22 results on '"Auvil L"'
Search Results
2. Reconstruction and evolutionary history of eutherian chromosomes
- Author
-
Kim, J, Farre Belmonte, M, Auvil, L S, Capitanu, B, Larkin, D M, Ma, J, and Lewin, H A
- Subjects
endocrine system - Abstract
Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over similar to 105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first similar to 60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases.
- Published
- 2017
3. Analyses of pig genomes provide insight into porcine demography and evolution
- Author
-
Groenen, M. A., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi, Y., Rothschild, M. F., Rogel-Gaillard, C., Park, C., Milan, D., Megens, H. J., Li, S., Larkin, D. M., Kim, H., Frantz, L. A., Caccamo, M., Ahn, H., Aken, B. L., Anselmo, A., Anthon, C., Auvil, L., Badaoui, B., Beattie, C. W., Bendixen, C., Berman, D., Blecha, F., Blomberg, Jonas, Bolund, L., Bosse, M., Botti, S., Bujie, Z., Byström, M., Capitanu, B., Carvalho-Silva, D., Chardon, P., Chen, C., Cheng, R., Choi, S. H., Chow, W., Clark, R. C., Clee, C., Crooijmans, R. P., Dawson, H. D., Dehais, P., De Sapio, F., Dibbits, B., Drou, N., Du, Z. Q., Eversole, K., Fadista, J., Fairley, S., Faraut, T., Faulkner, G. J., Fowler, K. E., Fredholm, M., Fritz, E., Gilbert, J. G., Giuffra, E., Gorodkin, J., Griffin, D. K., Harrow, J. L., Hayward, Alexander, Howe, K., Hu, Z. L., Humphray, S. J., Hunt, T., Hornshoj, H., Jeon, J. T., Jern, Patric, Jones, M., Jurka, J., Kanamori, H., Kapetanovic, R., Kim, J., Kim, J. H., Kim, K. W., Kim, T. H., Larson, G., Lee, K., Lee, K. T., Leggett, R., Lewin, H. A., Li, Y., Liu, W., Loveland, J. E., Lu, Y., Lunney, J. K., Ma, J., Madsen, O., Mann, K., Matthews, L., McLaren, S., Morozumi, T., Murtaugh, M. P., Narayan, J., Nguyen, D. T., Ni, P., Oh, S. J., Onteru, S., Panitz, F., Park, E. W., Park, H. S., Pascal, G., Paudel, Y., Perez-Enciso, M., Ramirez-Gonzalez, R., Reecy, J. M., Rodriguez-Zas, S., Rohrer, G. A., Rund, L., Sang, Y., Schachtschneider, K., Schraiber, J. G., Schwartz, J., Scobie, L., Scott, C., Searle, S., Servin, B., Southey, B. R., Sperber, Göran, Stadler, P., Sweedler, J. V., Tafer, H., Thomsen, B., Wali, R., Wang, J., White, S., Xu, X., Yerle, M., Zhang, G., Zhang, J., Zhao, S., Rogers, J., Churcher, C., Schook, L. B., Groenen, M. A., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi, Y., Rothschild, M. F., Rogel-Gaillard, C., Park, C., Milan, D., Megens, H. J., Li, S., Larkin, D. M., Kim, H., Frantz, L. A., Caccamo, M., Ahn, H., Aken, B. L., Anselmo, A., Anthon, C., Auvil, L., Badaoui, B., Beattie, C. W., Bendixen, C., Berman, D., Blecha, F., Blomberg, Jonas, Bolund, L., Bosse, M., Botti, S., Bujie, Z., Byström, M., Capitanu, B., Carvalho-Silva, D., Chardon, P., Chen, C., Cheng, R., Choi, S. H., Chow, W., Clark, R. C., Clee, C., Crooijmans, R. P., Dawson, H. D., Dehais, P., De Sapio, F., Dibbits, B., Drou, N., Du, Z. Q., Eversole, K., Fadista, J., Fairley, S., Faraut, T., Faulkner, G. J., Fowler, K. E., Fredholm, M., Fritz, E., Gilbert, J. G., Giuffra, E., Gorodkin, J., Griffin, D. K., Harrow, J. L., Hayward, Alexander, Howe, K., Hu, Z. L., Humphray, S. J., Hunt, T., Hornshoj, H., Jeon, J. T., Jern, Patric, Jones, M., Jurka, J., Kanamori, H., Kapetanovic, R., Kim, J., Kim, J. H., Kim, K. W., Kim, T. H., Larson, G., Lee, K., Lee, K. T., Leggett, R., Lewin, H. A., Li, Y., Liu, W., Loveland, J. E., Lu, Y., Lunney, J. K., Ma, J., Madsen, O., Mann, K., Matthews, L., McLaren, S., Morozumi, T., Murtaugh, M. P., Narayan, J., Nguyen, D. T., Ni, P., Oh, S. J., Onteru, S., Panitz, F., Park, E. W., Park, H. S., Pascal, G., Paudel, Y., Perez-Enciso, M., Ramirez-Gonzalez, R., Reecy, J. M., Rodriguez-Zas, S., Rohrer, G. A., Rund, L., Sang, Y., Schachtschneider, K., Schraiber, J. G., Schwartz, J., Scobie, L., Scott, C., Searle, S., Servin, B., Southey, B. R., Sperber, Göran, Stadler, P., Sweedler, J. V., Tafer, H., Thomsen, B., Wali, R., Wang, J., White, S., Xu, X., Yerle, M., Zhang, G., Zhang, J., Zhao, S., Rogers, J., Churcher, C., and Schook, L. B.
