from the effluent outfall). The absolute and relative abundances of 9 antibiotic resistance genes (ARGs), 3 mobile genetic element (MGE) genes, and 4 metal resistance genes (MRGs) were quantified in sediment samples, as well as a variety of physicochemical parameters, metal contents, and antibiotic concentrations in both sediment and water samples. In sediments, significantly higher relative abundances of most genes were observed in downstream vs. upstream sampling points. Seasonal changes (higher values in low-water vs. high-water period) were observed for both ARG absolute and relative abundances in sediment samples. Chemical data revealed the contribution of effluents from WWTPs as a source of antibiotic and metal contamination in river ecosystems. The observed positive correlations between ARG and MGE genes relative abundances point out to the role of horizontal gene transfer in antibiotic resistance dissemination. Monitoring plans that take into consideration spatio-temporal patterns must be implemented to properly assess the environmental fate of WWTP-related emerging contaminants in river ecosystems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
7. Suspect Screening of Chemicals in Hospital Wastewaters Using Effect-Directed Analysis Approach as Prioritization Strategy.
- Author
-
Lopez-Herguedas N, Mijangos L, Alvarez-Mora I, González-Gaya B, Uribe-Echeverria T, Etxebarria N, Zuloaga O, Olivares M, and Prieto A
- Subjects
- Mass Spectrometry methods, Water analysis, Hospitals, Environmental Monitoring methods, Wastewater, Water Pollutants, Chemical toxicity, Water Pollutants, Chemical analysis
- Abstract
The increasing number of contaminants in the environment has pushed water monitoring programs to find out the most hazardous known and unknown chemicals in the environment. Sample treatment-simplification methods and non-target screening approaches can help researchers to not overlook potential chemicals present in complex aqueous samples. In this work, an effect-directed analysis (EDA) protocol using the sea urchin embryo test (SET) as a toxicological in vivo bioassay was used as simplified strategy to identify potential unknown chemicals present in a very complex aqueous matrix such as hospital effluent. The SET bioassay was used for the first time here to evaluate potential toxic fractions in hospital effluent, which were obtained after a two-step fractionation using C
18 and aminopropyl chromatographic semi-preparative columns. The unknown compounds present in the toxic fractions were identified by means of liquid chromatography coupled to a Q Exactive Orbitrap high-resolution mass spectrometer (LC-HRMS) and using a suspect analysis approach. The results were complemented by gas chromatography-mass spectrometry analysis (GC-MS) in order to identify the widest range of chemical compounds present in the sample and the toxic fractions. Using EDA as sample treatment simplification method, the number of unknown chemicals (>446 features) detected in the raw sample was narrowed down to 94 potential toxic candidates identified in the significantly toxic fractions. Among them, the presence of 25 compounds was confirmed with available chemical standards including 14 pharmaceuticals, a personal care product, six pesticides and four industrial products. The observations found in this work emphasize the difficulties in identifying potential toxicity drivers in complex water samples, as in the case of hospital wastewater.- Published
- 2023
- Full Text
- View/download PDF
8. Effect-directed analysis of a hospital effluent sample using A-YES for the identification of endocrine disrupting compounds.
- Author
-
Lopez-Herguedas N, González-Gaya B, Cano A, Alvarez-Mora I, Mijangos L, Etxebarria N, Zuloaga O, Olivares M, and Prieto A
- Subjects
- Environmental Monitoring methods, Estrogens analysis, Estrogens toxicity, Estrone analysis, Hospitals, Mestranol analysis, Endocrine Disruptors analysis, Endocrine Disruptors toxicity, Water Pollutants, Chemical analysis, Water Pollutants, Chemical toxicity
- Abstract
An effect-directed analysis (EDA) approach was used to identify the compounds responsible for endocrine disruption in a hospital effluent (Basque Country). In order to facilitate the identification of the potentially toxic substances, a sample was collected using an automated onsite large volume solid phase extraction (LV-SPE) system. Then, it was fractionated with a two-step orthogonal chromatographic separation and tested for estrogenic effects with a recombinant yeast (A-YES) in-vitro bioassay. The fractionation method was optimized and validated for 184 compounds, and its application to the hospital effluent sample allowed reducing the number of unknowns from 292 in the raw sample to 35 after suspect analysis of the bioactive fractions. Among those, 7 of them were confirmed with chemical standards. In addition, target analysis of the raw sample confirmed the presence of mestranol, estrone and dodemorph in the fractions showing estrogenic activity. Predictive estrogenic activity modelling using quantitative structure-activity relationships indicated that the hormones mestranol (5840 ng/L) and estrone (128 ng/L), the plasticiser bisphenol A (9219 ng/L) and the preservative butylparaben (1224 ng/L) were the main contributors of the potential toxicity. Derived bioanalytical equivalents (BEQs) pointed mestranol and estrone as the main contributors (56 % and 43 %, respectively) of the 50 % of the sample's explained total estrogenic activity., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
9. Characterization of the contamination fingerprint of wastewater treatment plant effluents in the Henares River Basin (central Spain) based on target and suspect screening analysis.
