46 results on '"Audrey Hessel"'
Search Results
2. Caspase-1-driven neutrophil pyroptosis and its role in host susceptibility to Pseudomonas aeruginosa.
- Author
-
Karin Santoni, David Pericat, Leana Gorse, Julien Buyck, Miriam Pinilla, Laure Prouvensier, Salimata Bagayoko, Audrey Hessel, Stephen Adonai Leon-Icaza, Elisabeth Bellard, Serge Mazères, Emilie Doz-Deblauwe, Nathalie Winter, Christophe Paget, Jean-Philippe Girard, Christine T N Pham, Céline Cougoule, Renaud Poincloux, Mohamed Lamkanfi, Emma Lefrançais, Etienne Meunier, and Rémi Planès
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Biology (General) ,QH301-705.5 - Abstract
Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1β secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1β production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.
- Published
- 2022
- Full Text
- View/download PDF
3. Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology.
- Author
-
Salimata Bagayoko, Stephen Adonai Leon-Icaza, Miriam Pinilla, Audrey Hessel, Karin Santoni, David Péricat, Pierre-Jean Bordignon, Flavie Moreau, Elif Eren, Aurélien Boyancé, Emmanuelle Naser, Lise Lefèvre, Céline Berrone, Nino Iakobachvili, Arnaud Metais, Yoann Rombouts, Geanncarlo Lugo-Villarino, Agnès Coste, Ina Attrée, Dara W Frank, Hans Clevers, Peter J Peters, Céline Cougoule, Rémi Planès, and Etienne Meunier
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Biology (General) ,QH301-705.5 - Abstract
Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.
- Published
- 2021
- Full Text
- View/download PDF
4. Publisher Correction: Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR
- Author
-
Diego F. Gauto, Pavel Macek, Duccio Malinverni, Hugo Fraga, Matteo Paloni, Iva Sučec, Audrey Hessel, Juan Pablo Bustamante, Alessandro Barducci, and Paul Schanda
- Subjects
Science - Published
- 2022
- Full Text
- View/download PDF
5. Slow conformational exchange and overall rocking motion in ubiquitin protein crystals
- Author
-
Vilius Kurauskas, Sergei A. Izmailov, Olga N. Rogacheva, Audrey Hessel, Isabel Ayala, Joyce Woodhouse, Anastasya Shilova, Yi Xue, Tairan Yuwen, Nicolas Coquelle, Jacques-Philippe Colletier, Nikolai R. Skrynnikov, and Paul Schanda
- Subjects
Science - Abstract
X-ray crystallography is the main method for protein structure determination. Here the authors combine solid-state NMR measurements and molecular dynamics simulations and show that crystal packing alters the thermodynamics and kinetics of local conformational exchange as well as overall rocking motion of protein molecules in the crystal lattice.
- Published
- 2017
- Full Text
- View/download PDF
6. Immunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: Induction of Surface-Reactive and Rosette-Disrupting Antibodies to VarO Infected Erythrocytes.
- Author
-
Micheline Guillotte, Alexandre Juillerat, Sébastien Igonet, Audrey Hessel, Stéphane Petres, Elodie Crublet, Cécile Le Scanf, Anita Lewit-Bentley, Graham A Bentley, Inès Vigan-Womas, and Odile Mercereau-Puijalon
- Subjects
Medicine ,Science - Abstract
Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting.
- Published
- 2015
- Full Text
- View/download PDF
7. Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting.
- Author
-
Inès Vigan-Womas, Micheline Guillotte, Alexandre Juillerat, Audrey Hessel, Bertrand Raynal, Patrick England, Jacques H Cohen, Olivier Bertrand, Thierry Peyrard, Graham A Bentley, Anita Lewit-Bentley, and Odile Mercereau-Puijalon
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Biology (General) ,QH301-705.5 - Abstract
The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhesins, with RBC binding being assigned to the N-terminal DBL1α₁ domain. Here, we identify the ABO blood group as the main receptor for VarO rosetting, with a marked preference for group A over group B, which in turn is preferred to group O RBCs. We show that recombinant NTS-DBL1α₁ and NTS-DBL1α₁-CIDR1γ reproduce the VarO-iRBC blood group preference and document direct binding to blood group trisaccharides by surface plasmon resonance. More detailed RBC subgroup analysis showed preferred binding to group A₁, weaker binding to groups A₂ and B, and least binding to groups A(x) and O. The 2.8 Å resolution crystal structure of the PfEMP1-VarO Head region, NTS-DBL1α₁-CIDR1γ, reveals extensive contacts between the DBL1α₁ and CIDR1γ and shows that the NTS-DBL1α₁ hinge region is essential for RBC binding. Computer docking of the blood group trisaccharides and subsequent site-directed mutagenesis localized the RBC-binding site to the face opposite to the heparin-binding site of NTS-DBLα₁. RBC binding involves residues that are conserved between rosette-forming PfEMP1 adhesins, opening novel opportunities for intervention against severe malaria. By deciphering the structural basis of blood group preferences in rosetting, we provide a link between ABO blood grouppolymorphisms and rosette-forming adhesins, consistent with the selective role of falciparum malaria on human genetic makeup.
- Published
- 2012
- Full Text
- View/download PDF
8. EEF2-inactivating toxins engage the NLRP1 inflammasome and promote epithelial barrier disruption uponPseudomonasinfection
- Author
-
Miriam Pinilla, Raoul Mazars, Romain Vergé, Leana Gorse, Karin Santoni, Kim Samirah Robinson, Gee Ann Toh, Laure Prouvensier, Stephen Adonai LeonIcaza, Audrey Hessel, David Péricat, Marlène Murris, Anthony Henras, Julien Buyck, Céline Cougoule, Emmanuel Ravet, Franklin L. Zhong, Rémi Planès, and Etienne Meunier
- Abstract
The intracellular inflammasome complex have been implicated in the maladaptive tissue damage and inflammation observed in chronicPseudomonas aeruginosainfection. Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated byP. aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects Exotoxin A (EXOA), a ribotoxin released byP. aeruginosaType 2 Secretion System (T2SS) during chronic infection. Mechanistically, EXOA-driven Eukaryotic Elongation Factor 2 (EEF2) ribosylation and covalent inactivation promotes ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, Diphtheria Toxin and Cholix Toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, Cystic Fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance ofP. aeruginosavirulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.KEY POINTSP. aeruginosainduces NLRP1-dependent pyroptosis in human corneal and nasal epithelial cellsP. aeruginosaExotoxin A (EXOA) and other EEF2-inactivating bacterial exotoxins activate the human NLRP1 inflammasomeEEF2 inactivation promotes ribotoxic stress response and ZAKα kinase-dependent NLRP1 inflammasome activation.Bronchial epithelial cells from Cystic Fibrosis patients show extreme sensitivity to ribotoxic stress-dependent NLRP1 inflammasome activation in response to Exotoxin AP38 and ZAKα inhibition protects Cystic Fibrosis epithelial cell from EXOA-induced pyroptosis
- Published
- 2023
9. Human NLRP1 Is a Sensor of Pathogenic Coronavirus 3CL Proteases in Lung Epithelial Cells
- Author
-
Rémi Planès, Miriam Pinilla, Karin Santoni, Audrey Hessel, Charlotte Passemar, Kenneth Lay, Perrine Paillette, Ana-Luiza Valadao, Kim Samirah Robinson, Paul Bastard, Nathaniel L. Lam, Ricardo Fradique, Ida Rossi, David Pericat, Salimata Bagayoko, Stephen Adonai Leon-Icaza, Yoann Rombouts, Eric Perouzel, Michele Tiraby, COVID Human Genetic Effort, Qian Zhang, Pietro Cicuta, Emmanuelle Jouanguy, Olivier Neyrolles, Clare Bryant, Rodrigo A. Floto, Caroline Goujon, Franklin Lei Zhong, Guillaume Martin-Blondel, Stein Silva, Jean-Laurent Casanova, Celine Cougoule, Bruno Reversade, Julien Marcoux, Emmanuel Ravet, and Etienne Meunier
- Subjects
History ,Polymers and Plastics ,Business and International Management ,Industrial and Manufacturing Engineering - Published
- 2022
10. Caspase-1-driven neutrophil pyroptosis promotes an incomplete NETosis upon Pseudomonas aeruginosa infection
- Author
-
Serge Mazères, Stephen Adonai Leon-Icaza, Mohamed Lamkanfi, Karin Santoni, Christine T.N. Pham, Jean-Philippe Girard, Etienne Meunier, Emilie Doz-Deblauwe, Audrey Hessel, Odile Burlet-Schiltz, Christophe Paget, David Péricat, Aylward F, Yoann Rombouts, Anne Gonzalez-de-Peredo, Salimata Bagayoko, Nathalie Winter, Renaud Poincloux, Pierre-Jean Bordignon, Céline Cougoule, Rémi Planès, Emma Lefrançais, Elisabeth Bellard, Miriam Pinilla, and Abdderrahim R
- Subjects
0303 health sciences ,biology ,Chemistry ,medicine.medical_treatment ,Pyroptosis ,Caspase 1 ,Inflammasome ,Inflammation ,Phospholipase ,3. Good health ,Cell biology ,03 medical and health sciences ,0302 clinical medicine ,Histone ,Cytokine ,NLRC4 ,medicine ,biology.protein ,medicine.symptom ,030217 neurology & neurosurgery ,030304 developmental biology ,medicine.drug - Abstract
Multiple neutrophil death programs contribute to host defense against infections. Although expressing all necessary components, neutrophils specifically fail to undergo pyroptosis, a lytic form of cell death triggered by the activation of the pro-inflammatory complex inflammasome. In the light of the arm race, we hypothesized that intrinsic neutrophil pyroptosis resistance might be bypassed in response to specific microbial species. We show that Pseudomonas aeruginosa (P. aeruginosa) stimulates Caspase-1-dependent pyroptosis in human and murine neutrophils. Mechanistically, activated NLRC4 inflammasome supports Caspase-1-driven Gasdermin-D (GSDMD) activation, IL-1β cytokine release and neutrophil pyroptosis. Furthermore, GSDMD activates Peptidyl Arginine Deaminase-4 which drives an “incomplete NETosis” where neutrophil DNA fills the cell cytosol but fails crossing plasma membrane. Finally, we show that neutrophil Caspase-1 account for IL-1β production and contributes to various P. aeruginosa strains spread in mice. Overall, we demonstrate that neutrophils are fully competent for Caspase-1-dependent pyroptosis, which drives an unsuspected “incomplete NETosis”.SummaryNeutrophils play an essential roles against infections. Although multiple neutrophil death programs contribute to host defense against infections, they fail to undergo pyroptosis, a pro-inflammatory form of cell death. Upon Infections, pyroptosis can be induced in macrophages or epithelial cells upon activation of pro-inflammatory complexes, inflammasomes that trigger Caspase-1-driven Gasdermin dependent plasma membrane lysis. In the light of host-microbe interactions, we hypothesized that yet to find microbial species might hold the capacity to overcome neutrophil resistance to inflammasome-driven pyroptosis. Among several bacterial species, we describe that the bacterium Pseudomonas aeruginosa specifically engages the NLRC4 inflammasome, which promotes Caspase-1-dependent Gasdermin-D activation and subsequent neutrophil pyroptosis. Furthermore, inflammasome-driven pyroptosis leads to DNA decondensation and expansion into the host cell cytosol but not to the so called Neutrophil Extracellular Trap (NET) release as DNA fails breaching the plasma membrane. Finally, in vivo P. aeruginosa infections highlight that Caspase-1-driven neutrophil pyroptosis is functional and is detrimental upon P. aeruginosa infection. Altogether, our results unexpectedly underline neutrophil competence for Caspase-1-dependent pyroptosis, a process that contributes to host susceptibility to P. aeruginosa infection.
- Published
- 2021
11. Aromatic Ring Dynamics, Thermal Activation, and Transient Conformations of a 468 kDa Enzyme by Specific 1H–13C Labeling and Fast Magic-Angle Spinning NMR
- Author
-
Diego F. Gauto, David Gajan, Roman J. Lichtenecker, Alessandro Barducci, Audrey Hessel, Masatsune Kainosho, Paul Schanda, Pavel Macek, Yohei Miyanoiri, Tsutomu Terauchi, Jérôme Boisbouvier, and Hugo Pacheco de Freitas Fraga
- Subjects
Chemistry ,Resolution (electron density) ,Trimer ,Protonation ,General Chemistry ,010402 general chemistry ,Ring (chemistry) ,01 natural sciences ,Biochemistry ,Catalysis ,0104 chemical sciences ,Microsecond ,Colloid and Surface Chemistry ,Chemical physics ,Picosecond ,Magic angle spinning ,Spinning - Abstract
Aromatic residues are located at structurally important sites of many proteins. Probing their interactions and dynamics can provide important functional insight but is challenging in large proteins. Here, we introduce approaches to characterize the dynamics of phenylalanine residues using 1H-detected fast magic-angle spinning (MAS) NMR combined with a tailored isotope-labeling scheme. Our approach yields isolated two-spin systems that are ideally suited for artifact-free dynamics measurements, and allows probing motions effectively without molecular weight limitations. The application to the TET2 enzyme assembly of ∼0.5 MDa size, the currently largest protein assigned by MAS NMR, provides insights into motions occurring on a wide range of time scales (picoseconds to milliseconds). We quantitatively probe ring-flip motions and show the temperature dependence by MAS NMR measurements down to 100 K. Interestingly, favorable line widths are observed down to 100 K, with potential implications for DNP NMR. Furthermore, we report the first 13C R1ρ MAS NMR relaxation-dispersion measurements and detect structural excursions occurring on a microsecond time scale in the entry pore to the catalytic chamber and at a trimer interface that was proposed as the exit pore. We show that the labeling scheme with deuteration at ca. 50 kHz MAS provides superior resolution compared to 100 kHz MAS experiments with protonated, uniformly 13C-labeled samples.
