1. Effect of various nanoparticle biodiesel blends on thermal efficiency and exhaust pollutants
- Author
-
Imran, S, Gul, M, Kalam, MA, Zulkifli, NWM, Mujtaba, MA, Yusoff, MNAM, Awang, MSN, Imran, S, Gul, M, Kalam, MA, Zulkifli, NWM, Mujtaba, MA, Yusoff, MNAM, and Awang, MSN
- Abstract
The transport sector produces one-third of the world’s greenhouse gasses. World consumption of nonrenewable energy through vehicles increases the interest in studies of different nanoparticle biodiesel blend behavior in a diesel engine. In this research, a comprehensive approach is taken using a wide variety of appraised nanoparticles to make blends. The CI diesel engine's engine performance and emission characteristics are studied with Malaysian commercial fuel using various nanoparticles (TiO2, Al2O3, CuO, CeO2, CNT, and GNP) blend to discover the best one. 100 ppm of each nanoparticle is used to make a blend via the ultrasonic technique. Mechanical and emission performance is tested in diesel engines (Yanmar TF 120 M) with 100% engine load at variable engine speed (2100-900 rpm). Graphical presentation and comparison of each fuel blend are discussed in this paper. All the ternary blends have shown improved engine performance. Al2O3 has shown a 3.68% reduction in BSFC when compared to neat B10. The average highest BTE recorded is a 14.59% increase when the B10 + TiO2 blend is used, followed by CNT and CeO2. Al2O3 has shown a 21.84% and 86.20% reduction in CO and HC when compared to B10, while CNT and GNP have shown a 6.03% and 2.06% of reduction in NOx emission when compared with B10.
- Published
- 2023