- Author
-
Lopez-Herguedas N, González-Gaya B, Castelblanco-Boyacá N, Rico A, Etxebarria N, Olivares M, Prieto A, and Zuloaga O
- Subjects
- Animals, Ecosystem, Environmental Monitoring, Rivers, Spain, Wastewater analysis, Water Pollutants, Chemical analysis, Water Purification
- Abstract
The interest in contaminants of emerging concern (CECs) has increased lately due to their continued emission and potential ecotoxicological hazards. Wastewater treatment plants (WWTPs) are generally not capable of eliminating them and are considered the main pathway for CECs to the aquatic environment. The number of CECs in WWTPs effluents is often so large that complementary approaches to the conventional target analysis need to be implemented. Within this context, multitarget quantitative analysis (162 compounds) and a suspect screening (>40,000 suspects) approaches were applied to characterize the CEC fingerprint in effluents of five WWTPs in the Henares River basin (central Spain) during two sampling campaigns (summer and autumn). The results indicated that 76% of the compounds quantified corresponded to pharmaceuticals, 21% to pesticides and 3% to industrial chemicals. Apart from the 82 compounds quantified, suspect screening increased the list to 297 annotated compounds. Significant differences in the CEC fingerprint were observed between summer and autumn campaigns and between the WWTPs, being those serving the city of Alcalá de Henares the ones with the largest number of compounds and concentrations. Finally, a risk prioritization approach was applied based on risk quotients (RQs) for algae, invertebrates, and fish. Azithromycin, diuron, chlortoluron, clarithromycin, sertraline and sulfamethoxazole were identified as having the largest risks to algae. As for invertebrates, the compounds having the largest RQs were carbendazim, fenoxycarb and eprosartan, and for fish acetaminophen, DEET, carbendazim, caffeine, fluconazole, and azithromycin. The two WWTPs showing higher calculated Risk Indexes had tertiary treatments, which points towards the need of increasing the removal efficiency in urban WWTPs. Furthermore, considering the complex mixtures emitted into the environment and the low dilution capacity of Mediterranean rivers, we recommend the development of detailed monitoring plans and stricter regulations to control the chemical burden created to freshwater ecosystems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