- Abstract
For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
- Published
- 2012
- Full Text
- View/download PDF
4. Analyses of pig genomes provide insight into porcine demography and evolution
- Author
-
Groenen, MAM, Archibald, AL, Uenishi, H, Tuggle, CK, Takeuchi, Y, Rothschild, MF, Rogel-Gaillard, C, Park, C, Milan, D, Megens, H-J, Li, S, Larkin, DM, Kim, H, Frantz, LAF, Caccamo, M, Ahn, H, Aken, BL, Anselmo, A, Anthon, C, Auvil, L, Badaoui, B, Beattie, CW, Bendixen, C, Berman, D, Blecha, F, Blomberg, J, Bolund, L, Bosse, M, Botti, S, Zhan, B, Bystrom, M, Capitanu, B, Carvalho-Silva, D, Chardon, P, Chen, C, Cheng, R, Choi, S-H, Chow, W, Clark, RC, Clee, C, Crooijmans, RPMA, Dawson, HD, Dehais, P, De Sapio, F, Dibbits, B, Drou, N, Du, Z-Q, Eversole, K, Fadista, J, Fairley, S, Faraut, T, Faulkner, GJ, Fowler, KE, Fredholm, M, Fritz, E, Gilbert, JGR, Giuffra, E, Gorodkin, J, Griffin, DK, Harrow, JL, Hayward, A, Howe, K, Hu, Z-L, Humphray, SJ, Hunt, T, Hornshoj, H, Jeon, J-T, Jern, P, Jones, M, Jurka, J, Kanamori, H, Kapetanovic, R, Kim, J, Kim, J-H, Kim, K-W, Kim, T-H, Larson, G, Lee, K, Lee, K-T, Leggett, R, Lewin, HA, Li, Y, Liu, W, Loveland, JE, Lu, Y, Lunney, JK, Ma, J, Madsen, O, Mann, K, Matthews, L, McLaren, S, Morozumi, T, Murtaugh, MP, Narayan, J, Dinh, TN, Ni, P, Oh, S-J, Onteru, S, Panitz, F, Park, E-W, Park, H-S, Pascal, G, Paudel, Y, Perez-Enciso, M, Ramirez-Gonzalez, R, Reecy, JM, Rodriguez-Zas, S, Rohrer, GA, Rund, L, Sang, Y, Schachtschneider, K, Schraiber, JG, Schwartz, J, Scobie, L, Scott, C, Searle, S, Servin, B, Southey, BR, Sperber, G, Stadler, P, Sweedler, JV, Tafer, H, Thomsen, B, Wali, R, Wang, J, White, S, Xu, X, Yerle, M, Zhang, G, Zhang, J, Zhao, S, Rogers, J, Churcher, C, Schook, LB, Groenen, MAM, Archibald, AL, Uenishi, H, Tuggle, CK, Takeuchi, Y, Rothschild, MF, Rogel-Gaillard, C, Park, C, Milan, D, Megens, H-J, Li, S, Larkin, DM, Kim, H, Frantz, LAF, Caccamo, M, Ahn, H, Aken, BL, Anselmo, A, Anthon, C, Auvil, L, Badaoui, B, Beattie, CW, Bendixen, C, Berman, D, Blecha, F, Blomberg, J, Bolund, L, Bosse, M, Botti, S, Zhan, B, Bystrom, M, Capitanu, B, Carvalho-Silva, D, Chardon, P, Chen, C, Cheng, R, Choi, S-H, Chow, W, Clark, RC, Clee, C, Crooijmans, RPMA, Dawson, HD, Dehais, P, De Sapio, F, Dibbits, B, Drou, N, Du, Z-Q, Eversole, K, Fadista, J, Fairley, S, Faraut, T, Faulkner, GJ, Fowler, KE, Fredholm, M, Fritz, E, Gilbert, JGR, Giuffra, E, Gorodkin, J, Griffin, DK, Harrow, JL, Hayward, A, Howe, K, Hu, Z-L, Humphray, SJ, Hunt, T, Hornshoj, H, Jeon, J-T, Jern, P, Jones, M, Jurka, J, Kanamori, H, Kapetanovic, R, Kim, J, Kim, J-H, Kim, K-W, Kim, T-H, Larson, G, Lee, K, Lee, K-T, Leggett, R, Lewin, HA, Li, Y, Liu, W, Loveland, JE, Lu, Y, Lunney, JK, Ma, J, Madsen, O, Mann, K, Matthews, L, McLaren, S, Morozumi, T, Murtaugh, MP, Narayan, J, Dinh, TN, Ni, P, Oh, S-J, Onteru, S, Panitz, F, Park, E-W, Park, H-S, Pascal, G, Paudel, Y, Perez-Enciso, M, Ramirez-Gonzalez, R, Reecy, JM, Rodriguez-Zas, S, Rohrer, GA, Rund, L, Sang, Y, Schachtschneider, K, Schraiber, JG, Schwartz, J, Scobie, L, Scott, C, Searle, S, Servin, B, Southey, BR, Sperber, G, Stadler, P, Sweedler, JV, Tafer, H, Thomsen, B, Wali, R, Wang, J, White, S, Xu, X, Yerle, M, Zhang, G, Zhang, J, Zhao, S, Rogers, J, Churcher, C, and Schook, LB
