1. Making Sense of Theories, Models, and Frameworks in Digital Health Behavior Change Design: Qualitative Descriptive Study
- Author
-
Paula Voorheis, Aunima R Bhuiya, Kerry Kuluski, Quynh Pham, and Jeremy Petch
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Public aspects of medicine ,RA1-1270 - Abstract
BackgroundDigital health interventions are increasingly being designed to support health behaviors. Although digital health interventions informed by behavioral science theories, models, and frameworks (TMFs) are more likely to be effective than those designed without them, design teams often struggle to use these evidence-informed tools. Until now, little work has been done to clarify the ways in which behavioral science TMFs can add value to digital health design. ObjectiveThe aim of this study was to better understand how digital health design leaders select and use TMFs in design practice. The questions that were addressed included how do design leaders perceive the value of TMFs in digital health design, what considerations do design leaders make when selecting and applying TMFs, and what do design leaders think is needed in the future to advance the utility of TMFs in digital health design? MethodsThis study used a qualitative description design to understand the experiences and perspectives of digital health design leaders. The participants were identified through purposive and snowball sampling. Semistructured interviews were conducted via Zoom software. Interviews were audio-recorded and transcribed using Otter.ai software. Furthermore, 3 researchers coded a sample of interview transcripts and confirmed the coding strategy. One researcher completed the qualitative analysis using a codebook thematic analysis approach. ResultsDesign leaders had mixed opinions on the value of behavioral science TMFs in digital health design. Leaders suggested that TMFs added the most value when viewed as a starting point rather than the final destination for evidence-informed design. Specifically, these tools added value when they acted as a gateway drug to behavioral science, supported health behavior conceptualization, were balanced with expert knowledge and user-centered design principles, were complementary to existing design methods, and supported both individual- and systems-level thinking. Design leaders also felt that there was a considerable nuance in selecting the most value-adding TMFs. Considerations should be made regarding their source, appropriateness, complexity, accessibility, adaptability, evidence base, purpose, influence, audience, fit with team expertise, fit with team culture, and fit with external pressures. Design leaders suggested multiple opportunities to advance the use of TMFs. These included improving TMF reporting, design, and accessibility, as well as improving design teams' capacity to use TMFs appropriately in practice. ConclusionsWhen designing a digital health behavior change intervention, using TMFs can help design teams to systematically integrate behavioral insights. The future of digital health behavior change design demands an easier way for designers to integrate evidence-based TMFs into practice.
- Published
- 2023
- Full Text
- View/download PDF