10. Effects of aquaculture waste feeds and antibiotics on marine benthic ecosystems in the Mediterranean Sea.
- Author
-
González-Gaya B, García-Bueno N, Buelow E, Marin A, and Rico A
- Subjects
- Animals, Anti-Bacterial Agents analysis, Aquaculture, Biodiversity, Environmental Monitoring, Geologic Sediments, Humans, Mediterranean Sea, Ecosystem, Water Pollutants, Chemical analysis
- Abstract
Intensive aquaculture is an important source of organic waste and antibiotics into the marine environment. Yet, their impacts on benthic marine ecosystems are poorly understood. Here, we investigated the ecological impacts of fish feed waste alone and in combination with three different antibiotics (i.e., oxytetracycline, florfenicol and flumequine) in benthic ecosystems of the Mediterranean Sea by performing a field experiment. We assessed the fate of the antibiotics in the sediment and their accumulation in wild fauna after two weeks of exposure. Moreover, we investigated the impact of the feed waste alone and in combination with the antibiotics on sediment physico-chemical properties, on benthic invertebrates, as well as on the microbiota and resistome of the sampled sediments. One week after the last antibiotic application, average oxytetracycline and flumequine concentrations in the sediment were <1% and 15% of the applied dose, respectively, while florfenicol was not detected. Flumequine concentrations in wild invertebrates reached 3 μg g
-1 , while concentrations of oxytetracycline were about an order of magnitude lower, and florfenicol was not detected. Feed waste, with and without antibiotics, increased the concentration of fine particulate matter, affected the pH and redox conditions, and significantly reduced the biodiversity and abundance of benthic invertebrates. Feed waste also had a significant influence on the structure of sediment microbial communities, while specific effects related to the different antibiotics ranged from insignificant to mild. The presence of antibiotics significantly influenced the normalized abundance of the measured antibiotic resistance genes. Florfenicol and oxytetracycline contributed to an increase of genes conferring resistance to macrolides, tetracyclines, aminoglycosides and chloramphenicol, while flumequine had a less clear impact on the sediment resistome. This study demonstrates that feed waste from aquaculture farms can rapidly alter the habitat and biodiversity of Mediterranean benthic ecosystems, while antibiotic residual concentrations can contribute to the enrichment of bacterial genes resistant to antibiotic classes that are of high relevance for human medicine., Competing Interests: Declaration of competing interest The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
11. Suspect screening workflow comparison for the analysis of organic xenobiotics in environmental water samples.
- Author
-
González-Gaya B, Lopez-Herguedas N, Santamaria A, Mijangos F, Etxebarria N, Olivares M, Prieto A, and Zuloaga O
- Subjects
- Water, Workflow, Water Pollutants, Chemical analysis, Xenobiotics
- Abstract
Suspect screening techniques are able to determine a broader range of compounds than traditional target analysis. However, the performance of the suspect techniques relies on the procedures implemented for peak annotation and for this, the list of potential candidates is clearly a limiting factor. In order to study this effect on the number of compounds annotated in environmental water samples, a method was validated in terms of absolute recoveries, limits of quantification and identification, as well as the peak picking capability of the software (Compound Discoverer 2.1) using a target list of 178 xenobiotics. Four suspect screening workflows using different suspect lists were compared: (i) the Stoffident list, (ii) all the NORMAN lists, (iii) suspects containing C, H, O, N, S, P, F or Cl in their molecular formula with more than 10 references in Chemspider and (iv) the mzCloud library. The results were compared in terms of the number of annotated compounds at each confidence level. The same 8 compounds (atenolol, caffeine, caprolactam, carbendazim, cotinine, diclofenac, propyphenazone and trimetoprim) were annotated at the highest confidence level using the four workflows. Remarkable differences were observed for lower confidence levels but only 4 features were annotated at different levels by the four workflows. While the third approach provided the highest number of annotated features, the workflow based on the mzCloud library rendered satisfactory results with a simpler approach. Finally, this latter approach was extended to the analysis of organic xenobiotics in different environmental water samples., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
12. Suspect and non-target screening: the last frontier in environmental analysis.
- Author
-
González-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker AM, Etxebarria N, Irazola M, Prieto A, Olivares M, and Zuloaga O
- Abstract
Suspect and non-target screening (SNTS) techniques are arising as new analytical strategies useful to disentangle the environmental occurrence of the thousands of exogenous chemicals present in our ecosystems. The unbiased discovery of the wide number of substances present over environmental analysis needs to find a consensus with powerful technical and computational requirements, as well as with the time-consuming unequivocal identification of discovered analytes. Within these boundaries, the potential applications of SNTS include the studies of environmental pollution in aquatic, atmospheric, solid and biological samples, the assessment of new compounds, transformation products and metabolites, contaminant prioritization, bioremediation or soil/water treatment evaluation, and retrospective data analysis, among many others. In this review, we evaluate the state of the art of SNTS techniques going over the normalized workflow from sampling and sample treatment to instrumental analysis, data processing and a brief review of the more recent applications of SNTS in environmental occurrence and exposure to xenobiotics. The main issues related to harmonization and knowledge gaps are critically evaluated and the challenges of their implementation are assessed in order to ensure a proper use of these promising techniques in the near future.