- Abstract
For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
- Published
- 2012
5. Distant Listening to Gertrude Stein's 'Melanctha': Using Similarity Analysis in a Discovery Paradigm to Analyze Prosody and Author Influence
- Author
-
Clement, T., primary, Tcheng, D., additional, Auvil, L., additional, Capitanu, B., additional, and Barbosa, J., additional
- Published
- 2013
- Full Text
- View/download PDF
6. Automatic assessment of OCR quality in historical documents
- Author
-
Gupta, A., Gutierrez-Osuna, R., Matthew Christy, Capitanu, B., Auvil, L., Grumbach, L., Furuta, R., and Mandell, L.
- Subjects
General Medicine - Abstract
Mass digitization of historical documents is a challenging problem for optical character recognition (OCR) tools. Issues include noisy backgrounds and faded text due to aging, border/marginal noise, bleed-through, skewing, warping, as well as irregular fonts and page layouts. As a result, OCR tools often produce a large number of spurious bounding boxes (BBs) in addition to those that correspond to words in the document. This paper presents an iterative classification algorithm to automatically label BBs (i.e., as text or noise) based on their spatial distribution and geometry. The approach uses a rule-base classifier to generate initial text/noise labels for each BB, followed by an iterative classifier that refines the initial labels by incorporating local information to each BB, its spatial location, shape and size. When evaluated on a dataset containing over 72,000 manually-labeled BBs from 159 historical documents, the algorithm can classify BBs with 0.95 precision and 0.96 recall. Further evaluation on a collection of 6,775 documents with ground-truth transcriptions shows that the algorithm can also be used to predict document quality (0.7 correlation) and improve OCR transcriptions in 85% of the cases.
7. Novel insights into chromosome evolution in birds, archosaurs, and reptiles
- Author
-
Farré, M, Narayan, J, Slavov, G T, Damas, J, Auvil, L, Li, C, Jarvis, E D, Burt, D W, Griffin, D K, and Larkin, D M
- Abstract
Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes.
8. Visualization and Analysis of GPU Summer School Applicants and Participants.
- Author
-
Wah, E., Johnson, E., Auvil, L., Thakkar, U., Wen-Mei Hwu, Kirk, D., Dunning, T.H., and Glotzer, S.C.
- Published
- 2008
- Full Text
- View/download PDF
9. VAST to Knowledge: Combining tools for exploration and mining.
- Author
-
Auvil, L., Llora, X., Searsmith, D., and Searsmith, K.
