20 results on '"Atvars TD"'
Search Results
2. Intramolecular, Exciplex-Mediated, Proton-Coupled, Charge-Transfer Processes in N,N-Dimethyl-3-(1-pyrenyl)propan-1-ammonium Cations: Influence of Anion, Solvent Polarity, and Temperature.
- Author
-
Safko TM, Faleiros MM, Atvars TD, and Weiss RG
- Abstract
An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled.
- Published
- 2016
- Full Text
- View/download PDF
3. Photodynamic antimicrobial effects of bis-indole alkaloid indigo from Indigofera truxillensis Kunth (Leguminosae).
- Author
-
Andreazza NL, de Lourenço CC, Stefanello MÉ, Atvars TD, and Salvador MJ
- Subjects
- Anti-Bacterial Agents chemistry, Candida drug effects, Escherichia coli drug effects, Indigofera chemistry, Lasers, Semiconductor, Microbial Sensitivity Tests, Photosensitizing Agents chemistry, Proteus vulgaris drug effects, Singlet Oxygen chemistry, Staphylococcus aureus drug effects, Staphylococcus epidermidis drug effects, Anti-Bacterial Agents pharmacology, Indigo Carmine pharmacology, Photochemotherapy, Photosensitizing Agents pharmacology
- Abstract
Multidrug-resistant microbial infections represent an exponentially growing problem affecting communities worldwide. Photodynamic therapy is a promising treatment based on the combination of light, oxygen, and a photosensitizer that leads to reactive oxygen species production, such as superoxide (type I mechanism) and singlet oxygen (type II mechanism) that cause massive oxidative damage and consequently the host cell death. Indigofera genus has gained considerable interest due its mutagenic, cytotoxic, and genotoxic activity. Therefore, this study was undertaken to investigate the effect of crude extracts, alkaloidal fraction, and isolated substance derived from Indigofera truxillensis in photodynamic antimicrobial chemotherapy on the viability of bacteria and yeast and evaluation of mechanisms involved. Our results showed that all samples resulted in microbial photoactivation in subinhibitory concentration, with indigo alkaloid presenting a predominant photodynamic action through type I mechanism. The use of CaCl2 and MgCl2 as cell permeabilizing additives also increased gram-negative bacteria susceptibility to indigo.
- Published
- 2015
- Full Text
- View/download PDF
4. Tuning emission colors from blue to green in polymeric light-emitting diodes fabricated using polyfluorene blends.
- Author
-
Quites FJ, Faria GC, Germino JC, and Atvars TD
- Abstract
The photo- and electroluminescent properties of single-layer two-component blends composed of one blue emitter polymer and one green emitter polymer were studied. The blue emitter, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9-di-{5'-pentanyl}-fluorenyl-2,7-diyl)] (PFOFPen), was used as the matrix, and the green emitter, poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(bithiophene)] (F6T2), was used as the guest. The F6T2 content in the blends varied from 0.0075 wt % to 2.4 wt %. Remarkable differences were observed between the electroluminescent (EL) and photoluminescent (PL) spectra of these blends, which indicated that the mechanism for excited-state generation in the former process had a higher efficiency in the aggregated phase than in the nonaggregated phase. Blending these two polymers gradually tuned the emission color from blue (PFOFPen and blends with <0.75 wt % F6T2) to green (F6T2 and blends with >0.75 wt % F6T2). The photophysical processes involved in both EL and PL emission are also discussed.