- Published
- 2019
12. Phospholipid peroxidation fuels ExoU phospholipase-dependent cell necrosis and supportsPseudomonas aeruginosa-driven pathology
- Author
-
Aurélien Boyance, Karin Santoni, Stephen Adonai Leon-Icaza, Hans Clevers, Yoann Rombouts, Arnaud Métais, Etienne Meunier, Agnès Coste, Emmanuelle Naser, Ina Attrée, Peter J. Peters, Rémi Planès, Audrey Hessel, Elif Eren, Salimata Bagayoko, Céline Berrone, Céline Cougoule, N. Iacobachvili, Pierre-Jean Bordignon, Miriam Pinilla, Flavie Moreau, Lise Lefèvre, and Dara W. Frank
- Subjects
Pathology ,medicine.medical_specialty ,Necrosis ,Chemistry ,Pseudomonas aeruginosa ,Phospholipid ,Virulence ,Phospholipase ,GPX4 ,medicine.disease_cause ,Lipid peroxidation ,chemistry.chemical_compound ,Immune system ,medicine ,medicine.symptom - Abstract
SummaryRegulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage.Pseudomonas aeruginosaexpresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial eliminationin vitroandin vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogenBurkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.
- Published
- 2021
13. Pseudomonas aeruginosa infection reveals a Caspase-1-dependent neutrophil pyroptosis pathway that restrains damaging Histone release
- Author
-
Rémi Planès, Karin Santoni, Salimata Bagayoko, David Pericat, Pierre-Jean Bordignon, Audrey Hessel, Miriam Pinilla, Stephen-Andonai Leon-Icaza, Elisabeth Bellard, Serge Mazères, Rim Abdderrahim, Emilie Doz-Deblauwe, Frances Aylward, Yoann Rombouts, Nathalie Winter, Jean-Philippe Girard, Odile Burlet-Schiltz, Christine T.N. Pham, Mohamed Lamkanfi, Christophe Paget, Céline Cougoule, Anne Gonzale
- Published
- 2021
- Full Text
- View/download PDF
14. Human NLRP1 Is a Sensor of 3CL Proteases from Pathogenic Coronaviruses in Lung Epithelial Cells
- Author
-
David Péricat, Salimata Bagayoko, Kenneth Lay, Ana-Luiza Valadao, Bruno Reversade, Qian Zhang, Perrine Paillette, Jean-Laurent Casanova, Kim S. Robinson, Eric Perouzel, Céline Cougoule, Etienne Meunier, Karin Santoni, Stephen Adonai Leon-Icaza, Olivier Neyrolles, Franklin L. Zhong, Caroline Goujon, Julien Marcoux, Ida Rossi, Covid Human Genetic Effort, Yoann Rombouts, Guillaume Martin-Blondel, Rémi Planès, Audrey Hessel, Miriam Pinilla, Michele Tiraby, Stein Silva, Emmanuel Ravet, Paul Bastard, and Emmanuelle Jouanguy
- Subjects
History ,Proteases ,Polymers and Plastics ,NLRP1 ,business.industry ,education ,Pyroptosis ,Inflammasome ,Inflammation ,Type I interferon production ,medicine.disease_cause ,Industrial and Manufacturing Engineering ,Interferon ,Immunology ,medicine ,Business and International Management ,medicine.symptom ,business ,health care economics and organizations ,medicine.drug ,Coronavirus - Abstract
Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly, cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also cleave and inactivate the pyroptosis executioner Gasdermin (GSDM)-D. Consequently, Caspase-3 and GSDM-E promote alternative cell pyroptosis, a process exacerbated in cells exhibiting imparied type I interferon production. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to Interferon alterations identify GSDM-E/Caspase-3 as biological markers of disease severity. Overall, our findings identify NLRP1 as a key sensor of SARS-CoV-2 infection in lung epithelia. Funding Information: This project has been funded on lab own funds from unrelated grants from the Fondation pour la Recherche Medicale (FRM) and ERC StG (INFLAME) to EM, from ERC StG (ANTIViR) to CG, by the French Ministry of Health with the participation of the Groupement Interregional de Recherche Clinique et d’Innovation Sud-Ouest Outre-Mer (PHRCI 2020 IMMUNOMARK-COV) to G-M.B. The ASB3 structure is supported by LABEX, Investissement d’Avenir and foundation Bettencourt grants to ON. MP and RP were respectively funded by a CIFRE PhD fellowship and a research grant from Invivogen. SB is supported by a PhD fellowship from Mali ministry of education and from the FRM (FDT 12794). SALC is supported by a Vaincre La Mucoviscidose (VLM) PhD fellowship. Declaration of Interests: Authors declare no conflict of interest. Ethics Approval Statement: All donors had given written informed consent and the study was approved by the ethical review board “Comite de Protection des Personnes Est-III” (ID-RCB 2020-A01292-37).
- Published
- 2021
15. Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports $Pseudomonas\ aeruginosa$-driven pathology
- Author
-
Flavie Moreau, Geanncarlo Lugo-Villarino, Aurélien Boyance, Arnaud Métais, Peter J. Peters, Karin Santoni, Céline Cougoule, Stephen Adonai Leon-Icaza, Hans Clevers, Lise Lefèvre, Etienne Meunier, Yoann Rombouts, Agnès Coste, Pierre-Jean Bordignon, Miriam Pinilla, Emmanuelle Naser, Audrey Hessel, David Péricat, Ina Attrée, Rémi Planès, Nino Iakobachvili, Dara W. Frank, Elif Eren, Salimata Bagayoko, Céline Berrone, Institut de pharmacologie et de biologie structurale (IPBS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Geroscience and rejuvenation research center (RESTORE), Université de Toulouse (UT)-Université de Toulouse (UT)-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Maastricht University [Maastricht], Groupe Pathogenèse Bactérienne et Réponses Cellulaires / Bacterial Pathogenesis and Cellular Responses Group (IBS-PBRC), Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Medical College of Wisconsin [Milwaukee] (MCW), Hubrecht Institute [Utrecht, Netherlands], University Medical Center [Utrecht]-Royal Netherlands Academy of Arts and Sciences (KNAW), ANR-18-CE14-0007,ENDIABAC,LE SYSTEME NERVEUX ENTERIQUE COMME CIBLE POUR TRAITER LE DIABETE DE TYPE 2 : ROLES DES LIPIDES BIOACTIFS BACTERIENS(2018), ANR-17-CE11-0006,MacGlycoTB,Rôle de ST8SIA4 et de la polysialylation des protéines des macrophages dans la réponse immunitaire contre une infection par Mycobacterium tuberculosis(2017), European Project: 804249,INFLAME, Hubrecht Institute for Developmental Biology and Stem Cell Research, ATTREE, Ina, APPEL À PROJETS GÉNÉRIQUE 2018 - LE SYSTEME NERVEUX ENTERIQUE COMME CIBLE POUR TRAITER LE DIABETE DE TYPE 2 : ROLES DES LIPIDES BIOACTIFS BACTERIENS - - ENDIABAC2018 - ANR-18-CE14-0007 - AAPG2018 - VALID, Rôle de ST8SIA4 et de la polysialylation des protéines des macrophages dans la réponse immunitaire contre une infection par Mycobacterium tuberculosis - - MacGlycoTB2017 - ANR-17-CE11-0006 - AAPG2017 - VALID, Deciphering the host and microbial grounds that license inflammasome-mediated execution - INFLAME - 804249 - INCOMING, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, RS: M4I - Nanoscopy, and Institute of Nanoscopy (IoN)
- Subjects
Pathology ,Hydrolases ,Necrosis/metabolism ,GPX4 ,Pathology and Laboratory Medicine ,Biochemistry ,Lipid peroxidation ,Mice ,0302 clinical medicine ,Animal Cells ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Biology (General) ,0303 health sciences ,Bacterial Proteins/metabolism ,Esterases ,Lipids ,3. Good health ,Bacterial Pathogens ,Pseudomonas aeruginosa/metabolism ,Organoids ,Medical Microbiology ,Biological Cultures ,Cellular Types ,medicine.medical_specialty ,QH301-705.5 ,Virulence/physiology ,Knockout ,Immune Cells ,Immunology ,Virulence ,PATATIN-LIKE PHOSPHOLIPASES ,Transfection ,Microbiology ,03 medical and health sciences ,IMMUNE RECOGNITION ,Necrosis ,Signs and Symptoms ,Bacterial Proteins ,Pseudomonas ,Genetics ,A(2) ENZYMES ,Humans ,Pseudomonas Infections ,CYTOTOXIN EXOU ,Molecular Biology Techniques ,Microbial Pathogens ,Molecular Biology ,Lipid Peroxidation/physiology ,Blood Cells ,Bacteria ,Macrophages ,Organisms ,Biology and Life Sciences ,Proteins ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Parasitology ,Lipid Peroxidation ,Immunologic diseases. Allergy ,Clinical Medicine ,030217 neurology & neurosurgery ,Phospholipase ,medicine.disease_cause ,chemistry.chemical_compound ,White Blood Cells ,Medicine and Health Sciences ,OXIDATIVE STRESS ,Organ Cultures ,Phospholipids ,Mice, Knockout ,Chemistry ,DEATH ,Pseudomonas Aeruginosa ,LIPID-PEROXIDATION ,Enzymes ,Host-Pathogen Interactions/physiology ,Phospholipases ,SECRETION SYSTEM ,Host-Pathogen Interactions ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,medicine.symptom ,Pathogens ,Research Article ,Phospholipid ,Research and Analysis Methods ,Immune system ,Virology ,medicine ,Animals ,030304 developmental biology ,Pseudomonas aeruginosa ,Pseudomonas Infections/metabolism ,Cell Biology ,RC581-607 ,FERROPTOSIS ,Enzymology ,[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology - Abstract
Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology., Author summary Although a proper activation of various regulated cell necrosis confer a significant advantage against various infectious agents, their dysregulation drives host tissue damages that can end up with fatal sepsis. Specifically, 30% of the bacterial strains of Pseudomonas aeruginosa (P. aeruginosa) express the phospholipase A2-like toxin ExoU that is injected into host target cells through the Type-3 Secretion System. This toxin induces, through a yet unknown mechanism, a strong and fast necrotic cell death that supports fatal respiratory infections. Therefore, in this study, we sought to determine the cellular mechanisms by which ExoU triggers host cell necrosis. In this context, we found that ExoU exploits basal cellular phospholipid peroxidation to promote cell necrosis. Mechanistically, host cell lipid peroxidation stimulates ExoU phospholipase activity, which then triggers a pathological cell necrosis both in vitro and in vivo. Altogether, our results unveil that targeting host cell lipid peroxidation constitutes a virulence mechanism developed by microbial phospholipases, a process that contributes to P. aeruginosa-mediated pathology.