- Published
- 2007
- Full Text
- View/download PDF
10. Acyloxyacyl hydrolase is a host determinant of gut microbiome-mediated pelvic pain.
- Author
-
Rahman-Enyart A, Yang W, Yaggie RE, White BA, Welge M, Auvil L, Berry M, Bushell C, Rosen JM, Rudick CN, Schaeffer AJ, and Klumpp DJ
- Subjects
- Animals, Humans, Disease Models, Animal, Dysbiosis complications, Dysbiosis metabolism, Inflammation metabolism, Urinary Bladder metabolism, Mice, Carboxylic Ester Hydrolases genetics, Carboxylic Ester Hydrolases metabolism, Cystitis, Interstitial metabolism, Gastrointestinal Microbiome genetics, Gastrointestinal Microbiome physiology, Pelvic Pain metabolism, Pelvic Pain physiopathology
- Abstract
Dysbiosis of gut microbiota is associated with many pathologies, yet host factors modulating microbiota remain unclear. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating condition of chronic pelvic pain often with comorbid urinary dysfunction and anxiety/depression, and recent studies find fecal dysbiosis in patients with IC/BPS. We identified the locus encoding acyloxyacyl hydrolase, Aoah , as a modulator of pelvic pain severity in a murine IC/BPS model. AOAH-deficient mice spontaneously develop rodent correlates of pelvic pain, increased responses to induced pelvic pain models, voiding dysfunction, and anxious/depressive behaviors. Here, we report that AOAH-deficient mice exhibit dysbiosis of gastrointestinal (GI) microbiota. AOAH-deficient mice exhibit an enlarged cecum, a phenotype long associated with germ-free rodents, and a "leaky gut" phenotype. AOAH-deficient ceca showed altered gene expression consistent with inflammation, Wnt signaling, and urologic disease. 16S sequencing of stool revealed altered microbiota in AOAH-deficient mice, and GC-MS identified altered metabolomes. Cohousing AOAH-deficient mice with wild-type mice resulted in converged microbiota and altered predicted metagenomes. Cohousing also abrogated the pelvic pain phenotype of AOAH-deficient mice, which was corroborated by oral gavage of AOAH-deficient mice with stool slurry of wild-type mice. Converged microbiota also alleviated comorbid anxiety-like behavior in AOAH-deficient mice. Oral gavage of AOAH-deficient mice with anaerobes cultured from IC/BPS stool resulted in exacerbation of pelvic allodynia. Together, these data indicate that AOAH is a host determinant of normal gut microbiota, and dysbiosis associated with AOAH deficiency contributes to pelvic pain. These findings suggest that the gut microbiome is a potential therapeutic target for IC/BPS.
- Published
- 2021
- Full Text
- View/download PDF
11. Assessment of peritoneal microbial features and tumor marker levels as potential diagnostic tools for ovarian cancer.
- Author
-
Miao R, Badger TC, Groesch K, Diaz-Sylvester PL, Wilson T, Ghareeb A, Martin JA, Cregger M, Welge M, Bushell C, Auvil L, Zhu R, Brard L, and Braundmeier-Fleming A
- Subjects
- Aged, Carcinoma, Ovarian Epithelial blood, Carcinoma, Ovarian Epithelial microbiology, Carcinoma, Ovarian Epithelial surgery, Cross-Sectional Studies, DNA, Bacterial genetics, DNA, Bacterial isolation & purification, Female, Humans, Hysterectomy, Laparoscopy, Machine Learning, Middle Aged, Models, Biological, Ovarian Neoplasms blood, Ovarian Neoplasms microbiology, Ovarian Neoplasms surgery, Ovariectomy, Pilot Projects, Preoperative Period, Prognosis, RNA, Ribosomal, 16S genetics, Ascitic Fluid microbiology, CA-125 Antigen blood, Carcinoma, Ovarian Epithelial diagnosis, Membrane Proteins blood, Microbiota genetics, Ovarian Neoplasms diagnosis, WAP Four-Disulfide Core Domain Protein 2 analysis
- Abstract
Epithelial ovarian cancer (OC) is the most deadly cancer of the female reproductive system. To date, there is no effective screening method for early detection of OC and current diagnostic armamentarium may include sonographic grading of the tumor and analyzing serum levels of tumor markers, Cancer Antigen 125 (CA-125) and Human epididymis protein 4 (HE4). Microorganisms (bacterial, archaeal, and fungal cells) residing in mucosal tissues including the gastrointestinal and urogenital tracts can be altered by different disease states, and these shifts in microbial dynamics may help to diagnose disease states. We hypothesized that the peritoneal microbial environment was altered in patients with OC and that inclusion of selected peritoneal microbial features with current clinical features into prediction analyses will improve detection accuracy of patients with OC. Blood and peritoneal fluid were collected from consented patients that had sonography confirmed adnexal masses and were being seen at SIU School of Medicine Simmons Cancer Institute. Blood was processed and serum HE4 and CA-125 were measured. Peritoneal fluid was collected at the time of surgery and processed for Next Generation Sequencing (NGS) using 16S V4 exon bacterial primers and bioinformatics analyses. We found that patients with OC had a unique peritoneal microbial profile compared to patients with a benign mass. Using ensemble modeling and machine learning pathways, we identified 18 microbial features that were highly specific to OC pathology. Prediction analyses confirmed that inclusion of microbial features with serum tumor marker levels and control features (patient age and BMI) improved diagnostic accuracy compared to currently used models. We conclude that OC pathogenesis alters the peritoneal microbial environment and that these unique microbial features are important for accurate diagnosis of OC. Our study warrants further analyses of the importance of microbial features in regards to oncological diagnostics and possible prognostic and interventional medicine., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
12. Differential Effects of Influenza Virus NA, HA Head, and HA Stalk Antibodies on Peripheral Blood Leukocyte Gene Expression during Human Infection.