- Published
- 2021
- Full Text
- View/download PDF
13. Focused ultrasound-based extraction for target analysis and suspect screening of organic xenobiotics in fish muscle.
- Author
-
Musatadi M, González-Gaya B, Irazola M, Prieto A, Etxebarria N, Olivares M, and Zuloaga O
- Subjects
- Animals, Solid Phase Extraction, Spain, Fishes, Muscles chemistry, Tandem Mass Spectrometry, Water Pollutants, Chemical analysis, Xenobiotics analysis
- Abstract
The development of multitarget and/or suspect screening methods for the analysis of xenobiotics in fish samples is compulsory due to the lack of works in the literature where a deep evaluation of the variables affecting extraction and clean-up steps is performed. The aim of the present work was to optimize and validate a multitarget (180 compounds) method for the analysis of priority and emerging xenobiotics in fish muscle using focused ultrasound-assisted solid-liquid extraction. From the different extraction solvents studied, a single extraction in cold acetonitrile rendered the best consensus results in terms of absolute recoveries and the number of target compounds extracted. Matrix effect was minimized using commercially available Captiva ND-Lipid filters, which provided clean extracts and satisfactory repeatability compared to other approaches. Absolute recoveries were corrected using matrix-matched calibration and apparent recoveries in the 43%-105%, 73%-131% and 78%-128% ranges were obtained at low (20 ng g
-1 ), medium (100 ng g-1 ), and high (200 ng g-1 ) spiking levels, respectively. A 60% of the xenobiotics showed limits of identification lower than 20 ng g-1 . The developed method was successfully applied to the quantification and suspect screening of samples bought in a local market (hake, gilt-head bream, sea bass and prawn) and fished (thicklip grey mullet) at the Urdaibai estuary (north of Spain). Food additives, antiparasitic drugs and PFOS were quantified at ng g-1 level. Moreover, the targeted method was extended to the suspect screening, revealing the presence of plastic related products (caprolactam, phthalates, polyethylenglycols), pharmaceutical products (albendazole, mebendazole, valpromide) and pesticides or insect repellents (icaridin, myristyl sulfate, nootkatone). Therefore, FUSLE in cold acetonitrile combined with Captiva ND-Lipid filters and liquid chromatography tandem high-resolution mass spectrometry (LC-q-Orbitrap) were successfully applied to both multitarget quantitative analysis and suspect screening of approx. 17,800 compounds., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
14. Vertical transport and sinks of perfluoroalkyl substances in the global open ocean.
- Author
-
González-Gaya B, Casal P, Jurado E, Dachs J, and Jiménez B
- Subjects
- Alkanesulfonic Acids chemistry, Caprylates chemistry, Chemical Phenomena, Fluorocarbons chemistry, Oceans and Seas, Water Pollutants, Chemical chemistry, Alkanesulfonic Acids analysis, Caprylates analysis, Environmental Monitoring methods, Fluorocarbons analysis, Seawater chemistry, Water Pollutants, Chemical analysis
- Abstract
The ubiquitous occurrence of perfluoroalkyl substances (PFAS) in the open ocean has been previously documented, but their vertical transport and oceanic sinks have not been comprehensively characterized and quantified at the oceanic scale. During the Malaspina 2010 circumnavigation expedition, 21 PFAS were measured at the surface and at the deep chlorophyll maximum (DCM) in the Atlantic, Indian and Pacific oceans. In this work, we report an extended data set of PFAS dissolved phase concentrations at the DCM. ∑PFAS at the DCM varied from 130 to 11 000 pg L
-1 , with a global average value of 500 pg L-1 . Perfluorooctanesulfonate (PFOS) abundance contributed 39% of ∑PFAS, followed by perfluorodecanoate (PFDA, 17%), and perfluorohexanoate (PFHxA, 12%). The relative contribution of the remaining compounds was below 10%, with perfluorooctanoate (PFOA) contributing only 5% to PFAS measured at the DCM. Estimates of vertical diffusivity, derived from microstructure turbulence observations in the upper (<300 m) water column, allowed the derivation of PFAS eddy diffusive fluxes from concurrent field measurements of eddy diffusivity and PFAS concentrations. The PFAS concentrations at the DCM predicted from an eddy diffusivity model were lower than field-measured concentrations, suggesting a relevant role of other vertical transport mechanisms. Settling fluxes of organic matter bound PFAS (biological pump), oceanic circulation and potential, yet un-reported, biological transformations are discussed.- Published
- 2019
- Full Text
- View/download PDF
15. An optimized sample treatment method for the determination of antibiotics in seawater, marine sediments and biological samples using LC-TOF/MS.