- Published
- 2021
16. Scedosporiosis/lomentosporiosis observational study (SOS): Clinical significance of Scedosporium species identification
- Author
-
Boris Melloni, Benoit Roze, Lilia Hasseine, Jacques-Olivier Bay, Laurence Delhaes, Dominique Toubas, Gaelle Guillerm, Xavier Iriart, Thomas Similowski, Valérie Letscher-Bru, Liana Carausu, Adela Angoulvant, Eric Caumes, Marie-Elisabeth Bougnoux, Yves Leprince, Taieb Chouaki, Cécile Molucon-Chabrot, Eric Dannaoui, Hervé Dutronc, Youssef El-Samad, Florent Morio, Morgane Mourguet, Alexandre Alanio, Berengere Gruson, Pierre Cahen, Stéphane Ranque, Anne Boullié, Julie Bonhomme, Violaine Noel, Françoise Dromer, Elisabeth Chachaty, Felipe Suarez, Beate Heym, François Bissuel, Cécile Jensen, Jean-Pierre Gangneux, Emmanuelle Mouchon, Philippe Zann, Patricia Mariani, Bernard Bouteille, Véronique Leflon-Guibout, Dea Garcia-Hermoso, Anne Scemla, Stéphane Blanche, Agnes Lefort, Dorothée Raoux-Barbot, Didier Bronnimann, Olivier Lortholary, Matthieu Revest, Fanny Lanternier, Philippe Poirier, Luc Quaesaet, Marie Machouart, Françoise Botterel-Chartier, Viviane Queyrel-Moranne, Thomas Perpoint, Anne De Tinteniac, Pascale Penn, Ana Presedo, Marie Balsat, Anne Huynh, Lelia Escaut, Noémie Gadaud, Antoine Huguenin, Martine Gari-Toussaint, Sophie Brun, Jean-Marie Forel, Blandine Rammaert, Nicole Desbois, Alain Delmer, Valérie Moal, Arnaud Fekkar, Damien Hoinard, Elizabeth Rivaud, Delphine Lancement, Laurence Pougnet, Valérie Zeller, Jacques Grill, Florence Pasquier, Fabrice Larosa, Jean-François Papon, Nina Arakelyan-Laboure, Thomas Daix, Catherine Cordonnier, Nicolas Limal, Patrick Lutz, Laurence Maulin, Céline Nourrisson, Stéphane Bretagne, Françoise Uettwiller, Florence Ader, Céline Dieval, Nicolas Traversier, Sophie Bayle, Sorya Belaz, Frédéric Villega, Flore Sicre De Fontbrune, Didier Poisson, Olivier Moquet, Guillaume Martin-Blondel, Kamel Laribi, Delphine Horeau-Langlard, Gilles Nevez, Stéphanie Branger, Audrey Hessel, Philippe Herman, Jérémie Orain, Emilie Catherinot, Frédéric Mechai, Cristina Audoly, Frédéric Gabriel, Jean-François Velly, Caroline Fritz, Muriel Alvarez, Romain Guillemain, Pascal Turlure, Grégoire Leclerc, Frederic Pene, Lionel Mannone, Frédéric Grenouillet, Yoann Prevot, Louis-Jean Couderc, Isabelle Degasne, Giovanna Ingenuo, Joséphine Dorin, Florence Persat, Pierre-Marie Roger, Nathalie Brieu, David Boutoille, Pierre Frange, Nicolas Paleiron, Christophe Joubert, Laurent Hustache-Mathieu, Raoul Herbrecht, Frédéric Janvier, Lenaïg Le Clech, Cécile Gautier, Joelle Guitard, Nicolas Durrleman, Romain Guery, Stéphane De Botton, Sophie Cassaing, Marine Paul, Rachel Brault, Claire Briere-Bellier, Catherine Kauffmann-Lacroix, Nicolas Engrand, Audrey Berric, Hôpital Henri Mondor, Diane Bouvry, André Paugam, CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Victor Segalen - Bordeaux 2, Université Paris Cité (UPCité), Mycologie moléculaire - Molecular Mycology, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Centre National de Référence Mycoses Invasives et Antifongiques - National Reference Center Invasive Mycoses & Antifungals (CNRMA), Institut Pasteur [Paris] (IP), Centre d'infectiologie Necker-Pasteur [CHU Necker], Institut Pasteur [Paris] (IP)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Centre Hospitalier du Pays d'Aix, CHU Amiens-Picardie, The National Reference Center for Invasive Mycoses and Antifungals is supported in part by Santé Publique France and Institut Pasteur., Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], Institut Pasteur [Paris], and Institut Pasteur [Paris]-CHU Necker - Enfants Malades [AP-HP]
- Subjects
Adult ,Male ,medicine.medical_specialty ,Antifungal Agents ,Adolescent ,LOMENTOSPORA PROLIFICANS ,Lomentospora prolificans ,Microbial Sensitivity Tests ,Neutropenia ,Scedosporium sp ,Scedosporium ,Young Adult ,03 medical and health sciences ,Scedosporium species ,Internal medicine ,Humans ,Medicine ,Clinical significance ,Child ,Mycological Typing Techniques ,scedosporiosis ,Phylogeny ,Fungemia ,[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/Mycology ,Aged ,Retrospective Studies ,030304 developmental biology ,Aged, 80 and over ,0303 health sciences ,030306 microbiology ,business.industry ,Infant, Newborn ,Infant ,Scedosporium apiospermum ,General Medicine ,Middle Aged ,medicine.disease ,cardiovascular localization ,3. Good health ,Infectious Diseases ,Child, Preschool ,outcome ,Female ,Observational study ,France ,business ,Invasive Fungal Infections - Abstract
International audience; Scedosporiosis/lomentosporiosis is a devastating emerging fungal infection. Our objective was to describe the clinical pattern and to analyze whether taxonomic grouping of the species involved was supported by differences in terms of clinical presentations or outcomes. We retrospectively studied cases of invasive scedosporiosis in France from 2005 through 2017 based on isolates characterized by polyphasic approach. We recorded 90 cases, mainly related to Scedosporium apiospermum (n = 48), S. boydii/S. ellipsoideum (n = 20), and Lomentospora prolificans (n = 14). One-third of infections were disseminated, with unexpectedly high rates of cerebral (41%) and cardiovascular (31%) involvement. In light of recent Scedosporium taxonomic revisions, we aimed to study the clinical significance of Scedosporium species identification and report for the first time contrasting clinical presentations between infections caused S. apiospermum, which were associated with malignancies and cutaneous involvement in disseminated infections, and infections caused by S. boydii, which were associated with solid organ transplantation, cerebral infections, fungemia, and early death. The clinical presentation of L. prolificans also differed from that of other species, involving more neutropenic patients, breakthrough infections, fungemia, and disseminated infections. Neutropenia, dissemination, and lack of antifungal prescription were all associated with 3-month mortality. Our data support the distinction between S. apiospermum and S. boydii and between L. prolificans and Scedosporium sp. Our results also underline the importance of the workup to assess dissemination, including cardiovascular system and brain. Lay Summary Scedosporiosis/lomentosporiosis is a devastating emerging fungal infection. Our objective was to describe the clinical pattern and to analyze whether taxonomic grouping of the species involved was supported by differences in terms of clinical presentations or outcomes.
- Published
- 2020
17. Architecture and assembly dynamics of the essential mitochondrial TIM chaperone systems
- Author
-
Yong Wang, Martha Brennich, Paul Schanda, Katharina Weinhäupl, Audrey Hessel, and Kresten Lindorff-Larsen
- Subjects
Membrane ,Membrane protein ,biology ,Chemistry ,Protein subunit ,Chaperone (protein) ,Dynamics (mechanics) ,biology.protein ,Biophysics ,Compartment (chemistry) ,Mitochondrion ,Dynamic equilibrium - Abstract
The mitochondrial Tim chaperones are responsible for the transport of membrane proteins across the inter-membrane space to the inner and outer mitochondrial membranes. TIM9·10, a hexameric 70 kDa protein complex formed by 3 copies of Tim9 and Tim10, guides its clients across the aqueous compartment. The TIM9·10·12 complex is the anchor point at the inner-membrane insertase complex TIM22. The subunit composition of the TIM9·10·12 complex remains debated. Joint NMR, small-angle X-ray scattering and MD simulation data allow us to derive a structural model of the TIM9·10·12 assembly, which has a 2:3:1 stoichiometry (Tim9:Tim10:Tim12). We find that both TIM9·10 and TIM9·10·12 hexamers are in a dynamic equilibrium with their constituent subunits, exchanging on a minutes time scale. Residue-resolved NMR data establish that the subunits exhibit large conformational dynamics: when the conserved cysteines of the CX3C-Xn-CX3C motifs are formed, short marginally stable α-helices are formed, and these are fully stabilized only upon formation of the mature hexameric chaperone. We propose that the continuous subunit exchange is a means of mitochondria to control their level of inter-membrane space chaperones, and thus rapidly adapt to the cellular state.
- Published
- 2020
18. Irgm2 and Gate-16 cooperatively dampen targeting of caspase-11 to Gram-negative bacterial products
- Author
-
Pierre-Jean Bordignon, Audrey Hessel, Karima Chaoui, Rémi Planès, Jonathan C. Howard, Elif Eren, Salimata Bagayoko, Karin Santoni, Miriam Pinilla, Masahiro Yamamoto, Etienne Meunier, and Odile Burlet-Schiltz
- Subjects
0303 health sciences ,Host cell cytosol ,Chemistry ,Intracellular parasite ,medicine.medical_treatment ,Pyroptosis ,Inflammasome ,Caspase-11 ,Cell biology ,03 medical and health sciences ,Classical complement pathway ,0302 clinical medicine ,Immune system ,Cytokine ,medicine ,030217 neurology & neurosurgery ,030304 developmental biology ,medicine.drug - Abstract
Inflammatory caspase-11 (rodent) and caspases-4 and -5 (human) detect gram-negative bacterial component LPS in the host cell cytosol, which promotes activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1 related cytokine release is of importance to mount an efficient immune response against various bacteria, its unrestrained activation drives sepsis. This suggests that cellular components might tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but not deleterious inflammatory response. Here we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively slow down non-canonical inflammasome activation both in macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lower caspase-11-mediated pyroptosis and cytokine release. Specifically, deficiency in Irgm2 or Gate16 opens an alternative road for caspase-11 targeting to intracellular bacteria, independently of the classical pathway driven by the Guanylate Binding Proteins (GBPs). Thus, our findings provide new molecular effectors involved at fine-tuning the optimal non-canonical inflammasome response and add novel insights in the understanding of the immune pathways they control.
- Published
- 2020
19. Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response
- Author
-
Thomas Henry, Rémi Planès, Karima Chaoui, Karin Santoni, Jonathan C. Howard, Odile Burlet-Schiltz, Masahiro Yamamoto, Elif Eren, Audrey Hessel, Salimata Bagayoko, Brice Lagrange, Etienne Meunier, Miriam Pinilla, Pierre-Jean Bordignon, Institut de pharmacologie et de biologie structurale (IPBS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Inflammasome, Infections bactériennes et autoinflammation, Inflammasome, Bacterial Infections and Autoinflammation (I2BA), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Centre International de Recherche en Infectiologie - UMR (CIRI), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Gram-negative bacteria ,infections/Interferons ,medicine.medical_treatment ,Immunology ,Caspase-11 ,Biochemistry ,Microbiology ,03 medical and health sciences ,0302 clinical medicine ,Immune system ,Irgm2 ,Genetics ,medicine ,Molecular Biology ,Gate-16 ,030304 developmental biology ,0303 health sciences ,Host cell cytosol ,biology ,Chemistry ,Intracellular parasite ,[SDV.BA]Life Sciences [q-bio]/Animal biology ,Pyroptosis ,Inflammasome ,Articles ,biology.organism_classification ,non-canonical inflammasome Subject Categories Autophagy & Cell Death ,Cell biology ,Virology & Host Pathogen Interaction ,Cytokine ,030217 neurology & neurosurgery ,medicine.drug - Abstract
Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control. info:eu-repo/semantics/publishedVersion
- Published
- 2020
20. Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough
- Author
-
Dominique Durand, Christian Malosse, Dorothée Raoux-Barbot, Véronique Hourdel, Mahmoud Ghomi, Bertrand Raynal, Darragh P. O'Brien, Daniel Ladant, Ana Cristina Sotomayor Pérez, Bruno Baron, Alexis Voegele, Patrick England, Véronique Yvette Ntsogo Enguéné, Orso Subrini, Alexandre Chenal, Sara E. Cannella, Patrice Vachette, Marilyne Davi, Johanna C. Karst, Belén Hernández, Sébastien Brier, Audrey Hessel, J. Iñaki Guijarro, Julia Chamot-Rooke, Biochimie des Interactions Macromoléculaires / Biochemistry of Macromolecular Interactions, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Résonance Magnétique Nucléaire des Biomolécules, Biophysique Moléculaire (Plate-forme), Université Paris 13 (UP13), Spectrométrie de Masse pour la Biologie – Mass Spectrometry for Biology (UTechS MSBio), Institut Pasteur [Paris] (IP)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Fonction et Architecture des Assemblages Macromoléculaires (FAAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], and Institut Pasteur [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Protein Folding ,Bordetella pertussis ,FAAM ,CyaA toxin ,[SDV]Life Sciences [q-bio] ,chemistry.chemical_element ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Calcium ,Toxicology ,Models, Biological ,03 medical and health sciences ,Protein Domains ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Secretion ,Whooping cough ,biology ,Disorder-to-order transition ,Chemistry ,Folding ,cyaA ,biology.organism_classification ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Protein Transport ,Cytosol ,Chaotropic agent ,Eukaryotic Cells ,030104 developmental biology ,Secretory protein ,Adenylate Cyclase Toxin ,Protein Translocation Systems ,Biophysics ,Protein secretion ,B3S - Abstract
International audience; The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process.