- Published
- 2014
- Full Text
- View/download PDF
5. Towards in situ fluorescence spectroscopy and microscopy investigations of asphaltene precipitation kinetics.
- Author
-
Franco JC, Gonçalves G, Souza MS, Rosa SB, Thiegue LM, Atvars TD, Rosa PT, and Nome RA
- Subjects
- Chemical Precipitation, Equipment Design, Equipment Failure Analysis, Kinetics, Microscopy instrumentation, Petroleum analysis, Polycyclic Aromatic Hydrocarbons analysis, Polycyclic Aromatic Hydrocarbons chemistry, Spectrometry, Fluorescence instrumentation, Spectrum Analysis, Raman instrumentation
- Abstract
We perform a spectroscopic analysis of asphaltene in solution and in crude oil with the goal of designing an optical probe of asphaltene precipitation inside high-pressure cells. Quantitative analysis of steady-state spectroscopic data is employed to identify fluorescence and Raman contributions to the observed signals. Time-resolved fluorescence spectroscopy indicates that fluorescence lifetime can be used as a spectroscopic probe of asphaltene in crude oil. Quantitative confocal laser-scanning microscopy studies of asphaltene in n-heptane are used to calculate particle-size distributions as a function of time, both at the sample surface and asphaltene interior. The resulting precipitation kinetics is well described by stochastic numerical simulations of diffusion-limited aggregation. Based on these results, we present the design and construction of an apparatus to optically probe the in situ precipitation of asphaltene suitable for studies inside high pressure cells. Design considerations include the use of a spatial light modulator for aberration correction in microscopy measurements, together with the design of epi-fluorescence spectrometer, both fiber-based and for remote sensing fluorescence spectroscopy.
- Published
- 2013
- Full Text
- View/download PDF
6. Fluorescent polymer coatings with tuneable sensitive range for remote temperature sensing.
- Author
-
Barja BC, Chesta CA, Atvars TD, and Aramendía PF
- Subjects
- 2-Naphthylamine chemistry, Fluorescence, Temperature, 2-Naphthylamine analogs & derivatives, Fluorescent Dyes chemistry, Phthalimides chemistry, Polyvinyl Alcohol chemistry, Remote Sensing Technology methods
- Abstract
Polymer films of poly(vinyl alcohol) containing the fluorescent dyes 4-aminophthalimide (AP) or 6-propionyl-2-dimethylamino-naphthalene (Prodan) are used as temperature-sensitive fluorescent coatings for remote temperature sensing. Temperature can be obtained by a two-wavelength ratiometric-based emission intensity measurement. The coatings are sensitive in a 100K temperature range that can be tuned by polymer-solute interactions. The usable range is 200-300 K for AP and 280-380 K for Prodan., (Copyright © 2013 Elsevier B.V. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
7. Modulation of the photophysical properties of pyrene by the microstructures of five poly(alkyl methacrylate)s over a broad temperature range.
- Author
-
Atvars TD, Abraham S, Hill AJ, Pas SJ, Chesta C, and Weiss RG
- Subjects
- Methacrylates chemistry, Pyrenes chemistry, Temperature
- Abstract
Pyrene fluorescence spectra have been recorded in five poly(alkyl methacrylate)s (where alkyl is ethyl butyl, isobutyl, cyclohexyl and hexadecyl) over a 20-400 K temperature range. The changes in the position and the full width at half maximum (FWHM) of the 0-0 emission band (peak I) have been correlated with the structural characteristics of the alkyl groups in the different relaxation regimes of the polymers to assess the degree of coupling of the excited singlet states with the polymer cybotactic regions. Data treatment of the peak I positions using an electron-phonon model indicates that longitudinal optical modes are involved, and that the magnitude of coupling depends on the polymer structure and follows the same trend as the glass transition temperatures. The same spectral parameters have been correlated also with "hole" free volumes from positron annihilation spectroscopy over temperature ranges which span the glass or melting transitions of the polymers. Reasons why free volume and FWHM measurements follow the same trends, and other aspects of the systems, are discussed., (© 2013 The American Society of Photobiology.)
- Published
- 2013
- Full Text
- View/download PDF
8. Energy transfer from poly(vinyl carbazole) to a fluorene-vinylene copolymer in solution and in the solid state.
- Author
-
Bonon BM and Atvars TD
- Abstract
This article reports a comparative study of the energy transfer processes in solution and the solid state from poly(vinyl carbazole; the donor) to dimethylphenyl-terminated poly[(9,9-dioctylfluorenyl-2,7-divinylene-fluorene)-co-alt-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (the acceptor). The results in solutions suggest that a decrease of the donor emission intensity with an increasing acceptor concentration is more closely related to the trivial energy transfer process, indicating that the donor and acceptor chains are not in close contact during the lifetime of the donor excited state. This conclusion was reached using the amplitude-averaged lifetime of the donor, which is practically independent of the acceptor concentration. In the solid state, the polymer blends showed a decrease in the donor emission with an increasing acceptor concentration, and a decrease in the donor lifetime was also observed. Thus, in the solid state, changes in morphology interfere with the nonradiative resonant energy transfer process, but influence on the trivial process cannot be completely neglected. The lifetime does not follow a continuous decrease with the PFO-MEHPV concentration like the emission intensity does. The changes in the lifetime values occur over the same concentration range as do the changes of morphology, as shown by the scanning electron micrographs., (© 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.)