- Author
-
González-Gaya B, Cherta L, Nozal L, and Rico A
- Subjects
- Animals, Anti-Bacterial Agents, Geologic Sediments, Solid Phase Extraction, Spain, Tandem Mass Spectrometry, Environmental Monitoring methods, Seawater chemistry, Water Pollutants, Chemical analysis
- Abstract
Antibiotics used in marine aquaculture have been reported to accumulate in sediments and non-target aquatic organisms, modifying the biodiversity and the environmental conditions in areas close to the fish farms. Improved analytical methods are required to assess the spread and the impacts of aquaculture antibiotics in the marine environment, as well as to estimate resistance development risks. In this study, we have optimized a method for simultaneous quantitative determination of oxytetracycline, florfenicol and flumequine in marine samples using liquid chromatography coupled to time-of-flight high resolution mass spectrometry (LC-TOF/MS). The method optimization was carried out for seawater, sediment and biological samples (biofilm and two benthic invertebrate species: Gammarus aequicauda and Monodonta articulata). Special attention was paid to the optimization of the extraction and purification steps, testing: liquid-liquid and solid-liquid extractions, the use of silica and other commercial sorbents' clean-up, and single and tandem solid phase extraction procedures. The limits of quantification (MQLs) achieved with the developed method are 0.1-0.5 μg L-
1 in seawater; 1-5 μg kg-1 in marine sediments; 5-25 μg kg-1 in biofilm; and 100-500 μg kg-1 in invertebrates, with good accuracy and precision. Method recoveries in spiked samples are 65-120% in seawater and sediment samples, and 63-110% in the biological samples. The method has been successfully implemented for the determination of antibiotic concentrations in sediment and invertebrate samples collected from a Mediterranean bay in south-east Spain. These represent significant advances in the analysis of antibiotics in environmental samples, especially for wild marine taxa, and attend for a proper assessment of the environmental fate and side effects of aquaculture antibiotics in the marine environment., (Copyright © 2018. Published by Elsevier B.V.)- Published
- 2018
- Full Text
- View/download PDF
16. Dysregulation of photosynthetic genes in oceanic Prochlorococcus populations exposed to organic pollutants.
- Author
-
Fernández-Pinos MC, Vila-Costa M, Arrieta JM, Morales L, González-Gaya B, Piña B, and Dachs J
- Subjects
- Aquatic Organisms genetics, Aquatic Organisms metabolism, Oceans and Seas, Photosystem II Protein Complex metabolism, Prochlorococcus genetics, Prochlorococcus metabolism, Ribulose-Bisphosphate Carboxylase metabolism, Seawater chemistry, Water Pollutants, Chemical analysis, Aquatic Organisms drug effects, Photosystem II Protein Complex genetics, Prochlorococcus drug effects, Ribulose-Bisphosphate Carboxylase genetics, Water Pollutants, Chemical toxicity
- Abstract
The impact of organic pollutants on oceanic ecosystem functioning is largely unknown. Prochlorococcus, the most abundant known photosynthetic organism on Earth, has been suggested to be especially sensible to exposure to organic pollutants, but the sub-lethal effects of organic pollutants on its photosynthetic function at environmentally relevant concentrations and mixtures remain unexplored. Here we show the modulation of the expression of two photosynthetic genes, rbcL (RuBisCO large subunit) and psbA (PSII D1 protein), of oceanic populations of Prochlorococcus from the Atlantic, Indian and Pacific Oceans when exposed to mixtures of organic pollutants consisting of the non-polar fraction of a seawater extract. This mixture included most persistent organic pollutants, semivolatile aromatic-like compounds, and the unresolved complex mixture of hydrocarbons. Prochlorococcus populations in the controls showed the expected diel cycle variations in expression of photosynthetic genes. However, exposure to a complex mixture at concentrations only 2-fold above the environmental levels resulted in a decrease of expression of both genes, suggesting an effect on the photosynthetic function. While organic pollutant effects on marine phytoplankton have been already demonstrated at the cellular level, this is the first field study showing alterations at the molecular level of the photosynthetic function due to organic pollutants.