- Author
-
Walters KA, Zhu R, Welge M, Scherler K, Park JK, Rahil Z, Wang H, Auvil L, Bushell C, Lee MY, Baxter D, Bristol T, Rosas LA, Cervantes-Medina A, Czajkowski L, Han A, Memoli MJ, Taubenberger JK, and Kash JC
- Subjects
- Acute Disease, Adolescent, Adult, Convalescence, Cross Protection, Female, Gene Expression Profiling, Healthy Volunteers, Hemagglutination Inhibition Tests, Human Experimentation, Humans, Influenza A Virus, H1N1 Subtype, Influenza, Human blood, Male, Middle Aged, Virus Shedding, Young Adult, Antibodies, Viral blood, Hemagglutinin Glycoproteins, Influenza Virus immunology, Influenza, Human immunology, Leukocytes immunology, Neuraminidase immunology
- Abstract
In this study, we examined the relationships between anti-influenza virus serum antibody titers, clinical disease, and peripheral blood leukocyte (PBL) global gene expression during presymptomatic, acute, and convalescent illness in 83 participants infected with 2009 pandemic H1N1 virus in a human influenza challenge model. Using traditional statistical and logistic regression modeling approaches, profiles of differentially expressed genes that correlated with active viral shedding, predicted length of viral shedding, and predicted illness severity were identified. These analyses further demonstrated that challenge participants fell into three peripheral blood leukocyte gene expression phenotypes that significantly correlated with different clinical outcomes and prechallenge serum titers of antibodies specific for the viral neuraminidase, hemagglutinin head, and hemagglutinin stalk. Higher prechallenge serum antibody titers were inversely correlated with leukocyte responsiveness in participants with active disease and could mask expression of peripheral blood markers of clinical disease in some participants, including viral shedding and symptom severity. Consequently, preexisting anti-influenza antibodies may modulate PBL gene expression, and this must be taken into consideration in the development and interpretation of peripheral blood diagnostic and prognostic assays of influenza infection. IMPORTANCE Influenza A viruses are significant human pathogens that caused 83,000 deaths in the United States during 2017 to 2018, and there is need to understand the molecular correlates of illness and to identify prognostic markers of viral infection, symptom severity, and disease course. Preexisting antibodies against viral neuraminidase (NA) and hemagglutinin (HA) proteins play a critical role in lessening disease severity. We performed global gene expression profiling of peripheral blood leukocytes collected during acute and convalescent phases from a large cohort of people infected with A/H1N1pdm virus. Using statistical and machine-learning approaches, populations of genes were identified early in infection that correlated with active viral shedding, predicted length of shedding, or disease severity. Finally, these gene expression responses were differentially affected by increased levels of preexisting influenza antibodies, which could mask detection of these markers of contagiousness and disease severity in people with active clinical disease.
- Published
- 2019
- Full Text
- View/download PDF
13. Precision immunoprofiling to reveal diagnostic signatures for latent tuberculosis infection and reactivation risk stratification.
