1. MiR-125b-5p ameliorates ox-LDL-induced vascular endothelial cell dysfunction by negatively regulating TNFSF4/TLR4/NF-κB signaling.
- Author
-
He W, Zhao L, Wang P, Ren M, and Han Y
- Subjects
- Humans, Apoptosis drug effects, Oxidative Stress drug effects, Atherosclerosis metabolism, Atherosclerosis genetics, Lipoproteins, LDL pharmacology, Lipoproteins, LDL metabolism, MicroRNAs genetics, MicroRNAs metabolism, Toll-Like Receptor 4 metabolism, Toll-Like Receptor 4 genetics, Human Umbilical Vein Endothelial Cells metabolism, Signal Transduction drug effects, NF-kappa B metabolism, OX40 Ligand metabolism, OX40 Ligand genetics
- Abstract
Background: Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction plays a crucial role in the progression of atherosclerosis (AS). Although miR-125b-5p is known to be involved in cardiovascular and cerebrovascular disorders, its function in ox-LDL-induced endothelial injury is still not well understood., Methods: An in vitro AS cell model was established by exposing human umbilical vein endothelial cells (HUVECs) to 100 µg/mL ox-LDL for 24 h. A series of functional assays, including CCK-8 assay, flow cytometry, MDA and SOD kits, capillary-like network formation assay and ELISA assay were performed in vitro. TNFSF4/TLR4/NF-κB pathway-related protein expressions were measured by Western blot. Molecular mechanisms were elucidated through quantitative real-time PCR, western blot analysis, and luciferase reporter assays., Results: Our investigation revealed that exposure to ox-LDL led to a downregulation in miR-125b-5p, while upregulating the expression of tumor necrosis factor (ligand) superfamily, member 4 (TNFSF4), TLR4, p-p65 and p-IkBa in HUVECs in a dose-dependent manner. We confirmed TNFSF4 as a direct target of miR-125b-5p. Ox-LDL exposure led to decreased cell viability and angiogenic capacity, along with increased apoptosis, inflammation, and oxidative stress in HUVECs. These effects were reversed by overexpressing miR-125b-5p or knocking down TNFSF4. Overexpression of TNFSF4 significantly reversed the effects brought about by miR-125b-5p in HUVECs exposed to ox-LDL. Moreover, miR-125b-5p inactivated the TLR4/NF-κB signaling pathway by negatively regulating TNFSF4., Conclusions: In summary, our findings demonstrate that miR-125b-5p possessed an anti-inflammatory and anti-apoptosis against ox-LDL-induced HUVEC injury by regulating the TNFSF4/TLR4/NF-κB signaling, indicating that miR-125b-5p may have an important therapeutic function for AS., Competing Interests: Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests., (© 2025. The Author(s).)
- Published
- 2025
- Full Text
- View/download PDF