- Published
- 2017
- Full Text
- View/download PDF
17. Long-range transport of airborne microbes over the global tropical and subtropical ocean.
- Author
-
Mayol E, Arrieta JM, Jiménez MA, Martínez-Asensio A, Garcias-Bonet N, Dachs J, González-Gaya B, Royer SJ, Benítez-Barrios VM, Fraile-Nuez E, and Duarte CM
- Subjects
- Atlantic Ocean, Bacteria classification, Bacteria genetics, Ecosystem, Indian Ocean, Pacific Ocean, Air Microbiology, Bacteria isolation & purification, Seawater microbiology
- Abstract
The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth's surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 10
21 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..- Published
- 2017
- Full Text
- View/download PDF
18. Accumulation of Perfluoroalkylated Substances in Oceanic Plankton.
- Author
-
Casal P, González-Gaya B, Zhang Y, Reardon AJ, Martin JW, Jiménez B, and Dachs J
- Subjects
- Alkanesulfonic Acids, Fluorocarbons, Fresh Water, Indian Ocean, Seawater, Plankton metabolism, Water Pollutants, Chemical
- Abstract
The bioaccumulation of perfluoroalkylated substances (PFASs) in plankton has previously been evaluated only in freshwater and regional seas, but not for the large oligotrophic global oceans. Plankton samples from the tropical and subtropical Pacific, Atlantic and Indian Oceans were collected during the Malaspina 2010 circumnavigation expedition, and analyzed for 14 ionizable PFASs, including perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS) and their respective linear and branched isomers. PFOA and PFOS concentrations in plankton ranged from 0.1 to 43 ng g
dw -1 and from 0.5 to 6.7 ng gdw -1 , respectively. The relative abundance of branched PFOA in the northern hemisphere was correlated with distance to North America, consistent with the historical production and coherent with previously reported patterns in seawater. The plankton samples showing the highest PFOS concentrations also presented the largest relative abundances of branched PFOS, suggesting a selective cycling/fractionation of branched PFOS in the surface ocean mediated by plankton. Bioaccumulation factors (BAFs) for plankton were calculated for six PFASs, including short chain PFASs. PFASs Log BAFs (wet weight) ranged from 2.6 ± 0.8 for perfluorohexanesulfonic acid (PFHxS), to 4.4 ± 0.6 for perfluoroheptanoic acid (PFHpA). The vertical transport of PFASs due to the settling of organic matter bound PFAS (biological pump) was estimated from an organic matter settling fluxes climatology and the PFAS concentrations in plankton. The global average sinking fluxes were 0.8 ± 1.3 ng m-2 d-1 for PFOA, and 1.1 ± 2.1 ng m-2 d-1 for PFOS. The residence times of PFAS in the surface ocean, assuming the biological pump as the unique sink, showed a wide range of variability, from few years to millennia, depending on the sampling site and individual compound. Further process-based studies are needed to constrain the oceanic sink of PFAS.- Published
- 2017
- Full Text
- View/download PDF
19. Organophosphate Ester Flame Retardants and Plasticizers in the Global Oceanic Atmosphere.
- Author
-
Castro-Jiménez J, González-Gaya B, Pizarro M, Casal P, Pizarro-Álvarez C, and Dachs J
- Subjects
- Atmosphere chemistry, Environmental Monitoring, Organophosphates, Flame Retardants, Plasticizers
- Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers and have been detected ubiquitously in the remote atmosphere. Fourteen OPEs were analyzed in 115 aerosol phase samples collected from the tropical and subtropical Atlantic, Pacific, and Indian Oceans during the MALASPINA circumnavigation campaign. OPEs were detected in all samples with concentrations ranging from 360 to 4400 pg m
-3 for the sum of compounds. No clear concentration trends were found between the Northern and Southern hemispheres. The pattern was generally dominated by tris(1-chloro-2-propyl) phosphate (TCPP), although tri-n-butyl phosphate (TnBP) had a predominant role in samples close to continents and in those influenced by air masses originating in continents. The dry deposition fluxes of aerosol phase ∑14 OPE ranged from 4 to 140 ng m-2 d-1 . An estimation of the OPE gas phase concentration and gross absorption fluxes by using three different sets of physical chemical properties suggested that the atmosphere-ocean diffusive exchange of OPEs could be 2-3 orders of magnitude larger than dry deposition. The associated organic phosphorus inputs coming from diffusive OPE fluxes were estimated to potentially trigger up to 1.0% of the reported primary production in the most oligotrophic oceanic regions. However, the uncertainty associated with these calculations is high and mostly driven by the uncertainty of the physical chemical properties of OPEs. Further constraints of the physical chemical properties and fluxes of OPEs are urgently needed, in order to estimate their environmental fate and relevance as a diffusive source of new organic phosphorus to the ocean.- Published
- 2016
- Full Text
- View/download PDF
20. Oceanic Sink and Biogeochemical Controls on the Accumulation of Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, and Biphenyls in Plankton.
