1. A blockchain-based dynamic energy pricing model for supply chain resiliency using machine learning
- Author
-
Moein Qaisari Hasan Abadi, Russell Sadeghi, Ava Hajian, Omid Shahvari, and Amirehsan Ghasemi
- Subjects
Blockchain ,Supply chain resiliency ,Machine learning ,Energy consumption management ,Power outage ,Marketing. Distribution of products ,HF5410-5417.5 ,Management. Industrial management ,HD28-70 - Abstract
The escalation of energy prices and the pressing environmental concerns associated with excessive energy consumption have compelled consumers to adopt a more optimal approach towards energy usage and an advanced infrastructure such as smart grids. Blockchain technology significantly improves energy management by creating supply chain resiliency in a distributed smart grid. This study proposes a blockchain-based decision-making framework with a dynamic energy pricing model to manage energy distributions, particularly during an energy crisis. Empirical data from U.S. consumers are employed to show the applicability of the proposed model. We include price elasticity to address changes in energy market prices. Findings revealed that the proposed framework reduces total energy costs and performs better when a disruption has occurred. This study provides a post hoc analysis in which four machine learning algorithms are used to predict energy consumption. Results suggest that the autoregressive integrated moving average (ARIMA) algorithm has the highest accuracy compared to other algorithms.
- Published
- 2024
- Full Text
- View/download PDF