1. Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality
- Author
-
Weiwei Ao, Azahara DelaTorre, and María del Mar González
- Subjects
symmetry and symmetry breaking ,Fractional Caffarelli-Kohn-Nirenberg inequality ,conformal fractional Laplacian ,non-degeneracy ,Mathematics - Analysis of PDEs ,53A30, 35R11, 35C15, 35J61, 35A23 ,Mathematics::Analysis of PDEs ,FOS: Mathematics ,Analysis ,Analysis of PDEs (math.AP) - Abstract
In this paper, we will consider the fractional Caffarelli-Kohn-Nirenberg inequality \begin{equation*} {\Lambda} \left(\int_{\mathbb R^n}\frac{|u(x)|^{p}}{|x|^{{\beta} {p}}}\,dx\right)^{\frac{2}{p}}\leq \int_{\mathbb R^n}\int_{\mathbb R^n}\frac{(u(x)-u(y))^2}{|x-y|^{n+2\gamma}|x|^{{\alpha}}|y|^{{\alpha}}}\,dy\,dx \end{equation*} where $\gamma\in(0,1)$, $n\geq 2$, and $\alpha,\beta\in\mathbb R$ satisfy \begin{equation*} \alpha\leq \beta\leq \alpha+\gamma, \ -2\gamma
- Published
- 2022
- Full Text
- View/download PDF