- Published
- 2012
- Full Text
- View/download PDF
9. Correlations between conjugation length, macromolecular dynamics, and photophysics of phenylene-vinylene/aliphatic multiblock copolymers.
- Author
-
Bernardinelli OD, Cassemiro SM, Nunes LA, Atvars TD, Akcelrud L, and deAzevedo ER
- Abstract
This work reports a detailed spectroscopy study of a series of multiblock conjugated nonconjugated copolymers built by p-phenylene vinylene type units (PV) and octamethylene spacers, namely, poly(1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene) (LaPPS18). The relative proportions of the PV and aliphatic segments were estimated on the basis of solid-state NMR and Raman spectroscopy. The overall structure was characterized by wide angle X-ray diffraction; (1)H wide-line dipolar chemical shift correlation (DIPSHIFT), and centerband-only detection of exchange (CODEX) NMR data, that together with glass transition temperatures allowed us to identify the groups involved in the molecular dynamics. These different structural properties were used to explain the photoluminescence properties in terms of peak position and spectral profile.
- Published
- 2012
- Full Text
- View/download PDF
10. Electronic structure and optical properties of an alternated fluorene-benzothiadiazole copolymer: interplay between experimental and theoretical data.
- Author
-
Rodrigues PC, Berlim LS, Azevedo D, Saavedra NC, Prasad PN, Schreiner WH, Atvars TD, and Akcelrud L
- Abstract
The donor-acceptor copolymer containing benzothiadiazole (electron acceptor), linked to functionalized fluorene (electron donor), [poly[9,9-bis(3'-(tert-butyl propanoate))fluorene-co-4,7-(2,1,3-benzothiadiazole)] (LaPPS40), was synthesized through the Suzuki route. The polymer was characterized by scanning electron microscopy, gel permeation chromatography, NMR, thermal analysis, cyclic voltammetry, X-ray photoelectron spectroscopy, UV-vis spectrometry, and photophysical measurements. Theoretical calculations (density functional theory and semiempirical methodologies) used to simulate the geometry of some oligomers and the dipole moments of molecular orbitals involved were in excellent agreement with experimental results. Using such data, the higher energy absorption band was attributed to the π-π* (S(0) → S(4)) transition of the fluorene units and the lower lying band was attributed to the intramolecular (ICT) (S(0) → S(1)) charge transfer between acceptor (benzothiadiazole) and donor groups (fluorene) (D-A structure). The ICT character of this band was confirmed by its solvatochromic properties using solvents with different dielectric properties, and this behavior could be well described by the Lippert-Mataga equation. To explain the solvatochromic behavior, both the magnitude and orientation of the dipole moments in the electronic ground state and in the excited state were analyzed using the theoretical data. According to these data, the change in magnitude of the dipole moments was very small for both transitions but the spatial orientation changed remarkably for the lower energy band ascribed to the ICT band.
- Published
- 2012
- Full Text
- View/download PDF
11. Photoelectrochemical, photophysical and morphological studies of electrostatic layer-by-layer thin films based on poly(p-phenylenevinylene) and single-walled carbon nanotubes.
- Author
-
Almeida LC, Zucolotto V, Domingues RA, Atvars TD, and Nogueira AF
- Abstract
The preparation of multilayer films based on poly(p-phenylenevinylene) (PPV) and carboxylic-functionalized single-walled carbon nanotubes (SWNT-COOH) by electrostatic interaction using the layer-by-layer (LbL) deposition method is reported herein. The multilayer build-up, monitored by UV-Vis and photoluminescence (PL) spectroscopies, displayed a linear behavior with the number of PPV and SWNT-COOH layers deposited that undergo deviation and spectral changes for thicker films. Film morphology was evaluated by AFM and epifluorescence microscopies showing remarkable changes after incorporation of SWNT-COOH layers. Films without SWNT show roughness and present dispersed grains; films with SWNT-COOH layers are flatter and some carbon nanotube bundles can be visualized. The photoinduced charge transfer from the conducting polymer to SWNT-COOH was analyzed by PL quenching either by the decrease of the emission intensity or by the presence of dark domains in the epifluorescence micrographs. Photoelectrochemical characterization was performed under white light and the films containing SWNT-COOH displayed photocurrent values between 2.0 μA cm(-2) and 7.5 μA cm(-2), as the amount of these materials increases in the film. No photocurrent was observed for the film without carbon nanotubes. Photocurrent generation was enhanced and became more stable when an intermediate layer of PEDOT:PSS was interposed between the active layer and the ITO electrode, indicating an improvement in hole transfer to the contacts. Our results indicate that these multilayer films are promising candidates as active layers for organic photovoltaic cells.
