1. Unraveling the core-shell structure of ligand-capped Sn/SnOx nanoparticles by surface-enhanced nuclear magnetic resonance, Mössbauer, and X-ray absorption spectroscopies
- Author
-
Maksym V. Kovalenko, Maxence Valla, Dominik Kriegner, Kostiantyn V. Kravchyk, Anne Lesage, Lyndon Emsley, Christophe Copéret, Bernard Malaman, Maarten Nachtegaal, Antoine de Kergommeaux, Peter Reiss, Julian Stangl, Marc Walter, Aaron J. Rossini, Loredana Protesescu, Department of Chemistry and Applied Biosciences [ETH Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Solid-State NMR Methods for Materials - Méthodes de RMN à l'état solide pour les matériaux, Institut des Sciences Analytiques (ISA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute of Semiconductor and Solid State Physics, Johannes Kepler Universität Linz (JKU), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Paul Scherrer Institute (PSI), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), EQUIPEX contract ANR-10-EQPX-47-01, ERC Advanced Grant No. 320860, ERC Starting Grant No. 306733, EU Marie-Curie IIF fellowship (PIIF-GA-2010-274574), SNF fellowship (200021_143600), Austrian Academy of Sciences (DOC fellowship)., ANR-10-EQPX-0047,SENS,RMN de Surface Exalté par Polarisation Dynamique Nucléaire(2010), AII - Amsterdam institute for Infection and Immunity, APH - Amsterdam Public Health, Global Health, Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Materials science ,POLARIZATION ,XAS ,Analytical chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,Nanoparticle ,Li-ion batteries ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,OXIDATION ,01 natural sciences ,Nanomaterials ,dynamic nuclear polarization ,Nuclear magnetic resonance ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,General Materials Science ,SEMICONDUCTOR NANOCRYSTALS ,SNO2 ,X-ray absorption spectroscopy ,HIGH-FREQUENCY ,Extended X-ray absorption fine structure ,colloidal ,General Engineering ,Nuclear magnetic resonance spectroscopy ,021001 nanoscience & nanotechnology ,TRANSFORMATION ,0104 chemical sciences ,EXAFS ,Solid-state nuclear magnetic resonance ,chemistry ,TIN ,NMR-SPECTROSCOPY ,core/shell structure ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,solid-state NMR ,MONODISPERSE ,nanoparticles ,Absorption (chemistry) ,0210 nano-technology ,Tin ,Dynamic nuclear polarization ,Solid-state NMR ,Nanoparticles ,Colloidal ,Core/shell structure - Abstract
A particularly difficult challenge in the chemistry of nanomaterials is the detailed structural and chemical analysis of multicomponent nano-objects. This is especially true for the determination of spatially resolved information. In this study, we demonstrate that dynamic nuclear polarization surface-enhanced solid-state NMR spectroscopy (DNP-SENS), which provides selective and enhanced NMR signal collection from the (near) surface regions of a sample, can be used to resolve the core–shell structure of a nanoparticle. Li-ion anode materials, monodisperse 10–20 nm large tin nanoparticles covered with a ∼3 nm thick layer of native oxides, were used in this case study. DNP-SENS selectively enhanced the weak 119Sn NMR signal of the amorphous surface SnO2 layer. Mössbauer and X-ray absorption spectroscopies identified a subsurface SnO phase and quantified the atomic fractions of both oxides. Finally, temperature-dependent X-ray diffraction measurements were used to probe the metallic β-Sn core and indicated that even after 8 months of storage at 255 K there are no signs of conversion of the metallic β-Sn core into a brittle semiconducting α-phase, a phase transition which normally occurs in bulk tin at 286 K (13 °C). Taken together, these results indicate that Sn/SnOx nanoparticles have core/shell1/shell2 structure of Sn/SnO/SnO2 phases. The study suggests that DNP-SENS experiments can be carried on many types of uniform colloidal nanomaterials containing NMR-active nuclei, in the presence of either hydrophilic (ion-capped surfaces) or hydrophobic (capping ligands with long hydrocarbon chains) surface functionalities., ACS Nano, 8 (3), ISSN:1936-0851, ISSN:1936-086X
- Published
- 2014
- Full Text
- View/download PDF