- Published
- 2018
21. Architecture and assembly dynamics of the essential mitochondrial chaperone complex TIM9·10·12
- Author
-
Martha Brennich, Kresten Lindorff-Larsen, Katharina Weinhäupl, Yong Wang, Audrey Hessel, Paul Schanda, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Linderstrøm-Lang Centre for Protein Science [Copenhagen], IT University of Copenhagen (ITU), European Molecular Biology Laboratory [Grenoble] (EMBL), and ANR-18-CE92-0032,MitoMemProtImp,Etudes structurales et fonctionnelles de l'import et le transfert à travers l'espace inter-membranaire des protéines membranaires mitochondriales(2018)
- Subjects
Protein Conformation, alpha-Helical ,0303 health sciences ,Saccharomyces cerevisiae Proteins ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,biology ,Chemistry ,Protein subunit ,030302 biochemistry & molecular biology ,Nuclear magnetic resonance spectroscopy ,03 medical and health sciences ,Membrane ,Mitochondrial biogenesis ,Membrane protein ,Structural Biology ,Chaperone (protein) ,Mitochondrial Precursor Protein Import Complex Proteins ,biology.protein ,Biophysics ,Chaperone complex ,Protein Multimerization ,Molecular Biology ,Dynamic equilibrium ,Protein Binding ,030304 developmental biology - Abstract
Summary Tim chaperones transport membrane proteins to the two mitochondrial membranes. TIM9·10, a 70 kDa protein complex formed by 3 copies of Tim9 and Tim10, guides its clients across the aqueous compartment. The TIM9·10·12 complex is the anchor point at the inner-membrane insertase TIM22. The subunit composition of TIM9·10·12 remains debated. Joint NMR, small-angle X-ray scattering, and MD simulation data allow us to derive a structural model of the TIM9·10·12 assembly, with a 2:3:1 stoichiometry (Tim9:Tim10:Tim12). Both TIM9·10 and TIM9·10·12 hexamers are in a dynamic equilibrium with their constituent subunits, exchanging on a minutes timescale. NMR data establish that the subunits exhibit large conformational dynamics: when the conserved cysteines of the CX3C-Xn-CX3C motifs are formed, short α helices are formed, and these are fully stabilized only upon formation of the mature hexameric chaperone. We propose that the continuous subunit exchange allows mitochondria to control their level of inter-membrane space chaperones.
- Published
- 2021
22. How Detergent Impacts Membrane Proteins: Atomic-Level Views of Mitochondrial Carriers in Dodecylphosphocholine
- Author
-
Vilius Kurauskas, Bernhard Brutscher, Loredana Capobianco, François Dehez, Audrey Hessel, Christophe Chipot, Remy Sounier, Paola Lunetti, Paul Schanda, Peixiang Ma, Martin S. King, Katharina Weinhäupl, Vincenza Dolce, Lionel Imbert, Edmund R.S. Kunji, Beate Bersch, Kurauskas, Viliu, Audrey Hessel, †, Peixiang Ma, †, Lunetti, Paola, Katharina Weinhaupl, ‡, † Lionel Imbert, ̈, Bernhard Brutscher, †, King, † Martin S., Remy Sounier, §, ∥ Vincenza Dolce, ́, Kunji, ⊥ Edmund R. S., Capobianco, Loredana, Christophe Chipot, ‡, Francois Dehez,, ̧, Beate Bersch,, and Paul Schanda, †, Institut de biologie structurale ( IBS - UMR 5075 ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Department of Pharmaco-Biology, University of Calabria, Medical Research Council Mitochondrial Biology Unit, University of Cambridge [UK] ( CAM ), Department of Biological and Environmental Sciences and Technologies, Università del Salento [Lecce], Structure et Réactivité des Systèmes Moléculaires Complexes ( SRSMC ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department of Veterinary Medicine, College of Zoology, Guizhou University, Università della Calabria [Arcavacata di Rende] (Unical), University of Cambridge [UK] (CAM), Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire International Associé (LIA), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Guizhou University (GZU), Brutscher, Bernhard [0000-0001-7652-7384], Chipot, Christophe [0000-0002-9122-1698], Schanda, Paul [0000-0002-9350-7606], and Apollo - University of Cambridge Repository
- Subjects
0301 basic medicine ,[ SDV.BBM.BP ] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,Letter ,Saccharomyces cerevisiae Proteins ,Protein Conformation ,Phosphorylcholine ,[SDV]Life Sciences [q-bio] ,Detergents ,Membrane Proteins, Mitochondrial Carriers, Dodecylphosphocholine ,Saccharomyces cerevisiae ,Molecular Dynamics Simulation ,Mitochondrial Membrane Transport Proteins ,Micelle ,03 medical and health sciences ,Mitochondrial membrane transport protein ,Molecular dynamics ,Protein structure ,[CHIM]Chemical Sciences ,General Materials Science ,Physical and Theoretical Chemistry ,Lipid bilayer ,Nuclear Magnetic Resonance, Biomolecular ,[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Micelles ,ComputingMilieux_MISCELLANEOUS ,Thermostability ,Substrate Interaction ,biology ,[ SDV ] Life Sciences [q-bio] ,Protein Stability ,Chemistry ,030104 developmental biology ,Membrane protein ,biology.protein ,Biophysics ,Mitochondrial ADP, ATP Translocases - Abstract
Characterizing the structure of membrane proteins (MPs) generally requires extraction from their native environment, most commonly with detergents. Yet, the physicochemical properties of detergent micelles and lipid bilayers differ markedly and could alter the structural organization of MPs, albeit without general rules. Dodecylphosphocholine (DPC) is the most widely used detergent for MP structure determination by NMR, but the physiological relevance of several prominent structures has been questioned, though indirectly, by other biophysical techniques, e.g., functional/thermostability assay (TSA) and molecular dynamics (MD) simulations. Here, we resolve unambiguously this controversy by probing the functional relevance of three different mitochondrial carriers (MCs) in DPC at the atomic level, using an exhaustive set of solution-NMR experiments, complemented by functional/TSA and MD data. Our results provide atomic-level insight into the structure, substrate interaction and dynamics of the detergent−membrane protein complexes and demonstrates cogently that, while high-resolution NMR signals can be obtained for MCs in DPC, they systematically correspond to nonfunctional states .
- Published
- 2018
23. Protonendetektierte Festkörper-NMR-Spektroskopie an einem Zinktransporter-Membranprotein in nativen Nanoscheiben
- Author
-
Paul Schanda, Audrey Hessel, Jonas M. Dörr, J. Antoinette Killian, and Beate Bersch
- Subjects
010405 organic chemistry ,General Medicine ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences - Abstract
Struktur, Dynamik und Funktion von Membranproteinen sind eng verknupft mit den Eigenschaften der Membranumgebung, in die sie eingebettet sind. Im Allgemeinen mussen Membranproteine fur strukturelle und biophysikalische Untersuchungen aber aus der Membran extrahiert und in einem geeigneten Membranmimetikum rekonstituiert werden. Ob die funktionelle und strukturelle Integritat in solchen kunstlichen Umgebungen erhalten bleibt, ist oft nicht leicht zu evaluieren, aber fur die Interpretation von hochster Wichtigkeit. Das Styrol-Maleinsaure-Copolymer ermoglicht es, Membranproteine mit den umgebenden Lipiden direkt aus nativen Membranen zu extrahieren. Die resultierenden scheibenformigen Proteolipid-Partikel werden auch native Nanoscheiben genannt. Wir zeigen hier, am Beispiel des 2×34 kDa grosen bakteriellen Kationendiffusionsunterstutzers CzcD, dass hochaufgeloste Festkorper-NMR-Spektren von integralen Membranproteinen in nativen Nanoscheiben erhalten werden konnen.
- Published
- 2017
24. Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors
- Author
-
Audrey Hessel, Katharina Weinhäupl, Adrián Velázquez-Campoy, Christophe Chipot, Cécile Morlot, Paul Schanda, Jan Felix, François Dehez, Olga Abian, Hugo Pacheco de Freitas Fraga, Irina Gutsche, Diego F. Gauto, Instituto de Investigação e Inovação em Saúde, Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry, Physiology and Microbiology, Universiteit Gent = Ghent University [Belgium] (UGENT), Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Illinois at Urbana-Champaign, USA], University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System, Laboratoire International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France., Unidad Asociada IQFR-CSIC-BIFI [Zaragoza, Spain], University of Zaragoza - Universidad de Zaragoza [Zaragoza]-Instituto de Biocomputación y Física de Sistemas Complejos - BIFI [Zaragoza, Spain], Grenoble Partnership for Structural Biology (PSB), Innovative EM/NMR approach for the characterization of the drug target ClpP APPID: 301, ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), ANR-10-LABX-0049,GRAL,Grenoble Alliance for Integrated Structural Cell Biology(2010), Centre National de la Recherche Scientifique (France), Agence Nationale de la Recherche (France), Ministerio de Economía y Competitividad (España), Instituto de Salud Carlos III, European Science Foundation, European Commission, SCOAP, Universiteit Gent = Ghent University (UGENT), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and University of Illinois System
- Subjects
DYNAMICS ,[SDV]Life Sciences [q-bio] ,medicine.medical_treatment ,Crystallography, X-Ray ,Biochemistry ,01 natural sciences ,Serine ,Structural Biology ,Catalytic Domain ,CRYSTAL-STRUCTURE ,Research Articles ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,0303 health sciences ,Multidisciplinary ,biology ,Chemistry ,Thermus thermophilus / enzymology ,SciAdv r-articles ,Endopeptidase Clp ,Bacterial Proteins / chemistry ,3. Good health ,INSIGHTS ,Drug development ,ESCHERICHIA-COLI ,NMR-SPECTROSCOPY ,Endopeptidase Clp / antagonists & inhibitors ,Research Article ,medicine.drug ,PROTEINS ,Protein subunit ,Allosteric regulation ,TUBERCULOSIS ,010402 general chemistry ,03 medical and health sciences ,Bacterial Proteins ,Allosteric Regulation ,medicine ,Protease Inhibitors ,Bacterial Proteins / antagonists & inhibitors ,030304 developmental biology ,COMPLEX ,Protease ,010405 organic chemistry ,Thermus thermophilus ,Biology and Life Sciences ,Active site ,Isothermal titration calorimetry ,0104 chemical sciences ,MODEL ,SERINE-PROTEASE ,Enzyme ,Endopeptidase Clp / chemistry ,Chaperone (protein) ,Proteasome inhibitor ,biology.protein ,Biophysics ,Protease Inhibitors / chemistry - Abstract
18 pags., 6 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0, Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation., This work used the platforms of the Grenoble Instruct center (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from INSTRUCT (“Innovative EM/NMR approach for the characterization of the drug target ClpP APPID: 301“), FRISBI (ANR-10-INSB-05-02), and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). We thank the ESRF for beamtime at ID30A and ID23-1. Funding: This work was supported by Spanish Ministerio de Economia y Competitividad (BFU2016-78232-P) and Instituto de Salud Carlos III co-funded by European Union (PI15/00663 and PI18/00349, ERDF/ ESF, “Investing in your future”). This work was financially supported by the European Research Council (ERC-Stg-2012-311318 to P.S.). J.F. is supported by an EMBO long-term post-doctoral fellowship (ALTF441-2017).
- Published
- 2019
- Full Text
- View/download PDF
25. Structural basis of client specificity in mitochondrial membrane-protein chaperones
- Author
-
Yong Wang, Ons Dakhlaoui, Tobias Jores, Kresten Lindorff-Larsen, Martha Brennich, Doriane Costa, Doron Rapaport, Katharina Weinhäupl, Paul Schanda, Audrey Hessel, Iva Sučec, Beate Bersch, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Linderstrøm-Lang Centre for Protein Science [Copenhagen], IT University of Copenhagen (ITU), University of Tübingen, European Molecular Biology Laboratory [Grenoble] (EMBL), ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017), ANR-18-CE92-0032,MitoMemProtImp,Etudes structurales et fonctionnelles de l'import et le transfert à travers l'espace inter-membranaire des protéines membranaires mitochondriales(2018), University of Copenhagen = Københavns Universitet (KU), Institut de pharmacologie et de biologie structurale (IPBS), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, University of Copenhagen = Københavns Universitet (UCPH), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and IT University of Copenhagen
- Subjects
DEAFNESS DYSTONIA SYNDROME ,010402 general chemistry ,01 natural sciences ,Hydrophobic effect ,03 medical and health sciences ,Molecular dynamics ,0302 clinical medicine ,X-Ray Diffraction ,BINDING ,Mitochondrial Precursor Protein Import Complex Proteins ,Scattering, Small Angle ,Humans ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Integral membrane protein ,IN-VIVO ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Chemistry ,IMPORT ,INTERMEMBRANE SPACE ,Membrane Proteins ,Mitochondrial carrier ,Transmembrane protein ,SIMULATIONS ,SUBSTRATE-SPECIFICITY ,0104 chemical sciences ,MOLECULAR-DYNAMICS ,BEAMLINE ,Mitochondrial Membrane Protein ,Mitochondrial Membranes ,Biophysics ,COMPLEXES ,Protein folding ,030217 neurology & neurosurgery ,Molecular Chaperones - Abstract
Chaperones are essential for assisting protein folding and for transferring poorly soluble proteins to their functional locations within cells. Hydrophobic interactions drive promiscuous chaperone-client binding, but our understanding of how additional interactions enable client specificity is sparse. Here, we decipher what determines binding of two chaperones (TIM8 center dot 13 and TIM9 center dot 10) to different integral membrane proteins, the all-transmembrane mitochondrial carrier Ggc1 and Tim23, which has an additional disordered hydrophilic domain. Combining NMR, SAXS, and molecular dynamics simulations, we determine the structures of Tim23/TIM8 center dot 13 and Tim23/TIM9 center dot 10 complexes. TIM8 center dot 13 uses transient salt bridges to interact with the hydrophilic part of its client, but its interactions to the transmembrane part are weaker than in TIM9 center dot 10. Consequently, TIM9 center dot 10 outcompetes TIM8 center dot 13 in binding hydrophobic clients, while TIM8 center dot 13 is tuned to few clients with both hydrophilic and hydrophobic parts. Our study exemplifies how chaperones fine-tune the balance of promiscuity versus specificity.