- Author
-
Morales L, Dachs J, Fernández-Pinos MC, Berrojalbiz N, Mompean C, González-Gaya B, Jiménez B, Bode A, Ábalos M, and Abad E
- Subjects
- Atlantic Ocean, Benzofurans analysis, Dibenzofurans, Polychlorinated, Environmental Monitoring methods, Indian Ocean, Pacific Ocean, Polychlorinated Biphenyls analysis, Polychlorinated Dibenzodioxins analysis, Polychlorinated Dibenzodioxins pharmacokinetics, Water Pollutants, Chemical analysis, Benzofurans pharmacokinetics, Plankton metabolism, Polychlorinated Biphenyls pharmacokinetics, Polychlorinated Dibenzodioxins analogs & derivatives, Water Pollutants, Chemical pharmacokinetics
- Abstract
Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) were measured in plankton samples from the Atlantic, Pacific, and Indian Oceans collected during the Malaspina circumnavigation cruise. The concentrations of PCDD/Fs and dl-PCBs in plankton averaged 14 and 240 pg gdw(-1), respectively, but concentrations were highly variable. The global distribution of PCDD/Fs and dl-PCBs was not driven by proximity to continents but significantly correlated with plankton biomass, with higher plankton phase PCDD/F and dl-PCB concentrations at lower biomass. These trends are consistent with the interactions between atmospheric deposition, biomass dilution, and settling fluxes of organic matter in the water column (biological pump), as key processes driving POPs plankton phase concentrations in the global oceans. The application of a model of the air-water-plankton diffusive exchange reproduces in part the influence of biomass on plankton phase concentrations and suggests future modeling priorities. The estimated oceanic sink (Atlantic, Pacific, and Indian Oceans) due to settling fluxes of organic matter bound PCDD/Fs and dl-PCBs is of 400 and 10,500 kg y(-1), respectively. The atmospheric inputs due to gross diffusive absorption and dry deposition are nearly 3 and 10 times larger for PCDD/Fs and dl-PCBs, respectively, than the oceanic sink. These observations suggest that the coupling of atmospheric deposition with water column cycling supports and drives the accumulation of dl-PCBs and PCDD/Fs in plankton from the global oligotrophic oceans.
- Published
- 2015
- Full Text
- View/download PDF
21. Perfluoroalkylated substances in the global tropical and subtropical surface oceans.
- Author
-
González-Gaya B, Dachs J, Roscales JL, Caballero G, and Jiménez B
- Subjects
- Alkanesulfonic Acids analysis, Atlantic Ocean, Caproates analysis, Decanoic Acids analysis, Ecosystem, Indian Ocean, Seawater chemistry, Time Factors, Water Movements, Water Pollutants, Chemical analysis, Fluorocarbons analysis, Internationality, Oceans and Seas, Tropical Climate
- Abstract
In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability. This suggests that a number of physical and biogeochemical processes collectively drive the oceanic occurrence and fate of PFASs in a complex manner.
