1. Puheen segmentointi ja klusterointi uutta puheentunnistimen arkkitehtuuria varten
- Author
-
Laine, Unto K.; Prof., Department of Electrical and Communications Engineering, Sähkö- ja tietoliikennetekniikan osasto, Laboratory of Acoustics and Audio Signal Processing, Akustiikan ja äänenkäsittelytekniikan laboratorio, Räsänen, Okko, Laine, Unto K.; Prof., Department of Electrical and Communications Engineering, Sähkö- ja tietoliikennetekniikan osasto, Laboratory of Acoustics and Audio Signal Processing, Akustiikan ja äänenkäsittelytekniikan laboratorio, and Räsänen, Okko
- Abstract
Perinteiset automaattiset puheentunnistusmenetelmät eivät pärjää suorituskyvyssä ihmisen puheenhavaintokyvylle. Voidaksemme kuroa tämän eron umpeen, on kehitettävä täysin uudentyyppisiä arkkitehtuureja puheentunnistusta varten. Puhetta ja kieltä itsestään ihmisen lailla oppiva järjestelmä on yksi tällainen vaihtoehto. Tämä diplomityö esittelee erään lähtökohdan oppivalle järjestelmälle, koostuen uudenlaisesta sokeasta puheen segmentointialgoritmista, segmenttien piirteistyksestä, sekä menetelmistä vähittäiselle puhedatan luokittelulle klusteroinnin avulla. Kaikki metodit arvioitiin kattavilla kokeilla, ja itse arviontimenetelmien luonteeseen kiinnitettiin huomiota. Segmentoinnissa saavutettiin alan kirjallisuuteen nähden hyvät tulokset. Järjestelmän mahdollisia jatkokehityssuuntauksia on hahmoteltu muunmuassa mahdollisten muistiarkkitehtuurien ja älykkään top-down palautteen osalta., To reduce the gap between performance of traditional speech recognition systems and human speech recognition skills, a new architecture is required. A system that is capable of incremental learning offers one such solution to this problem. This thesis introduces a bottom-up approach for such a speech processing system, consisting of a novel blind speech segmentation algorithm, a segmental feature extraction methodology, and data classification by incremental clustering. All methods were evaluated by extensive experiments with a broad range of test material and the evaluation methodology was itself also scrutinized. The segmentation algorithm achieved above standard quality results compared to what is found in current literature regarding blind segmentation. Possibilities for follow-up research of memory structures and intelligent top-down feedback in speech processing are also outlined.
- Published
- 2007