- Published
- 2020
26. Dynamics and interactions of AAC3 in DPC are not functionally relevant
- Author
-
Christophe Chipot, Vilius Kurauskas, François Dehez, Beate Bersch, Paul Schanda, Audrey Hessel, Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire International Associé (LIA), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Illinois at Urbana-Champaign, USA], University of Illinois System-University of Illinois System, Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,biology ,Membrane transport protein ,Dynamics (mechanics) ,Nuclear magnetic resonance spectroscopy ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,03 medical and health sciences ,chemistry.chemical_compound ,Adenosine diphosphate ,030104 developmental biology ,chemistry ,Structural Biology ,biology.protein ,Biophysics ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Molecular Biology ,Adenosine triphosphate ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
27. Dynamics and interactions of ADP/ATP transporter AAC3 in DPC detergent are not functionally relevant
- Author
-
Vilius Kurauskas, Audrey Hessel, Paul Schanda, Beate Bersch, Christophe Chipot, François Dehez, Institut de biologie structurale ( IBS - UMR 5075 ), and Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA )
- Subjects
0303 health sciences ,Chemistry ,Substrate (chemistry) ,Transporter ,Nuclear magnetic resonance spectroscopy ,010402 general chemistry ,01 natural sciences ,Micelle ,Article ,Yeast ,0104 chemical sciences ,03 medical and health sciences ,Nat ,Mole ,Biophysics ,ATP–ADP translocase ,030304 developmental biology ,[ SDV.BBM.BS ] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] - Abstract
International audience; A recent study (S. Bruschweiler et al and J.J. Chou, Nat. Struct. Mol. Biol. 2015) used solution-state NMR spectroscopy to examine the interactions and dynamics of the yeast mitochondrial inner-membrane ADP/ATP carrier, yAAC3. The authors present NMR based interaction studies and millisecond dynamics. Their main conclusion is that yAAC3 in dodecylphosphocholine detergent micelles is functional and undergoes functionally relevant motions that depend on substrate and inhibitor. We contradict these results and show that the protein sample is partially misfolded; the dynamics are not correctly fitted and do not appear to be dependent on substrate/inhibitor. Together, our findings suggest that yAAC3 in DPC detergent is misfolded.
- Published
- 2018
28. Translocation and calmodulin-activation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis
- Author
-
Remi Veneziano, Darragh P. O'Brien, Patrice Vachette, Dominique Durand, Daniel Ladant, Véronique Hourdel, Audrey Hessel, Joël Chopineau, Johanna C. Karst, Ana Cristina Sotomayor Pérez, Nicolas Sapay, Sébastien Brier, Marilyne Davi, Sara E Cannella, Alexandre Chenal, Alexis Voegele, Orso Subrini, Véronique Yvette Ntsogo Enguéné, Département de Biologie structurale et Chimie - Department of Structural Biology and Chemistry, Institut Pasteur [Paris] (IP), Université Paris Diderot - Paris 7 (UPD7), University of Oxford, BIOASTER Microbiology Technology Institute [Lyon], Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), George Mason University [Fairfax], Université de Nîmes (UNIMES), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris], University of Oxford [Oxford], Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
0301 basic medicine ,Bordetella pertussis ,calmodulin ,binding ,Protein Conformation ,[SDV]Life Sciences [q-bio] ,catalytic domain ,Membrane Potentials ,atp ,protein folding ,Cyclic AMP ,acylation ,Immunology and Allergy ,Lipid bilayer ,biology ,Chemistry ,General Medicine ,membrane-active properties ,Cell biology ,Transport protein ,Protein Transport ,Eukaryotic Cells ,Infectious Diseases ,Adenylate Cyclase Toxin ,pore-formation ,Protein Binding ,adenylate cyclase ,Microbiology (medical) ,Calmodulin ,Permeability ,03 medical and health sciences ,membrane translocation ,cAMP ,Humans ,Secretion ,calcium ,General Immunology and Microbiology ,Cell Membrane ,cyaA ,biology.organism_classification ,intrinsically disordered protein ,CyaA ,hemolysin ,Cytosol ,030104 developmental biology ,biology.protein ,escherichia-coli ,identification ,protein ,Protein Processing, Post-Translational - Abstract
International audience; The adenylate cyclase toxin (CyaA) is a multi-domain protein secreted by Bordetella pertussis, the causative agent of whooping cough. CyaA is involved in the early stages of respiratory tract colonization by Bordetella pertussis. CyaA is produced and acylated in the bacteria, and secreted via a dedicated secretion system. The cell intoxication process involves a unique mechanism of transport of the CyaA toxin catalytic domain (ACD) across the plasma membrane of eukaryotic cells. Once translocated, ACD binds to and is activated by calmodulin and produces high amounts of cAMP, subverting the physiology of eukaryotic cells. Here, we review our work on the identification and characterization of a critical region of CyaA, the translocation region, required to deliver ACD into the cytosol of target cells. The translocation region contains a segment that exhibits membrane-active properties, i.e. is able to fold upon membrane interaction and permeabilize lipid bilayers. We proposed that this region is required to locally destabilize the membrane, decreasing the energy required for ACD translocation. To further study the translocation process, we developed a tethered bilayer lipid membrane (tBLM) design that recapitulate the ACD transport across a membrane separating two hermetic compartments. We showed that ACD translocation is critically dependent on calcium, membrane potential, CyaA acylation and on the presence of calmodulin in the trans compartment. Finally, we describe how calmodulin-binding triggers key conformational changes in ACD, leading to its activation and production of supraphysiological concentrations of cAMP.
- Published
- 2018
29. Slow conformational exchange and overall rocking motion in ubiquitin protein crystals
- Author
-
Isabel Ayala, Anastasya Shilova, Nikolai R. Skrynnikov, Tairan Yuwen, Joyce Woodhouse, Paul Schanda, Nicolas Coquelle, Jacques-Philippe Colletier, Vilius Kurauskas, Yi Xue, Olga N. Rogacheva, Sergei A. Izmailov, Audrey Hessel, Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry, Purdue University [West Lafayette], European Synchrotron Radiation Facility (ESRF), European Research Council ERC StG-311318, Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratory of Biomolecular NMR, and St Petersburg State University (SPbU)
- Subjects
0301 basic medicine ,Magnetic Resonance Spectroscopy ,Materials science ,Protein Conformation ,Science ,General Physics and Astronomy ,Crystal structure ,Molecular Dynamics Simulation ,Crystallography, X-Ray ,010402 general chemistry ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Crystal ,Motion ,03 medical and health sciences ,Molecular dynamics ,Nuclear magnetic resonance ,Protein structure ,Humans ,[CHIM]Chemical Sciences ,030304 developmental biology ,[PHYS]Physics [physics] ,0303 health sciences ,Quantitative Biology::Biomolecules ,Multidisciplinary ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Ubiquitin ,Intermolecular force ,Dynamics (mechanics) ,Relaxation (NMR) ,General Chemistry ,0104 chemical sciences ,Kinetics ,Microsecond ,030104 developmental biology ,Chemical physics ,Thermodynamics ,Protein crystallization ,Dispersion (chemistry) ,Algorithms - Abstract
Proteins perform their functions in solution but their structures are most frequently studied inside crystals. Here we probe how the crystal packing alters microsecond dynamics, using solid-state NMR measurements and multi-microsecond MD simulations of different crystal forms of ubiquitin. In particular, near-rotary-resonance relaxation dispersion (NERRD) experiments probe angular backbone motion, while Bloch–McConnell relaxation dispersion data report on fluctuations of the local electronic environment. These experiments and simulations reveal that the packing of the protein can significantly alter the thermodynamics and kinetics of local conformational exchange. Moreover, we report small-amplitude reorientational motion of protein molecules in the crystal lattice with an ~3–5° amplitude on a tens-of-microseconds time scale in one of the crystals, but not in others. An intriguing possibility arises that overall motion is to some extent coupled to local dynamics. Our study highlights the importance of considering the packing when analyzing dynamics of crystalline proteins., X-ray crystallography is the main method for protein structure determination. Here the authors combine solid-state NMR measurements and molecular dynamics simulations and show that crystal packing alters the thermodynamics and kinetics of local conformational exchange as well as overall rocking motion of protein molecules in the crystal lattice.
- Published
- 2017
30. Protein conformational dynamics studied by 15N and 1H R1ρ relaxation dispersion: application to wild-type and G53A ubiquitin crystals
- Author
-
Diego F. Gauto, Vilius Kurauskas, Audrey Hessel, Paul Schanda, Rasmus Linser, Petra Rovó, Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department Chemie, Physikalische Chemie, Ludwig-Maximilians-Universität München (LMU), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
0301 basic medicine ,Models, Molecular ,Nuclear and High Energy Physics ,Protein Conformation ,Field strength ,Protein dynamics ,Fast MAS ,010402 general chemistry ,Crystallography, X-Ray ,01 natural sciences ,Solid-state NMR ,Article ,03 medical and health sciences ,β-turn ,Protein structure ,Dispersion (optics) ,Instrumentation ,Nuclear Magnetic Resonance, Biomolecular ,Proton detection ,Radiation ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Chemistry ,Ubiquitin ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,0104 chemical sciences ,Proton relaxation ,Microsecond ,Crystallography ,030104 developmental biology ,Solid-state nuclear magnetic resonance ,Chemical physics ,Mutation ,Relaxation (physics) ,Mutant Proteins ,Spin relaxation - Abstract
International audience; Solid-state NMR spectroscopy can provide site-resolved information about protein dynamics over many time scales. Here we combine protein deuteration, fast magic-angle spinning (~45-60kHz) and proton detection to study dynamics of ubiquitin in microcrystals, and in particular a mutant in a region that undergoes microsecond motions in a β-turn region in the wild-type protein. We use (15)N R1ρ relaxation measurements as a function of the radio-frequency (RF) field strength, i.e. relaxation dispersion, to probe how the G53A mutation alters these dynamics. We report a population-inversion of conformational states: the conformation that in the wild-type protein is populated only sparsely becomes the predominant state. We furthermore explore the potential to use amide-(1)H R1ρ relaxation to obtain insight into dynamics. We show that while quantitative interpretation of (1)H relaxation remains beyond reach under the experimental conditions, due to coherent contributions to decay, one may extract qualitative information about flexibility.