- Author
-
Robison HM, Escalante P, Valera E, Erskine CL, Auvil L, Sasieta HC, Bushell C, Welge M, and Bailey RC
- Subjects
- Adult, Aged, Algorithms, Antigens immunology, Biomarkers, Computational Biology, Cytokines immunology, Diagnostic Tests, Routine, Female, Humans, Immune System, Latent Tuberculosis immunology, Leukocytes, Mononuclear immunology, Male, Mass Screening methods, Middle Aged, Mycobacterium tuberculosis, Photons, Prospective Studies, Risk Assessment, Silicon, Tuberculin Test, Workflow, Immunoassay methods, Latent Tuberculosis diagnosis, Leukocytes, Mononuclear microbiology, Machine Learning
- Abstract
Latent tuberculosis infection (LTBI) is estimated in nearly one quarter of the world's population, and of those immunocompetent and infected ~10% will proceed to active tuberculosis (TB). Current diagnostics cannot definitively identify LTBI and provide no insight into reactivation risk, thereby defining an unmet diagnostic challenge of incredible global significance. We introduce a new machine-learning-driven approach to LTBI diagnostics that leverages a high throughput, multiplexed cytokine detection technology and powerful bioinformatics to reveal multi-marker signatures for LTBI diagnosis and risk stratification. This approach is enabled through an individualized normalization procedure that allows disease-relevant biomarker signatures to be revealed despite heterogeneity in basal immune response. Specifically, cytokines secreted from antigen-challenged peripheral blood mononuclear cells were detected using silicon photonic sensor arrays and multidimensional data correlation of individually-normalized immune responses revealed signatures important for LTBI status. These results demonstrate a powerful combination of multiplexed biomarker detection technologies, precision immune normalization, and feature selection algorithms that revealed positively correlated multi-biomarker signatures for LTBI status and reactivation risk stratification from a relatively simple blood-based assay., (© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
14. Reconstruction and evolutionary history of eutherian chromosomes.
- Author
-
Kim J, Farré M, Auvil L, Capitanu B, Larkin DM, Ma J, and Lewin HA
- Subjects
- Algorithms, Animals, Cell Lineage, Chromosome Breakpoints, Computational Biology methods, Gene Rearrangement, Genome, Genome, Human, Humans, In Situ Hybridization, Fluorescence, Phylogeny, Software, Synteny, Chromosomes ultrastructure, Eutheria genetics, Evolution, Molecular
- Abstract
Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over ∼105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first ∼60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases., Competing Interests: The authors declare no conflict of interest.
- Published
- 2017
- Full Text
- View/download PDF
15. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles.
- Author
-
Farré M, Narayan J, Slavov GT, Damas J, Auvil L, Li C, Jarvis ED, Burt DW, Griffin DK, and Larkin DM
- Subjects
- Alligators and Crocodiles genetics, Animals, Birds genetics, Chromosome Mapping, Chromosomes genetics, Reptiles genetics, Sequence Alignment, Sequence Analysis, DNA, Sequence Homology, Evolution, Molecular, Genome genetics, Phylogeny, Synteny genetics
- Abstract
Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes., (© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2016
- Full Text
- View/download PDF
16. Reference-assisted chromosome assembly.
- Author
-
Kim J, Larkin DM, Cai Q, Asan, Zhang Y, Ge RL, Auvil L, Capitanu B, Zhang G, Lewin HA, and Ma J
- Subjects
- Animals, Antelopes genetics, Cattle, Chromosome Mapping methods, Evolution, Molecular, Gene Rearrangement genetics, Humans, Reproducibility of Results, Sequence Analysis, DNA methods, Algorithms, Chromosomes genetics, Genome genetics, Genomics methods
- Abstract
One of the most difficult problems in modern genomics is the assembly of full-length chromosomes using next generation sequencing (NGS) data. To address this problem, we developed "reference-assisted chromosome assembly" (RACA), an algorithm to reliably order and orient sequence scaffolds generated by NGS and assemblers into longer chromosomal fragments using comparative genome information and paired-end reads. Evaluation of results using simulated and real genome assemblies indicates that our approach can substantially improve genomes generated by a wide variety of de novo assemblers if a good reference assembly of a closely related species and outgroup genomes are available. We used RACA to reconstruct 60 Tibetan antelope (Pantholops hodgsonii) chromosome fragments from 1,434 SOAPdenovo sequence scaffolds, of which 16 chromosome fragments were homologous to complete cattle chromosomes. Experimental validation by PCR showed that predictions made by RACA are highly accurate. Our results indicate that RACA will significantly facilitate the study of chromosome evolution and genome rearrangements for the large number of genomes being sequenced by NGS that do not have a genetic or physical map.
