1. Biosynthesis and characterization of silver nanoparticles synthesized using extracts of Agrimonia eupatoria L. and in vitro and in vivo studies of potential medicinal applications.
- Author
-
Marković K, Kesić A, Novaković M, Grujović M, Simijonović D, Avdović EH, Matić S, Paunović M, Milutinović M, Nikodijević D, Stefanović O, and Marković Z
- Abstract
This research explores the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) derived from acetone (AgNPs-acetone) and aqueous (AgNPs-H
2 O) extracts of Agrimonia eupatoria . The nanoparticles exhibit isometric morphology and uniform size distribution, as elucidated through Transmission Electron Microscopy (TEM) and high-resolution TEM (HRTEM) analyses. The utilization of Scanning Transmission Microscopy (STEM) with High-Angle Annular Dark-Field (HAADF) imaging and energy dispersive spectrometry (EDS) confirms the crystalline nature of AgNPs. Fourier Transform Infrared (FTIR) analysis reveals identical functional groups in the plant extracts and their corresponding AgNPs, suggesting the involvement of phytochemicals in the reduction of silver ions. Spectrophotometric monitoring of the synthesis process, influenced by various parameters, provides insights into the kinetics and optimal conditions for AgNP formation. The antioxidant activities of the plant extracts and synthesized AgNPs are evaluated through DPPH and ABTS methods, highlighting AgNPs-acetone as a potent antioxidant. Third-instar larvae exposed to the extracts have differential effects on DNA damage, with the acetone extract demonstrating antigenotoxic properties. Similarly, biosynthesized AgNPs-acetone displays antigenotoxic effects against EMS-induced DNA damage. The genotoxic effect of water extract and AgNPs-acetone was dose-dependent. Hemolytic potential is assessed on rat erythrocytes, revealing that low concentrations of AgNPs-acetone and AgNPs-H2 O had a nontoxic effect on erythrocytes. Cytotoxicity assays demonstrate time-dependent and dose-dependent effects, with AgNPs-acetone exhibiting superior cytotoxicity. Proapoptotic activity is confirmed through apoptosis induction, emphasizing the potential therapeutic applications of AgNPs. The antimicrobial activity of AgNPs reveals concentration-dependent effects. AgNPs-H2 O display better antibacterial activity, while antifungal activities are comparable between the two nanoparticle types., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)- Published
- 2024
- Full Text
- View/download PDF