- Published
- 2017
31. Functional analysis of monoclonal antibodies against the Plasmodium falciparum PfEMP1-VarO adhesin
- Author
-
Françoise Marchand, Farida Nato, Inès Vigan-Womas, Micheline Guillotte, Audrey Hessel, Odile Mercereau-Puijalon, Anita Lewit-Bentley, Graham A. Bentley, Alexandre Juillerat, Immunologie Moléculaire des Parasites, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Parasitologie moléculaire et Signalisation, Production de Protéines Recombinantes et d'Anticorps (Plate-Forme), Institut Pasteur [Paris] (IP), Biochimie Structurale et Cellulaire, Immunologie structurale, Immunologie moléculaire des parasites, Unité d'immunologie des maladies infectieuses [Antananarivo, Madagascar] (IPM), Institut Pasteur de Madagascar, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), This work was supported by the French National Research Agency (Agence Nationale de la Recherche, Programme Microbiologie, Immunologie et Maladies Emergentes, grant ANR-07-MIME-021-0). The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement No 242095., ANR-07-MIME-0021,ROSETTE,Analyses sérologiques, fonctionnelles et structurales des facteurs de virulence, PfEMP1, impliqués dans le rosetting et l'auto-agglutinantion(2007), European Project: 242095,EC:FP7:HEALTH,FP7-HEALTH-2009-single-stage,EVIMALAR(2009), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris], and Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris]
- Subjects
0301 basic medicine ,Antigenicity ,medicine.drug_class ,030231 tropical medicine ,Plasmodium falciparum ,Protozoan Proteins ,Enzyme-Linked Immunosorbent Assay ,Rosetting ,Monoclonal antibody ,Epitope ,03 medical and health sciences ,Mice ,Epitopes ,0302 clinical medicine ,parasitic diseases ,medicine ,Animals ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Binding site ,biology ,Research ,Antibodies, Monoclonal ,Rosette-disrupting antibodies ,biology.organism_classification ,Monoclonal antibodies (mAbs) ,Virology ,Molecular biology ,3. Good health ,Malaria ,Bacterial adhesin ,030104 developmental biology ,Infectious Diseases ,Biotinylation ,biology.protein ,Parasitology ,Antibody ,Cell Adhesion Molecules ,PfEMP1 adhesin ,Protein Binding - Abstract
Background Rosetting, namely the capacity of the Plasmodium falciparum-infected red blood cells to bind uninfected RBCs, is commonly observed in African children with severe malaria. Rosetting results from specific interactions between a subset of variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins encoded by var genes, serum components and RBC receptors. Rosette formation is a redundant phenotype, as there exists more than one var gene encoding a rosette-mediating PfEMP1 in each genome and hence a diverse array of underlying interactions. Moreover, field diversity creates a large panel of rosetting-associated serotypes and studies with human immune sera indicate that surface-reacting antibodies are essentially variant-specific. To gain better insight into the interactions involved in rosetting and map surface epitopes, a panel of monoclonal antibodies (mAbs) was investigated. Methods Monoclonal antibodies were isolated from mice immunized with PfEMP1-VarO recombinant domains. They were characterized using ELISA and reactivity with the native PfEMP1-VarO adhesin on immunoblots of reduced and unreduced extracts, as well as SDS-extracts of Palo Alto 89F5 VarO schizonts. Functionality was assessed using inhibition of Palo Alto 89F5 VarO rosette formation and disruption of Palo Alto 89F5 VarO rosettes. Competition ELISAs were performed with biotinylated antibodies against DBL1 to identify reactivity groups. Specificity of mAbs reacting with the DBL1 adhesion domain was explored using recombinant proteins carrying mutations abolishing RBC binding or binding to heparin, a potent inhibitor of rosette formation. Results Domain-specific, surface-reacting mAbs were obtained for four individual domains (DBL1, CIDR1, DBL2, DBL4). Monoclonal antibodies reacting with DBL1 potently inhibited the formation of rosettes and disrupted Palo Alto 89F5 VarO rosettes. Most surface-reactive mAbs and all mAbs interfering with rosetting reacted on parasite immunoblots with disulfide bond-dependent PfEMP1 epitopes. Based on competition ELISA and binding to mutant DBL1 domains, two distinct binding sites for rosette-disrupting mAbs were identified in close proximity to the RBC-binding site. Conclusions Rosette-inhibitory antibodies bind to conformation-dependent epitopes located close to the RBC-binding site and distant from the heparin-binding site. These results provide novel clues for a rational intervention strategy that targets rosetting. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1016-5) contains supplementary material, which is available to authorized users.
- Published
- 2016
32. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R 1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements
- Author
-
Paul Schanda, Isabel Ayala, Emmanuelle Weber, Dominique Marion, Vilius Kurauskas, Audrey Hessel, Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ERC Stg ProtDyn2Function 2012-311318, European Project: 311318,EC:FP7:ERC,ERC-2012-StG_20111109,PROTDYN2FUNCTION(2013), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Molecular Dynamics Simulation ,010402 general chemistry ,01 natural sciences ,Molecular physics ,Article ,Spin–spin relaxation ,numerical spin simulations ,Proton spin crisis ,Materials Chemistry ,Magic angle spinning ,rotating frame relaxation ,Physical and Theoretical Chemistry ,spin-diffusion ,Anisotropy ,Nuclear Magnetic Resonance, Biomolecular ,J-doublet ,Condensed matter physics ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,010405 organic chemistry ,Chemistry ,Spin–lattice relaxation ,Proteins ,0104 chemical sciences ,Surfaces, Coatings and Films ,Spin diffusion ,Relaxation (physics) ,protein ,Magnetic dipole–dipole interaction - Abstract
International audience; Transverse relaxation rate measurements in MAS solid-state NMR provide information about molecular motions occurring on nanoseconds-to-milliseconds (ns-ms) time scales. The measurement of heteronuclear (13C , 15N) relaxation rate constants in the presence of a spin-lock radio-frequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins has been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely (i) the role of CSA/dipolar cross-correlated relaxation (CCR), and (ii) the impact of fast proton spin flips (i.e. proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable, and that this cross-correlated relaxation rate constant depends on ns-ms motions, and can thus itself provide insight into dynamics. We find that proton spin-diffusion attenuates this cross-correlated relaxation, due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and the present manuscript reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation.
- Published
- 2016
33. Calcium tightly regulates disorder-to-order transitions involved in the secretion, folding and functions of the cyaA toxin of Bordetella pertussis, the causative agent of whooping cough
- Author
-
Daniel Ladant, Audrey Hessel, Sara E. Cannella, Sébastien Brier, Mahmoud Ghomi, Belén Hernández, Patrice Vachette, Christian Malosse, Véronique Yvette Ntsogo Enguéné, Orso Subrini, Véronique Hourdel, Julia Chamot-Rooke, Dominique Durand, Darragh P. O'Brien, Alexandre Chenal, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Fonction et Architecture des Assemblages Macromoléculaires (FAAM), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,0106 biological sciences ,Bordetella pertussis ,[SDV]Life Sciences [q-bio] ,Biophysics ,chemistry.chemical_element ,Calcium ,Pertussis toxin ,Toxicology ,01 natural sciences ,Microbiology ,03 medical and health sciences ,medicine ,Secretion ,Whooping cough ,0303 health sciences ,biology ,010604 marine biology & hydrobiology ,030302 biochemistry & molecular biology ,biology.organism_classification ,medicine.disease ,Folding (chemistry) ,030104 developmental biology ,Order (biology) ,CyaA Toxin ,chemistry - Published
- 2018
34. Immunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: Induction of Surface-Reactive and Rosette-Disrupting Antibodies to VarO Infected Erythrocytes
- Author
-
Inès Vigan-Womas, Micheline Guillotte, Cécile Le Scanf, Alexandre Juillerat, Odile Mercereau-Puijalon, Audrey Hessel, Stéphane Petres, Anita Lewit-Bentley, Elodie Crublet, Graham A. Bentley, Sebastien Igonet, Immunologie moléculaire des parasites, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Immunologie structurale, Production de Protéines Recombinantes et d'Anticorps (Plate-Forme), Institut Pasteur [Paris], CHU Bordeaux [Bordeaux], This work was supported by the French National Research Agency (Agence Nationale de la Recherche, Programme Microbiologie, Immunologie et Maladies Emergentes, grant ANR-07-MIME-021-0, Project Rosettes, PIs OMP and GAB), which supported a fellowship to A. J. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement N° Evimalar 242095. OMP is a member of the Evimalar Network of Excellence. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript., We are indebted to the Cytometry Platform, Centre for Human Immunology, Institut Pasteur, for access to FACS analyser. We thank the colleagues of the Unité d'Immunologie Moléculaire des Parasites for helpful discussions. We are indebted to Thierry Blisnick for help in preparing some figures., ANR-07-MIME-0021,ROSETTE,Analyses sérologiques, fonctionnelles et structurales des facteurs de virulence, PfEMP1, impliqués dans le rosetting et l'auto-agglutinantion(2007), European Project: 242095,EC:FP7:HEALTH,FP7-HEALTH-2009-single-stage,EVIMALAR(2009), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), and Institut Pasteur [Paris] (IP)
- Subjects
Antigenicity ,Erythrocytes ,Rosette Formation ,Plasmodium falciparum ,Protozoan Proteins ,Antibodies, Protozoan ,lcsh:Medicine ,Antigens, Protozoan ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Cross Reactions ,Epitope ,Epitopes ,Mice ,Antigen ,Malaria Vaccines ,parasitic diseases ,Animals ,Humans ,Malaria, Falciparum ,Adhesins, Bacterial ,lcsh:Science ,Mice, Inbred BALB C ,Multidisciplinary ,biology ,Immunogenicity ,lcsh:R ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,biology.organism_classification ,Virology ,Recombinant Proteins ,Protein Structure, Tertiary ,3. Good health ,Bacterial adhesin ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,biology.protein ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Female ,lcsh:Q ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Antibody ,Research Article ,Binding domain - Abstract
International audience; Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting.
- Published
- 2015
35. Molecular Crowding Effects on the CyaA Toxin RTX Domain: Implication for Toxin Secretion
- Author
-
Daniel Ladant, Ana Cristina Sotomayor Pérez, Alexandre Chenal, Audrey Hessel, and Orso Subrini
- Subjects
CyaA Toxin ,Chemistry ,Toxin ,Genetics ,medicine ,Secretion ,medicine.disease_cause ,Molecular Biology ,Biochemistry ,Biotechnology ,Domain (software engineering) ,Cell biology - Published
- 2015
36. Deciphering Protein Membrane Interactions Involved in the Translocation Process of a Bacterial Toxin, the Adenylate Cyclase (CyaA) Toxin from B. Pertussis
- Author
-
Ana-Cristina Sotomayor-Pérez, Johanna C. Karst, Edithe Selwa, Daniel Ladant, Joël Chopineau, Nicolas Sapay, Audrey Hessel, Orso Subrini, Jonathan Pansieri, Alexandre Chenal, and Remi Veneziano
- Subjects
Bordetella pertussis ,biology ,Calmodulin ,Toxin ,Biophysics ,Adenylate kinase ,cyaA ,biology.organism_classification ,medicine.disease_cause ,Pertussis toxin ,Cyclase ,Microbiology ,medicine ,biology.protein ,Bacteria - Abstract
The adenylate cyclase (CyaA) toxin, secreted by Bordetella pertussis the pathogenic bacteria responsible for whooping cough, plays a critical role in the early stages of respiratory tract colonization by this bacterium. The CyaA toxin is able to invade eukaryotic cells by translocating its N-terminal catalytic domain directly across the plasma membrane of the target cells where, activated by endogenous calmodulin, it produces supraphysiological levels of cAMP. The molecular process leading to the translocation of the catalytic domain across the plasma membrane remains poorly understood.
- Published
- 2015
- Full Text
- View/download PDF
37. Biophysical investigations of the adenylate cyclase (CyaA) toxin from Bordetella pertussis
- Author
-
Orso Subrini, Audrey Hessel, Ana-Cristina Sotomayor-Pérez, Alexandre Chenal, Bertrand Raynal, Sara E Cannella, V.Y. Ntsogo Enguene, Johanna C. Karst, and Daniel Ladant
- Subjects
Bordetella pertussis ,CyaA Toxin ,biology ,Chemistry ,Adenylate kinase ,Toxicology ,biology.organism_classification ,Cyclase ,Microbiology - Published
- 2016
38. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form
- Author
-
Johanna C. Karst, Alexandre Chenal, Sara E. Cannella, Audrey Hessel, V. Yvette Ntsogo Enguéné, Sylvain Debard, Orso Subrini, Daniel Ladant, Biochimie des Interactions Macromoléculaires / Biochemistry of Macromolecular Interactions, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), This work was supported by the Agence Nationale de la Recherche, program Jeunes Chercheurs (Grant ANR-09-JCJC-0012), the Institut Pasteur Projet Transversal de Recherche PTR#374, the Jacob class of Pasteur-Paris University International Ph.D. Program from Institut Pasteur, and CNRS (UMR 3528, Biologie Structurale et Agents Infectieux)., ANR-09-JCJC-0012,TransloXyaA(2009), and Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Bordetella pertussis ,Erythrocytes ,MESH: Protein Folding ,viruses ,Acylation ,Protein aggregation ,isolation & purification/pharmacology ,MESH: Chromatography ,Biochemistry ,Cyclase ,Hemolysis ,Protein Refolding ,Protein Structure, Secondary ,MESH: Macromolecular Crowding ,MESH: Bordetella pertussis ,Protein acylation ,Adenylate Cyclase Toxin chemistry ,Bacterial Proteins ,hemic and lymphatic diseases ,Animals ,Urea ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,heterocyclic compounds ,MESH: Calcium-binding Protein ,Protein Structure, Quaternary ,Molecular Biology ,Sheep ,biology ,Chemistry ,Circular Dichroism ,Cell Biology ,cyaA ,biology.organism_classification ,MESH: Protein Aggregation ,MESH: Adenylate Cyclase (Adenylyl Cyclase) ,Adenylate Cyclase Toxin ,MESH: Molecular Confinement ,Bacterial Proteins/chemistry/isolation & purification/pharmacology ,MESH: Bacterial Toxin ,Protein Structure and Folding ,Chromatography, Gel ,Protein folding ,Calcium ,Macromolecular crowding ,MESH: Protein Acylation ,Protein Processing, Post-Translational - Abstract
International audience; The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.