- Published
- 2013
- Full Text
- View/download PDF
17. Draft genome sequence of the Tibetan antelope.
- Author
-
Ge RL, Cai Q, Shen YY, San A, Ma L, Zhang Y, Yi X, Chen Y, Yang L, Huang Y, He R, Hui Y, Hao M, Li Y, Wang B, Ou X, Xu J, Zhang Y, Wu K, Geng C, Zhou W, Zhou T, Irwin DM, Yang Y, Ying L, Bao H, Kim J, Larkin DM, Ma J, Lewin HA, Xing J, Platt RN 2nd, Ray DA, Auvil L, Capitanu B, Zhang X, Zhang G, Murphy RW, Wang J, Zhang YP, and Wang J
- Subjects
- Adaptation, Physiological genetics, Altitude, Animals, Base Sequence, Evolution, Molecular, Gene Ontology, Heterozygote, Molecular Sequence Data, Multigene Family genetics, Polymorphism, Single Nucleotide genetics, Selection, Genetic, Sequence Analysis, DNA, Tibet, Ursidae genetics, Antelopes genetics, Genome genetics
- Abstract
The Tibetan antelope (Pantholops hodgsonii) is endemic to the extremely inhospitable high-altitude environment of the Qinghai-Tibetan Plateau, a region that has a low partial pressure of oxygen and high ultraviolet radiation. Here we generate a draft genome of this artiodactyl and use it to detect the potential genetic bases of highland adaptation. Compared with other plain-dwelling mammals, the genome of the Tibetan antelope shows signals of adaptive evolution and gene-family expansion in genes associated with energy metabolism and oxygen transmission. Both the highland American pika, and the Tibetan antelope have signals of positive selection for genes involved in DNA repair and the production of ATPase. Genes associated with hypoxia seem to have experienced convergent evolution. Thus, our study suggests that common genetic mechanisms might have been utilized to enable high-altitude adaptation.
- Published
- 2013
- Full Text
- View/download PDF
18. Analyses of pig genomes provide insight into porcine demography and evolution.
- Author
-
Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LA, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardon P, Chen C, Cheng R, Choi SH, Chow W, Clark RC, Clee C, Crooijmans RP, Dawson HD, Dehais P, De Sapio F, Dibbits B, Drou N, Du ZQ, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner GJ, Fowler KE, Fredholm M, Fritz E, Gilbert JG, Giuffra E, Gorodkin J, Griffin DK, Harrow JL, Hayward A, Howe K, Hu ZL, Humphray SJ, Hunt T, Hornshøj H, Jeon JT, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim JH, Kim KW, Kim TH, Larson G, Lee K, Lee KT, Leggett R, Lewin HA, Li Y, Liu W, Loveland JE, Lu Y, Lunney JK, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh MP, Narayan J, Nguyen DT, Ni P, Oh SJ, Onteru S, Panitz F, Park EW, Park HS, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy JM, Rodriguez-Zas S, Rohrer GA, Rund L, Sang Y, Schachtschneider K, Schraiber JG, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey BR, Sperber G, Stadler P, Sweedler JV, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, and Schook LB
- Subjects
- Animals, Demography, Models, Animal, Molecular Sequence Data, Population Dynamics, Genome genetics, Phylogeny, Sus scrofa classification, Sus scrofa genetics
- Abstract
For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
- Published
- 2012
- Full Text
- View/download PDF
19. The yak genome and adaptation to life at high altitude.
- Author
-
Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Cao C, Hu Q, Kim J, Larkin DM, Auvil L, Capitanu B, Ma J, Lewin HA, Qian X, Lang Y, Zhou R, Wang L, Wang K, Xia J, Liao S, Pan S, Lu X, Hou H, Wang Y, Zang X, Yin Y, Ma H, Zhang J, Wang Z, Zhang Y, Zhang D, Yonezawa T, Hasegawa M, Zhong Y, Liu W, Zhang Y, Huang Z, Zhang S, Long R, Yang H, Wang J, Lenstra JA, Cooper DN, Wu Y, Wang J, Shi P, Wang J, and Liu J
- Subjects
- Animals, Base Sequence, DNA genetics, Evolution, Molecular, Female, Genome, Molecular Sequence Data, Multigene Family, Phylogeny, Selection, Genetic, Species Specificity, Acclimatization genetics, Altitude, Cattle genetics, Cattle physiology
- Abstract
Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.
- Published
- 2012
- Full Text
- View/download PDF
20. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories.