- Published
- 2011
- Full Text
- View/download PDF
12. Effects of temperature and alkyl groups of poly(alkyl methacrylate)s on inter- and intramolecular interactions of excited singlet states of pyrenyl guest molecules.
- Author
-
Abraham S, Atvars TD, and Weiss RG
- Subjects
- Fluorescence, Membranes, Artificial, Molecular Structure, Polymethacrylic Acids chemistry, Pyrenes chemistry, Temperature
- Abstract
Temperature-induced changes in the static and dynamic characteristics of the fluorescence from pyrene and N,N-dimethyl-3-(pyren-1-yl)propan-1-amine (PyC3NMe2) have been used to determine the locations and mobilities of these probes in the anisotropic environments provided by films of 5 poly(alkyl methacrylate) (PAMA) polymers in which alkyl is ethyl, butyl, isobutyl, cyclohexyl, and hexadecyl. Whereas emission from pyrene reports on the polarity of the guest sites and the ability of molecules to diffuse translationally between sites, emission from PyC3NMe2 yields information about the fluidity and the shape of the guest sites. Data have been obtained from 20 to >400 K, a range that spans the onsets of several relaxation processes in the hosts. Those data indicate that the pyrenyl groups reside near to ester functionalities in most of the PAMAs, although the distance from them (and the main chains) depends upon the bulkiness of the alkyl groups. Among the most important conclusions derived from this research is that the rates of segmental relaxation phenomena near the probe molecules--and not free volume, as was concluded previously from fluorescence measurements in polyethylene films--are the dominant contributors to the fluorescence changes. Of practical importance, changes in those rates have permitted the onset temperatures of many of the relaxation phenomena occurring in the vicinity of the probes to be located.
- Published
- 2010
- Full Text
- View/download PDF
13. A multitechnique study of structure and dynamics of polyfluorene cast films and the influence on their photoluminescence.
- Author
-
Faria GC, Plivelic TS, Cossiello RF, Souza AA, Atvars TD, Torriani IL, and deAzevedo ER
- Abstract
This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly[(9,9-dioctyl-2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These structures were determined by wide-angle X-ray scattering (WAXS) measurements. Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of approximately 4.5 A and laterally spaced by about approximately 16 A, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in the aggregated structures. Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, our data explain many features of the temperature dependence of the photoluminescence of these two polymers.
- Published
- 2009
- Full Text
- View/download PDF
14. Sorption of a fluorescent whitening agent (Tinopal CBS) onto modified cellulose fibers in the presence of surfactants and salt.
- Author
-
Iamazaki ET and Atvars TD
- Abstract
The combined effect of salt (10 mmol L(-1)) and surfactants on the sorption of the fluorescent brightener 4,4'-distyrylbiphenyl sodium sulfonate (Tinopal CBS) onto modified cellulose fibers was studied. Sorption efficiencies with both cationic and anionic surfactants were evaluated. Emission spectroscopy was used for quantitative analysis since Tinopal has an intense fluorescence. The sorption efficiency of the brightener is greater for solutions containing a cationic surfactant (DTAC) below the critical micelle concentration (cmc), while for an anionic surfactant (SDS) above its cmc the efficiency is greater. The profile of the sorption isotherms were interpreted in terms of the evolution of surfactant aggregation at the fiber/solution interface. Salt influences the efficiency of the Tinopal sorption on the modified cellulose fibers either because it decreases the cmc of the surfactants or because the ions screen the surface charges of the fiber which decreases the electrostatic interaction among the charged headgroup of the surfactant and the charged fiber surface.
- Published
- 2007
- Full Text
- View/download PDF
15. Role of surfactants in the sorption of the whitening agent Tinopal CBS onto viscose fibers: a fluorescence spectroscopy study.