- Published
- 2014
39. Characterization of a Membrane-active Peptide from the Bordetella pertussis CyaA Toxin
- Author
-
Daniel Ladant, Ana-Cristina Sotomayor-Pérez, Orso Subrini, Alexandre Chenal, Audrey Hessel, Johanna Spiaczka-Karst, Nicolas Sapay, Remi Veneziano, Jonathan Pansieri, Edithe Selwa, Joël Chopineau, Biochimie des Interactions Macromoléculaires / Biochemistry of Macromolecular Interactions, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Bioinformatique structurale - Structural Bioinformatics, Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nîmes (UNIMES), This work was supported by the Institut Pasteur (Projet Transversal de Recherche, PTR374), CNRS (UMR 3528, Biologie Structurale et Agents Infectieux), and the Agence Nationale de la Recherche, program Jeunes Chercheurs (Grant ANR-09-JCJC-0012), ANR-09-JCJC-0012,TransloXyaA(2009), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Bordetella pertussis ,Circular Dichroism (CD) ,Lipid Bilayers ,Bacterial Toxins ,Adenylate Cyclase (Adenylyl Cyclase) ,Peptide ,Infrared Spectroscopy ,Molecular Dynamics ,Biochemistry ,Protein Structure, Secondary ,Cell membrane ,03 medical and health sciences ,Bacterial Proteins ,medicine ,Humans ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Lipid bilayer ,Molecular Biology ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,biology ,Vesicle ,030302 biochemistry & molecular biology ,Cell Membrane ,Membrane ,Peptide Conformation ,Cell Biology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,cyaA ,respiratory system ,biology.organism_classification ,Phospholipid Vesicle ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,respiratory tract diseases ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,Protein Transport ,medicine.anatomical_structure ,chemistry ,Adenylate Cyclase Toxin ,Protein Structure and Folding ,Biophysics ,Peptides ,Protein Binding - Abstract
International audience; Bordetella pertussis, the pathogenic bacteria responsible for whooping cough, secretes several virulence factors, among which is the adenylate cyclase toxin (CyaA) that plays a crucial role in the early stages of human respiratory tract colonization. CyaA invades target cells by translocating its catalytic domain directly across the plasma membrane and overproduces cAMP, leading to cell death. The molecular process leading to the translocation of the catalytic domain remains largely unknown. We have previously shown that the catalytic domain per se, AC384, encompassing residues 1-384 of CyaA, did not interact with lipid bilayer, whereas a longer polypeptide, AC489, spanning residues 1-489, binds to membranes and permeabilizes vesicles. Moreover, deletion of residues 375-485 within CyaA abrogated the translocation of the catalytic domain into target cells. Here, we further identified within this region a peptidic segment that exhibits membrane interaction properties. A synthetic peptide, P454, corresponding to this sequence (residues 454-485 of CyaA) was characterized by various biophysical approaches. We found that P454 (i) binds to membranes containing anionic lipids, (ii) adopts an α-helical structure oriented in plane with respect to the lipid bilayer, and (iii) permeabilizes vesicles. We propose that the region encompassing the helix 454-485 of CyaA may insert into target cell membrane and induce a local destabilization of the lipid bilayer, thus favoring the translocation of the catalytic domain across the plasma membrane.
- Published
- 2013
40. Molecular crowding stabilizes both the intrinsically disordered calcium-free state and the folded calcium-bound state of a repeat in toxin (RTX) protein
- Author
-
Ana-Cristina Sotomayor-Pérez, Alexandre Chenal, Daniel Ladant, Audrey Hessel, Orso Subrini, Biochimie des Interactions Macromoléculaires / Biochemistry of Macromolecular Interactions, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), The project was supported by the Institut Pasteur (Projet Transversal de Recherche, PTR#374 and DGAS), the CentreNational de la Recherche Scientifique (CNRS UMR 3528, Biologie Structurale et Agents Infectieux), and the AgenceNationale de la Recherche, Programme Jeunes Chercheurs (Grant ANR-09-JCJC-0012)., ANR-09-JCJC-0012,TransloXyaA(2009), and Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Protein Folding ,MESH: Ficoll ,Protein Conformation ,Whooping Cough ,MESH: Protein Folding ,chemistry.chemical_element ,Calcium ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Bordetella pertussis ,Catalysis ,MESH: Bordetella pertussis ,03 medical and health sciences ,Colloid and Surface Chemistry ,MESH: Protein Conformation ,MESH: Protein Stability ,Ficoll ,MESH: Protein Binding ,Secretion ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,030304 developmental biology ,0303 health sciences ,Protein Stability ,General Chemistry ,MESH: Whooping Cough ,MESH: Adenylate Cyclase Toxin ,0104 chemical sciences ,Folding (chemistry) ,Cytosol ,Crystallography ,chemistry ,MESH: Calcium ,Excluded volume ,Biophysics ,Adenylate Cyclase Toxin ,Protein folding ,Macromolecular crowding ,Protein Binding ,Macromolecule - Abstract
International audience; Macromolecular crowding affects most chemical equilibria in living cells, as the presence of high concentrations of macromolecules sterically restricts the available space. Here, we characterized the influence of crowding on a prototypical RTX protein, RC(L). RTX (Repeat in ToXin) motifs are calcium-binding nonapeptide sequences that are found in many virulence factors produced by Gram-negative bacteria and secreted by dedicated type 1 secretion systems. RC(L) is an attractive model to investigate the effect of molecular crowding on ligand-induced protein folding, as it shifts from intrinsically disordered conformations (apo-form) to a stable structure upon calcium binding (holo-form). It thus offers the rare opportunity to characterize the crowding effects on the same polypeptide chain under two drastically distinct folding states. We showed that the crowding agent Ficoll70 did not affect the structural content of the apo-state and holo-state of RC(L) but increased the protein affinity for calcium. Moreover, Ficoll70 strongly stabilized both states of RC(L), increasing their half-melting temperature, without affecting enthalpy changes. The power law dependence of the melting temperature increase (ΔT(m)) on the volume fraction (φ) followed theoretical excluded volume predictions and allowed the estimation of the Flory exponent (ν) of the thermally unfolded polypeptide chain in both states. Altogether, our data suggest that, in the apo-state as found in the crowded bacterial cytosol, RTX proteins adopt extended unfolded conformations that may facilitate protein export by the type I secretion machinery. Subsequently, crowding also enhances the calcium-dependent folding and stability of RTX proteins once secreted in the extracellular milieu.
- Published
- 2013
41. Deciphering protein membrane interactions involved in the translocation process of a bacterial toxin, the adenylate cyclase (CyaA) toxin from Bordetella pertussis
- Author
-
Ana-Cristina Sotomayor-Pérez, Remi Veneziano, Alexandre Chenal, Audrey Hessel, Daniel Ladant, J. Pansieri, Joël Chopineau, Johanna C. Karst, Nicolas Sapay, Edithe Selwa, and Orso Subrini
- Subjects
Microbial toxins ,Bordetella pertussis ,Membrane ,CyaA Toxin ,biology ,Chemistry ,Adenylate kinase ,Chromosomal translocation ,Toxicology ,Pertussis toxin ,biology.organism_classification ,Cyclase ,Microbiology - Published
- 2016
42. Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting
- Author
-
Micheline Guillotte, Odile Mercereau-Puijalon, Bertrand Raynal, Patrick England, Jacques H. M. Cohen, Alexandre Juillerat, Audrey Hessel, Thierry Peyrard, Graham A. Bentley, Anita Lewit-Bentley, Inès Vigan-Womas, Olivier Bertrand, Immunologie moléculaire des parasites, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Immunologie structurale, Biophysique des macromolécules et leurs interactions, Université de Reims Champagne-Ardenne (URCA), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Diderot - Paris 7 - UFR Lettres, Arts, Langues (UPD7 UFR LAC), Université Paris Diderot - Paris 7 (UPD7), Institut National de la Transfusion Sanguine [Paris] (INTS), Work was supported by the Agence Nationale de la Recherche, contract ANR-07-MIME-021-0 (www.agence-nationale-recherche.fr/), and the 7th European Framework Program, FP7/2007-2013, (http://cordis.europa.eu/fp7/home_en.html) contract 242095, Evimalar. Fellowships for AJ and AH were provided by the ANR and Evimalar contracts. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript., We thank the staff of the Crystallogenesis Platform, Institut Pasteur and the staff of ESRF (Grenoble) and SOLEIL (Ile de France), in particular Andrew Thompson, for providing facilities for crystal growing, diffraction measurements and for assistance. We are indebted to Farida Nato and Françoise Marchand from the Monoclonal Antibody Platform, Institut Pasteur, for mAb isolation. We thank Elodie Crublet and Stéphane Petres, from the Recombinant Protein Platform, Institut Pasteur, for assistance in recombinant protein production and purification., ANR-07-MIME-0021,ROSETTE,Analyses sérologiques, fonctionnelles et structurales des facteurs de virulence, PfEMP1, impliqués dans le rosetting et l'auto-agglutinantion(2007), European Project: 242095,EC:FP7:HEALTH,FP7-HEALTH-2009-single-stage,EVIMALAR(2009), Vigan-Womas, Inès, Microbiologie, immunologie et maladies émergentes - Analyses sérologiques, fonctionnelles et structurales des facteurs de virulence, PfEMP1, impliqués dans le rosetting et l'auto-agglutinantion - - ROSETTE2007 - ANR-07-MIME-0021 - MIME - VALID, Towards the establishment of a permanent European Virtual Institute dedicated to Malaria Research (EVIMalaR). - EVIMALAR - - EC:FP7:HEALTH2009-10-01 - 2014-09-30 - 242095 - VALID, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), and Paris Diderot - Paris 7 - UFR Lettres, Arts, Langues
- Subjects
Erythrocytes ,Protozoan Proteins ,Antibodies, Protozoan ,Crystallography, X-Ray ,[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Group A ,Protein Structure, Secondary ,law.invention ,0302 clinical medicine ,law ,Malaria, Falciparum ,Biology (General) ,0303 health sciences ,biology ,Immune Adherence Reaction ,3. Good health ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Recombinant DNA ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,circulatory and respiratory physiology ,Rosette Formation ,[SDV.IMM] Life Sciences [q-bio]/Immunology ,QH301-705.5 ,030231 tropical medicine ,Immunology ,Protein domain ,Molecular Sequence Data ,Plasmodium falciparum ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Microbiology ,ABO Blood-Group System ,03 medical and health sciences ,Virology ,ABO blood group system ,parasitic diseases ,Genetics ,medicine ,Humans ,Amino Acid Sequence ,Molecular Biology ,[SDV.MP] Life Sciences [q-bio]/Microbiology and Parasitology ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,030304 developmental biology ,Binding Sites ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,RC581-607 ,biology.organism_classification ,medicine.disease ,Molecular biology ,Protein Structure, Tertiary ,Bacterial adhesin ,Docking (molecular) ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,Mutagenesis, Site-Directed ,Commentary ,Parasitology ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Immunologic diseases. Allergy ,Malaria - Abstract
International audience; The ABO blood group influences susceptibility to severe Plasmodium falciparum malaria. Recent evidence indicates that the protective effect of group O operates by virtue of reduced rosetting of infected red blood cells (iRBCs) with uninfected RBCs. Rosetting is mediated by a subgroup of PfEMP1 adhesins, with RBC binding being assigned to the N-terminal DBL1α1 domain. Here, we identify the ABO blood group as the main receptor for VarO rosetting, with a marked preference for group A over group B, which in turn is preferred to group O RBCs. We show that recombinant NTS-DBL1α1 and NTS-DBL1α1-CIDR1γ reproduce the VarO-iRBC blood group preference and document direct binding to blood group trisaccharides by surface plasmon resonance. More detailed RBC subgroup analysis showed preferred binding to group A1, weaker binding to groups A2 and B, and least binding to groups Ax and O. The 2.8 Å resolution crystal structure of the PfEMP1-VarO Head region, NTS-DBL1α1-CIDR1γ, reveals extensive contacts between the DBL1α1 and CIDR1γ and shows that the NTS-DBL1α1 hinge region is essential for RBC binding. Computer docking of the blood group trisaccharides and subsequent site-directed mutagenesis localized the RBC-binding site to the face opposite to the heparin-binding site of NTS-DBLα1. RBC binding involves residues that are conserved between rosette-forming PfEMP1 adhesins, opening novel opportunities for intervention against severe malaria. By deciphering the structural basis of blood group preferences in rosetting, we provide a link between ABO blood grouppolymorphisms and rosette-forming adhesins, consistent with the selective role of falciparum malaria on human genetic makeup.