- Author
-
Larkin DM, Pape G, Donthu R, Auvil L, Welge M, and Lewin HA
- Subjects
- Animals, Gene Duplication, Genome, Humans, Models, Genetic, Selection, Genetic, Chromosome Breakage, Chromosomes, Mammalian genetics, Evolution, Molecular, Synteny genetics
- Abstract
The persistence of large blocks of homologous synteny and a high frequency of breakpoint reuse are distinctive features of mammalian chromosomes that are not well understood in evolutionary terms. To gain a better understanding of the evolutionary forces that affect genome architecture, synteny relationships among 10 amniotes (human, chimp, macaque, rat, mouse, pig, cattle, dog, opossum, and chicken) were compared at <1 human-Mbp resolution. Homologous synteny blocks (HSBs; N = 2233) and chromosome evolutionary breakpoint regions (EBRs; N = 1064) were identified from pairwise comparisons of all genomes. Analysis of the size distribution of HSBs shared in all 10 species' chromosomes (msHSBs) identified three (>20 Mbp) that are larger than expected by chance. Gene network analysis of msHSBs >3 human-Mbp and EBRs <1 Mbp demonstrated that msHSBs are significantly enriched for genes involved in development of the central nervous and other organ systems, whereas EBRs are enriched for genes associated with adaptive functions. In addition, we found EBRs are significantly enriched for structural variations (segmental duplications, copy number variants, and indels), retrotransposed and zinc finger genes, and single nucleotide polymorphisms. These results demonstrate that chromosome breakage in evolution is nonrandom and that HSBs and EBRs are evolving in distinctly different ways. We suggest that natural selection acts on the genome to maintain combinations of genes and their regulatory elements that are essential to fundamental processes of amniote development and biological organization. Furthermore, EBRs may be used extensively to generate new genetic variation and novel combinations of genes and regulatory elements that contribute to adaptive phenotypes.
- Published
- 2009
- Full Text
- View/download PDF
21. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps.
- Author
-
Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'brien SJ, Pevzner PA, and Lewin HA
- Subjects
- Animals, Cats genetics, Cattle genetics, Centromere genetics, Chromosomal Instability, Chromosome Aberrations, Chromosome Inversion, Chromosome Mapping, Chromosomes, Human genetics, Computational Biology, Dogs genetics, Genome, Human, Horses genetics, Humans, Mice genetics, Neoplasms genetics, Rats genetics, Swine genetics, Telomere genetics, Chromosome Breakage, Chromosomes, Mammalian genetics, Evolution, Molecular, Genome, Mammals genetics, Synteny
- Abstract
The genome organizations of eight phylogenetically distinct species from five mammalian orders were compared in order to address fundamental questions relating to mammalian chromosomal evolution. Rates of chromosome evolution within mammalian orders were found to increase since the Cretaceous-Tertiary boundary. Nearly 20% of chromosome breakpoint regions were reused during mammalian evolution; these reuse sites are also enriched for centromeres. Analysis of gene content in and around evolutionary breakpoint regions revealed increased gene density relative to the genome-wide average. We found that segmental duplications populate the majority of primate-specific breakpoints and often flank inverted chromosome segments, implicating their role in chromosomal rearrangement.
- Published
- 2005
- Full Text
- View/download PDF
22. Three-dimensional reconstruction of extravascular matrix patterns and blood vessels in human uveal melanoma tissue: techniques and preliminary findings.
- Author
-
Chen X, Ai Z, Rasmussen M, Bajcsy P, Auvil L, Welge M, Leach L, Vangveeravong S, Maniotis AJ, and Folberg R
- Subjects
- Antigens, CD34 metabolism, Fluorescent Antibody Technique, Indirect, Humans, Imaging, Three-Dimensional methods, Laminin metabolism, Microscopy, Confocal, Microscopy, Fluorescence, Image Processing, Computer-Assisted methods, Melanoma blood supply, Neovascularization, Pathologic pathology, Uveal Neoplasms blood supply
- Abstract
Purpose: Looping patterns rich in laminin are present in tissue samples of primary aggressive human uveal melanomas and their metastases. Because these extravascular patterns connect to blood vessels and transmit fluid in vitro and in vivo, the three-dimensional configuration of these patterns has been the subject of considerable speculation. In the current study, methods were devised to describe the three-dimensional configuration of looping extravascular matrix patterns in archival human uveal melanoma tissue., Methods: Twenty-five serial 4-microm-thick sections from primary uveal melanoma tissue were labeled with fluorescence-tagged laminin and examined by confocal microscopy to generate a Z-series within each 4-microm-thick section. The z-series from each section was stacked using an immersive three-dimensional environment (ImmersaDesk; Fakespace, Kitchener, Ontario, Canada) to allow for precise alignment and compensation for distortion artifact., Results: Extravascular matrix patterns that appeared to form loops in two dimensions were shown to represent thin wrappings around branching and twisting cylindrical groupings of melanoma cells. Blood vessels joined with some of these laminin-positive cylindrical wrappings., Conclusions: In this preliminary study, periodic acid-Schiff (PAS)-positive laminin-rich looping patterns in two-dimensional tissue sections appear to outline cylindrical branching packets of melanoma cells rather than spheroidal nests. The conduction of fluid through this extravascular system may provide a novel delivery system for contrast and diagnostic agents.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.