- Author
-
Iamazaki ET and Atvars TD
- Abstract
In the present work, we studied the role of an anionic surfactant, sodium dodecyl sulfate, and a cationic surfactant, dodecyltrimethylammonium chloride, in the sorption of 4,4'-distyrylbiphenyl sodium sulfonate (Tinopal CBS) onto modified cellulose fibers. Fluorescence spectroscopy was used to quantify the amount of sorbed Tinopal CBS on the fiber surface. Differences in the spectral properties and the efficiency of sorption of the whitener/surfactant/fiber system are explained in terms of electrostatic interactions. Our results also show that the sorption efficiency is greater for solutions containing cationic surfactants only below the critical micelle concentration, while anionic surfactants show a smooth influence on the sorption process.
- Published
- 2006
- Full Text
- View/download PDF
16. Relaxations in poly(vinyl alcohol) and in poly(vinyl acetate) detected by fluorescence emission of 4-aminophthalimide and prodan.
- Author
-
Barja BC, Chesta C, Atvars TD, and Aramendía PF
- Abstract
Steady-state and time-resolved emission spectroscopy (TRES) of the medium-sensitive probes 4-aminophthalimide (4-AP) and 6-propionyl-2-(dimethylamino)naphthalene (Prodan) were performed at 77 and 298 K in vacuum-sealed thin films of poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc). The two probes show similar red-edge effect in steady state emission and a red shift with time in TRES in PVA. In PVAc the red shifts are much smaller and the spectral shift for 4-AP is slower. 4-AP locates in highly polar environments in PVA, where H-bond interaction with the polymer is important. Prodan locates in less polar environments, as evidenced by the position of the emission maximum with respect to reference solvents. Consequently, the observed monoexponential spectral red shift with time of 4-AP in PVA and in PVAc is attributed to relaxation of the interaction of the probe with the hydroxy and acetate moieties, respectively. The more intense interaction of the lighter -OH moiety with the probes explains the greater and faster spectral shift observed in PVA compared to PVAc. The lifetime of this monoexponential spectral shift is independent of temperature in PVA and takes place with a highly negative activation entropy. This fact is attributed to a collective rearrangement of -OH groups to better interact with the excited state. This relaxation nevertheless does not account for the complete accommodation of the excited state. Prodan shows a linear variation of the spectral shift with time that can be explained by microheterogeneity. In PVA, the width at half-maximum of the emission spectra does not change with time for Prodan and it decays with a lifetime similar to the lifetime of the spectral shift in the case of 4-AP. The differences in the behavior of the probes are attributed to their different average location in the polymer matrix.
- Published
- 2005
- Full Text
- View/download PDF
17. Spectroscopic studies of the intermolecular interactions of Congo red and tinopal CBS with modified cellulose fibers.
- Author
-
Yamaki SB, Barros DS, Garcia CM, Socoloski P, Oliveira ON Jr, and Atvars TD
- Subjects
- Carbohydrate Conformation, Hydrogen-Ion Concentration, Molecular Structure, Spectrum Analysis, Benzenesulfonates chemistry, Cellulose chemistry, Congo Red chemistry
- Abstract
The adsorption of Congo red and tinopal CBS dyes on cellulose fibers was investigated using electronic absorption and fluorescence spectroscopies. Hydrogen bonds appear to be relevant for the dye-fiber interactions as indicated by the solvatochromism of Congo red in water, methanol, and dimethyl sulfoxide solutions, and when adsorbed on cellulose fibers. We also demonstrate that electrostatic interactions play an important role in the dye-medium interaction, through the analysis of absorption spectra of Congo red and fluorescence spectra of tinopal in aqueous solutions containing salt and in layer-by-layer nanostructured films with poly(allylamine hydrochloride). For instance, dye adsorption was enhanced when salt was added to the dipping solution, which was explained by the synergistic effect between the conformational changes of the cellulose and changes in the solvation layer around the cellulose chains and around dye molecules. On the basis of the fluorescence results for tinopal CBS, we inferred that dye aggregation is not relevant for adsorption on the fibers. In addition, fluorescence spectroscopy is proven very sensitive for studying the organization of dye molecules in layer-by-layer films, particularly those undergoing irreversible structural changes.
- Published
- 2005
- Full Text
- View/download PDF
18. Morphological and structural characteristics of diazo dyes at the air-water interface: in situ Brewster angle microscopy and polarized UV/vis analysis.