- Published
- 2012
43. Structure of a Plasmodium falciparum PfEMP1 rosetting domain reveals a role for the N-terminal segment in heparin-mediated rosette inhibition
- Author
-
Bruno Baron, Stéphane Gangnard, Micheline Guillotte, Inès Vigan-Womas, Graham A. Bentley, Anita Lewit-Bentley, Audrey Hessel, Odile Mercereau-Puijalon, Patrick England, Alexandre Juillerat, Immunologie structurale, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Immunologie moléculaire des parasites, Biophysique des macromolécules et de leurs interactions (Plate-forme), Institut Pasteur [Paris] (IP), Work was supported by the Agence Nationale de la Recherche (contract ANR-07-MIME-021-0), and the 7th European Framework Program (FP7/2007-2013, contract 242095, Evimalar). Fellowships for A.J.were provided by the ANR, Roche Research Foundation, and the Swiss National Science Foundation, We thank the staff of the ESRF (Grenoble) and SOLEIL (Ile de France), in particular Andrew Thompson, for providing facilities for diffraction measurements and for assistance. We thank H. Lortat-Jacob for gift of heparin., ANR-07-MIME-0021,ROSETTE,Analyses sérologiques, fonctionnelles et structurales des facteurs de virulence, PfEMP1, impliqués dans le rosetting et l'auto-agglutinantion(2007), European Project: 242095,EC:FP7:HEALTH,FP7-HEALTH-2009-single-stage,EVIMALAR(2009), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), and Institut Pasteur [Paris]
- Subjects
Models, Molecular ,Erythrocytes ,Rosette Formation ,Molecular Sequence Data ,Plasmodium falciparum ,Protozoan Proteins ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,Crystallography, X-Ray ,03 medical and health sciences ,Sulfation ,parasitic diseases ,medicine ,Humans ,Amino Acid Sequence ,Peptide sequence ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,Heparin ,030306 microbiology ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Biological Sciences ,biology.organism_classification ,Virology ,Phenotype ,Protein Structure, Tertiary ,3. Good health ,Cell biology ,Bacterial adhesin ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Membrane protein ,nervous system ,Docking (molecular) ,Mutation ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,medicine.drug - Abstract
The human malaria parasite Plasmodium falciparum can cause infected red blood cells (iRBC) to form rosettes with uninfected RBC, a phenotype associated with severe malaria. Rosetting is mediated by a subset of the Plasmodium falciparum membrane protein 1 (PfEMP1) variant adhesins expressed on the infected host-cell surface. Heparin and other sulfated oligosaccharides, however, can disrupt rosettes, suggesting that therapeutic approaches to this form of severe malaria are feasible. We present a structural and functional study of the N-terminal domain of PfEMP1 from the VarO variant comprising the N-terminal segment (NTS) and the first DBL domain (DBL1 α 1 ), which is directly implicated in rosetting. We demonstrate that NTS-DBL1 α 1 -VarO binds to RBC and that heparin inhibits this interaction in a dose-dependent manner, thus mimicking heparin-mediated rosette disruption. We have determined the crystal structure of NTS-DBL1 α 1 , showing that NTS, previously thought to be a structurally independent component of PfEMP1, forms an integral part of the DBL1α domain. Using mutagenesis and docking studies, we have located the heparin-binding site, which includes NTS. NTS, unique to the DBL α-class domain, is thus an intrinsic structural and functional component of the N-terminal VarO domain. The specific interaction observed with heparin opens the way for developing antirosetting therapeutic strategies.
- Published
- 2011
44. Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space
- Author
-
Paul Schanda, Audrey Hessel, Martha Brennich, Conny Schütze, Nils Wiedemann, Yong Wang, Tobias Jores, Hubert Kalbacher, Katharina Weinhäupl, Kresten Lindorff-Larsen, Laura Melchionda, Beate Bersch, Doron Rapaport, Caroline Lindau, Birgit Schönfisch, Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), University of Freiburg [Freiburg], University of Copenhagen = Københavns Universitet (KU), Institute of Molecular Medicine and Cell Research (ZBMZ), University of Tübingen, European Molecular Biology Laboratory [Grenoble] (EMBL), Centre for Biological Signaling Studies [Freiburg] (BIOSS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and University of Copenhagen = Københavns Universitet (UCPH)
- Subjects
0301 basic medicine ,Saccharomyces cerevisiae Proteins ,Mitochondrial intermembrane space ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Saccharomyces cerevisiae ,Biology ,Molecular Dynamics Simulation ,TIM complex ,Mitochondrial Membrane Transport Proteins ,General Biochemistry, Genetics and Molecular Biology ,Protein Structure, Secondary ,Article ,03 medical and health sciences ,0302 clinical medicine ,NMR spectroscopy ,Protein Domains ,Inner membrane ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,membrane protein ,Amino Acid Sequence ,Protein Precursors ,Inner mitochondrial membrane ,Binding Sites ,protein translocation ,transfer-chaperone ,Intracellular Membranes ,Mitochondria ,030104 developmental biology ,Membrane protein ,Translocase of the inner membrane ,small-angle X-ray scattering ,Chaperone binding ,Biophysics ,Mutagenesis, Site-Directed ,binding by avidity ,protein import ,Intermembrane space ,Bacterial outer membrane ,Sequence Alignment ,030217 neurology & neurosurgery ,Molecular Chaperones ,Protein Binding - Abstract
Summary The exchange of metabolites between the mitochondrial matrix and the cytosol depends on β-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and β-barrel protein biogenesis. Our work reveals how a single mitochondrial “transfer-chaperone” system is able to guide α-helical and β-barrel membrane proteins in a “nascent chain-like” conformation through a ribosome-free compartment., Graphical Abstract, Highlights • Structural and in vivo data reveal basis of membrane protein “transfer-chaperone” • Multiple clamp-like binding sites hold the precursors in an elongated conformation • Tight complex results from dynamic contacts with numerous precursor conformations • Transfer of precursors in partial α-helical or β-hairpin conformation to insertases, Structural and mechanistic studies of TIM chaperones reveal how they hold client proteins in a nascent chain-like extended conformation to facilitate insertion into the mitochondrial inner or outer membrane.
- Full Text
- View/download PDF
45. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells
- Author
-
Rémi Planès, Miriam Pinilla, Karin Santoni, Audrey Hessel, Charlotte Passemar, Kenneth Lay, Perrine Paillette, Ana-Luiza Chaves Valadão, Kim Samirah Robinson, Paul Bastard, Nathaniel Lam, Ricardo Fadrique, Ida Rossi, David Pericat, Salimata Bagayoko, Stephen Adonai Leon-Icaza, Yoann Rombouts, Eric Perouzel, Michèle Tiraby, Qian Zhang, Pietro Cicuta, Emmanuelle Jouanguy, Olivier Neyrolles, Clare E. Bryant, Andres R. Floto, Caroline Goujon, Franklin Zhong Lei, Guillaume Martin-Blondel, Stein Silva, Jean-Laurent Casanova, Céline Cougoule, Bruno Reversade, Julien Marcoux, Emmanuel Ravet, Etienne Meunier, Institut de pharmacologie et de biologie structurale (IPBS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), InvivoGen Europe, Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Molecular Immunity Unit [Cambridge, UK] (Department of Medicine), University of Cambridge [UK] (CAM), Institute of Medical Biology [Singapore Singapore], Genome Institute of Singapore (GIS), Agency for science, technology and research [Singapore] (A*STAR), Human genetics of infectious diseases : Mendelian predisposition (Equipe Inserm U1163), Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University [New York], Department of Veterinary Medicine, University of Cambridge, Cambridge, UK, School of Clinical Medicine, Cavendish Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Lee Kong Chian School of Medicine, Nanyang Technological University [Singapour], Skin Research Institute of Singapore [Singapore, Singapore] (SRIS / A*STAR), Service Maladies infectieuses et tropicales [CHU Toulouse], Pôle Inflammation, infection, immunologie et loco-moteur [CHU Toulouse] (Pôle I3LM Toulouse), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Service de réanimation infantile [CHU Purpan], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Howard Hughes Medical Institute [New York] (HHMI), Howard Hughes Medical Institute (HHMI)-New York University School of Medicine, NYU System (NYU)-NYU System (NYU)-Rockefeller University [New York]-Columbia University Irving Medical Center (CUIMC), Institute of Molecular and Cell Biology, National University of Singapore (NUS)-Agency for science, technology and research [Singapore] (A*STAR), Yong Loo Lin School of Medicine [Singapore], Koç University, This project was funded by grants from the Fondation pour la Recherche Médicale (F.R.M.) and the ERC StG (INFLAME) to E.M., the ERC StG (ANTIViR) to C.G., and the French Ministry of Health with the participation of the Groupement Interrégional de Recherche Clinique et d’Innovation Sud-Ouest Outre-Mer (PHRCI 2020 IMMUNOMARK-COV) to G.-M.B. The ASB3 structure is supported by LABEX, Investissement d’Avenir and foundation Bettencourt grants to O.N. M.P. and R.P. were, respectively, funded by a CIFRE PhD fellowship and a research grant from InvivoGen. S.B. is supported by a PhD fellowship from Mali Ministry of Education and from the FRM (FDT 12794)., ANR-12-BSV3-0002,B-TB,Rôle des lymphocytes B dans l'immunité et l'inflammation tuberculeuse(2012), ANR-18-CE44-0005,DCIR-TB,Etude des mécanismes impliqués dans la modulation de la signalisation par les interférons de type I et l'immunité anti-tuberculeuse par la lectine de type C DCIR(2018), Cougoule, Céline, BLANC - Rôle des lymphocytes B dans l'immunité et l'inflammation tuberculeuse - - B-TB2012 - ANR-12-BSV3-0002 - BLANC - VALID, APPEL À PROJETS GÉNÉRIQUE 2018 - Etude des mécanismes impliqués dans la modulation de la signalisation par les interférons de type I et l'immunité anti-tuberculeuse par la lectine de type C DCIR - - DCIR-TB2018 - ANR-18-CE44-0005 - AAPG2018 - VALID, Center for Reproductive Medicine, ACS - Heart failure & arrhythmias, Amsterdam Reproduction & Development, Reversade, Bruno, Planes, R., Pinilla, M., Santoni, K., Hessel, A., Passemar, C., Lay, K., Paillette, P., Valadao, A.C., Robinson, K.S., Bastard, P., Lam, N., Fadrique, R., Rossi, I., Pericat, D., Bagayoko, S., Leon-Icaza, S.A., Rombouts, Y., Perouzel, E., Tiraby, M., COVID Human Genetic Effort, Zhang, Q., Cicuta, P., Jouanguy, E., Neyrolles, O., Bryant, C.E., Floto, A.R., Goujon, C., Lei, F.Z., Martin-Blondel, G., Silva, S., Casanova, J.L., Cougoule, C., Marcoux, J., Ravet, E., Meunier, E., and School of Medicine
- Subjects
Pore Forming Cytotoxic Proteins ,Caspase 3 ,Inflammasomes ,SARS-CoV-2 ,[SDV]Life Sciences [q-bio] ,pyroptosis ,COVID-19 ,NLR Proteins ,Cell Biology ,3CL proteases ,Epithelial cells ,Gasdermins ,NLRP1 inflammasome ,Pyroptosis ,Phosphate-Binding Proteins ,epithelial cells ,[SDV] Life Sciences [q-bio] ,Humans ,Biochemistry and molecular biology ,Cell biology ,Lung ,Molecular Biology ,Coronavirus 3C Proteases ,Peptide Hydrolases - Abstract
Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 in-flammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia., Fondation pour la Recherche Med-icale (F.R.M.); European Union (EU); Horizon 2020; ERC StG (INFLAME); ERC StG (ANTIViR); French Ministry of Health; Goupe-ment Interregional de Recherche Clinique et d’Innovation Sud-Ouest Outre-Mer (PHRCI 2020 IMMUNOMARK-COV); LABEX; CIFRE PhD Fellowship; Investissement d'Avenir and foundation Bettencourt; InvivoGen; Mali Ministry of Education; Vaincre La Mucoviscidose (VLM); InvivoGen
- Full Text
- View/download PDF
46. Molecular Crowding Stabilizes Both the Intrinsically Disordered Calcium-Free State and the Folded Calcium-Bound State of an RTX Protein: Implication for Toxin Secretion
- Author
-
Alexandre Chenal, Daniel Ladant, Ana Cristina Sotomayor Pérez, Orso Subrini, and Audrey Hessel
- Subjects
Chemistry ,Biophysics ,chemistry.chemical_element ,macromolecular substances ,Calcium ,Intrinsically disordered proteins ,Bacterial cell structure ,Folding (chemistry) ,Cytosol ,Biochemistry ,Extracellular ,Secretion ,Macromolecular crowding - Abstract
Ligand-induced disorder-to-order transition plays a key role in the biological functions of many proteins that contain intrinsically disordered domains. Here, we present data on an RTX (" Repeat in ToXin ") protein, RCL, an IDP that folds upon calcium binding. RTX motifs are calcium-binding nonapeptide sequences that are found in more than 250 virulence factors secreted by Gram-negative pathogenic bacteria. Using a combination of biophysical approaches, we showed that RCL exhibits the hallmarks of intrinsically disordered proteins in the absence of calcium. Calcium binding triggers a strong reduction of the mean net charge, dehydration and compaction, folding and stabilization of secondary and tertiary structures of RCL. Moreover, RCL is an attractive model to investigate the effect of molecular crowding because it offers the opportunity to characterize the crowding effects on the same protein under two drastically distinct folding states. Macromolecular crowding affects most chemical equilibria in living cells by sterically restricting the available space. We showed that the crowding agent Ficoll70 did not affect the structural content of the apo-state and holo-state of RCL but increased the protein affinity for calcium. Besides, Ficoll70 strongly stabilizes both states of RCL, increasing their half-melting temperature (ΔTm), without affecting enthalpy changes. The power law dependence of the ΔTm increase on the volume fraction allowed the estimation of the Flory exponent of the thermally unfolded states. Altogether, our data suggest that, in the apo-state as found in the crowded bacterial cytosol, RTX proteins adopt extended unfolded conformations that may facilitate protein export by the secretion machinery. Subsequently, calcium gradient across bacterial cell wall and crowding also enhances the calcium-dependent folding and stability of RTX proteins once secreted in the extracellular milieu.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.