- Published
- 2014
- Full Text
- View/download PDF
22. Background concentrations of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in the global oceanic atmosphere.
- Author
-
Morales L, Dachs J, González-Gaya B, Hernán G, Abalos M, and Abad E
- Subjects
- Aerosols analysis, Air analysis, Atlantic Ocean, Gases analysis, Geography, Indian Ocean, Pacific Ocean, Polychlorinated Dibenzodioxins analysis, Ships, Air Pollutants analysis, Atmosphere chemistry, Benzofurans analysis, Biphenyl Compounds analysis, Oceans and Seas, Polychlorinated Dibenzodioxins analogs & derivatives
- Abstract
The remote oceans are among the most pristine environments in the world, away from sources of anthropogenic persistent organic pollutants (POP), but nevertheless recipients of atmospheric deposition of POPs that have undergone long-range atmospheric transport (LRAT). In this work, the background occurrence of gas and aerosol phase polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin like polychlorinated biphenyls (dl-PCB) is evaluated for the first time in the atmosphere of the tropical and subtropical Atlantic, Pacific, and Indian oceans. Thirty-nine air samples were collected during the eight-month Malaspina circumnavigation cruise onboard the R/V Hespérides. The background levels of dioxins and dl-PCBs remained very low and in many cases very close to or below the limit of detection. Expectedly, the levels of PCBs were higher than dioxins, PCB#118 being the most abundant compound. In the particular case of dioxins, octachlorodibenzo-p-dioxin (OCDD) was the most abundant PCDD/F congener. Distribution of dl-PCB is dominated by the gas phase, while for PCDD/F the aerosol phase concentrations were higher, particularly for the more hydrophobic congeners. The Atlantic Ocean presented on average the highest PCDD/F and dl-PCB concentrations, being lower in the southern hemisphere. The assessment of air mass back trajectories show a clear influence of continental source regions, and lower concentrations when the air mass has an oceanic origin. In addition, the samples affected by an oceanic air mass are characterized by a lower contribution of the less chlorinated dioxins in comparison with the furans, consistent with the reported higher reaction rate constants of dibenzo-p-dioxins with OH radicals than those of dibenzofurans. The total dry atmospheric deposition of aerosol-bound ∑PCDD/F and ∑dl-PCB to the global oceans was estimated to be 354 and 896 kg/year, respectively.
- Published
- 2014
- Full Text
- View/download PDF
23. Field measurements of the atmospheric dry deposition fluxes and velocities of polycyclic aromatic hydrocarbons to the global oceans.
- Author
-
González-Gaya B, Zúñiga-Rival J, Ojeda MJ, Jiménez B, and Dachs J
- Subjects
- Aerosols analysis, Atlantic Ocean, Environmental Monitoring, Geography, Indian Ocean, Pacific Ocean, Particulate Matter analysis, Seawater chemistry, Volatile Organic Compounds analysis, Air Pollutants analysis, Atmosphere chemistry, Internationality, Oceans and Seas, Polycyclic Aromatic Hydrocarbons analysis
- Abstract
The atmospheric dry deposition fluxes of 16 polycyclic aromatic hydrocarbons (PAHs) have been measured, for the first time, in the tropical and subtropical Atlantic, Pacific, and Indian Oceans. Depositional fluxes for fine (0.7-2.7 μm) and coarse (>2.7 μm) aerosol fractions were simultaneously determined with the suspended aerosol phase concentrations, allowing the determination of PAH deposition velocities (vD). PAH dry deposition fluxes (FDD) bound to coarse aerosols were higher than those of fine aerosols for 83% of the measurements. Average FDD for total (fine + coarse) Σ16PAHs (sum of 16 individual PAHs) ranged from 8.33 ng m(-2)d(-1) to 52.38 ng m(-2)d(-1). Mean FDD for coarse aerosol's individual PAHs ranged between 0.13 ng m(-2)d(-1) (Perylene) and 1.96 ng m(-2)d(-1) (Methyl Pyrene), and for the fine aerosol fraction these ranged between 0.06 ng m(-2)d(-1) (Dimethyl Pyrene) and 1.25 ng m(-2)d(-1) (Methyl Chrysene). The estimated deposition velocities went from the highest mean vD for Methyl Chrysene (0.17-13.30 cm s(-1)), followed by Dibenzo(ah)Anthracene (0.29-1.38 cm s(-1)), and other high MW PAHs to minimum values of vD for Dimethyl Pyrene (<0.04 cm s(-1)) and Pyrene (<0.06 cm s(-1)). Dry depositional processes depend on the concentration of PAHs in the suspended aerosol, but also on physicochemical properties and environmental variables (vapor pressure, wind speed, and on the affinity of aerosols for depositing to the sea surface). Empirical parametrizations are proposed to predict the dry depositional velocities of semivolatile organic compounds to the global oceans.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.