- Author
-
Yamaki SB, Andrade AA, Mendonça CR, Oliveira ON Jr, and Atvars TD
- Abstract
A morphological analysis is presented for Langmuir films of the diazo dyes Sudan 4 (S4), Sudan 3 (S3), and Sudan red (SR), using Brewster angle microscopy. Stable nonmonomolecular structures are formed at the air-water interface denoted as a plateau in the pressure-area isotherms. Monolayer domains are evident by the contrastless image even before the pressure onset, which grow in size until it reached a condensed monolayer. This behavior resembles that of Langmuir films from simple aromatic fatty acids. Films from all the azo dyes display similar features, according to the surface potential isotherms and in situ polarized UV/vis spectroscopy except for the larger area per molecule occupied by S4 and SR. This is attributed to the presence of CH(3) groups that cause steric hindrance modifying the organization of diazo dye molecules at the air-water interface. UV/vis polarized absorption spectroscopy showed preferential orientation of S4 and S3 on the water surface, while SR molecules lie isotropically. For these three diazo dyes, film absorption was negligible at very large areas per molecule, becoming nonzero only at a critical area coinciding with the onset of surface potential. The critical area is ascribed to the formation of a H-bonded network between water molecules and diazo dye headgroups.
- Published
- 2005
- Full Text
- View/download PDF
19. Determination of initial and long-term microstructure changes in ultrahigh molecular weight polyethylene induced by drawing neat and pyrenyl modified films.
- Author
-
Luo C, Atvars TD, Meakin P, Hill AJ, and Weiss RG
- Abstract
Deformation processes in gel-crystallized ultrahigh molecular weight polyethylene (UHMWPE) films with draw ratios (DR) as high as 96 have been investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and positron annihilation lifetime spectroscopy (PALS). In addition, low concentrations of pyrene molecules have been introduced at the time of film preparation from the gels or afterward by sorption after film preparation, and the polarization of their electronic absorption and fluorescence spectra at different draw ratios has been measured over a large temperature range extending to below the glass transition. The pyrene-doped films have been irradiated to introduce covalently attached 1-pyrenyl groups, and these films at two draw ratios have been employed to investigate over large temperature ranges (1) the steady-state fluorescence intensity and (2) the rates of diffusion of N,N-dimethylaniline (DMA). These data have been correlated with the XRD, DSC, and PALS information obtained on the unmodified films. On the basis of analyses of this body of information, a novel deformation model that explains the decreased crystallinity and increased mean free volumes in gel-crystallized UHMWPE at low draw ratios is proposed. It involves "stretch" and "flip" motions of microfibrils present in the undrawn films. The high crystallinity content and stiffer chains due to drawing UHMWPE films result in weak alpha- and beta-relaxation processes, slower diffusion of DMA than in undrawn films, and orientation factors for doped pyrene molecules that are constant over a large temperature range. The overall picture that emerges allows several aspects of the morphology of UHMWPE, a polymer of fundamental importance in materials research, to be understood.
- Published
- 2003
- Full Text
- View/download PDF
20. Selective attachment of pyrenyl groups to ethylene-co-vinyl acetate copolymers: dynamic and static fluorescence studies.
- Author
-
Yamaki SB, Atvars TD, and Weiss RG
- Abstract
Micromorphology is an important factor in determining polymer properties and uses. Here, steady-state and dynamic fluorescence from covalently attached 1-alkylpyrenyl groups are used to investigate the micromorphology of several random ethylene-co-vinyl acetate (EVA) copolymers with defined compositions of vinyl acetate monomer. The results are compared with those from homopolymers of high- and low-density polyethylenes and poly(vinyl acetate). Selective attachment of pyren-1-yl groups to polymer chains was accomplished by irradiation of pyren-1-yldiazomethane sorbed into polymer films. Steady-state fluorescence spectra and fluorescence decay rates of attached pyrenyl groups in films of the polymers have been compared with those from films with sorbed pyrene. I1/I3 intensity ratios from vibrational bands in the fluorescence spectra and the fluorescence decay rates of attached 1-alkylpyrenyl groups are much less sensitive to changes in the copolymer composition than are those of pyrene. These observations suggest that attachment occurs selectively to the olefinic segments (rather than to the acetate-rich regions) of polymer chains of EVA copolymers. This conclusion is consistent with the known preferences for reaction by pyren-1-ylcarbene in solution.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.